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1 Introduction and NotationLet N be the set of natural numbers, [n] := f1; : : : ; ng, and for i; j 2 N ,i < j, let [i; j] := fi; i+ 1; : : : ; jg. Let 2[n] be the family of all subsets of [n].Also, let�[n]k � := fX � [n] : jXj = kg; � [n]� k� := fX � [n] : jXj � kg;� [n]� k� := fX � [n] : jXj � kg:A family F � 2[n] is called t{intersecting (resp. s{cointersecting) if, for allX; Y 2 F , jX \ Y j � t (resp. jX [ Y j � n � s). Let I(n; t) (resp. C(n; t))be the class of all t{intersecting (resp. s{cointersecting) families of subsetsof [n]. Furthermore, letIk(n; t) := I(n; t) \ 2([n]k ); I�k(n; t) := I(n; t) \ 2([n]�k);i.e. the class of t{intersecting families whose members have size equal to kresp. not greater than k, and let I�k(n; t), C�k(n; s), C�k(n; s) be de�nedanalogously.For a class K of families, letM(K) := maxfjFj : F 2 Kg:More generally, if there is given a weight function ! : 2[n] ! R+ (the set ofall nonnegative reals), let for F � 2[n]!(F) := XX2F !(X)and M(K; !) := maxf!(F) : F 2 Kg:In this paper we study the numbers M(K) forK 2 fI�k(n; t); I�k(n; t); C�k(n; s); C�k(n; s); I(n; t) \ C(n; s)g :2 ResultsFirst of all, by considering complementsM(C�k(n; s)) = M(I�n�k(n; s));M(C�k(n; s)) = M(I�n�k(n; s));1



so that only three of the �ve numbers are of interest.Let, for r = 0; : : : ; �n�t2 �,S(n; t; r) := fX 2 2[n] : jX \ [t+ 2r]j � t + rg;Sk(n; t; r) := S(n; t; r) \ �[n]k �;S�k(n; t; r) := S(n; t; r) \ � [n]� k�;and let S�k(n; t; r) be de�ned analogously. By construction, these familiesare t{intersecting.The following results are fundamental:Theorem 1 (Katona [13]). We haveM(I(n; t)) = ��S �n; t; �n�t2 ���� :Theorem 2 (Ahlswede, Khachatrian [1]). We haveM(Ik(n; t)) = max�jSk(n; t; r)j : r = 0; : : : ; �n�t2 �	 :Moreover, for n > 2k � t, the optimal r is given by(k � t+ 1)(t� 1)n� 2k + 2t� 2 � 1 � r � (k � t+ 1)(t� 1)n� 2k + 2t� 2 :An easy consequence of Theorem 1 is the following (cf. [8, 6]):Theorem 3. Let !(X) = !(Y ) for all X; Y � [n] with jXj = jY j and let!(x) � !(Y ) if jXj+ jY j = n+ t� 1, jXj � jY j. ThenM(I(n; t); !) = ! �S(n; t; �n�t2 �)� :Setting !(X) := (1 if jXj � k0 otherwisewe obtain immediately from Theorem 3:Corollary 4. We haveM(I�k(n; t)) = ��S�k �n; t; �n�t2 ���� :2



The determination of M(I�k(n; t)) is more di�cult and, up to now, wecan provide only partial results.Proposition 5. We haveM(I�k(n; 1)) = jS�k(n; t; 0)j:Indeed, this follows easily using complements and the Erd�os{Ko{RadoTheorem [9]. Hence we suppose throughout t � 2 when studying I�k(n; t).The following question was the starting point of our investigations:Problem 6. For which numbers k do we haveM(I�k(n; t)) = jS�k(n; t; �n�t2 �)j ? (1)Concerning this question we may clearly suppose that k � bn+t2 c becauseotherwise S�k(n; t; �n�t2 �) = ;. Problem 6 is answered essentially by thefollowing results:Theorem 7. Let t and c be �xed constants and let k � n+t2 + cpn. Then(1) does not hold if n is large enough.Theorem 8. Let t be �xed and k � n+t2 +plognpn. Then (1) holds if n islarge enough.Theorem 9. Let c be a �xed constant and let k � n+t2 + c. Then there exists� > 0 such that for t � �n and n su�ciently large (1) does not hold.Theorem 10. Let � > 0 be a �xed constant and let t � �n. Then thereexists c > 0 such that for k � n+t2 + c and n su�ciently large (1) holds.Concerning the complete determination of M(I�k(n; t)) we have the fol-lowing conjecture:Conjecture 11. If k < n+t2 , thenM(I�k(n; t)) = max�jS�k(n; t; r)j : r = 0; : : : ; �n�t2 �	 : (2)This conjecture is supported by the following results.Theorem 12. Let t and 0 < � < 12 be �xed constants and k � (12 � �)n.Then (2) holds for su�ciently large n.Theorem 13. Let t = �n + o(n) and k = �n + o(n) with 0 < � < � < 1+�2 .Then, as n!1,M(I�k(n; t)) � max�jS�k(n; t; r)j : r = 0; : : : ; �n�t2 �	 :3



Studying M(I(n; t) \ C(n; s)) one can clearly suppose throughout thatt + s � n. Given n; t; s and r 2 f0; : : : ; �n�t�s2 �g, let alwaysq := �n�t�s2 �� r:Note that (t+ 2r) + (s+ 2q) = (n if 2 j n� s� tn� 1 otherwise :Let, for r = 0; : : : ; �n�t�s2 �,S(n; t; s; r) := �X 2 2[n] : jX \ [t+ 2r]j � t + r and jX \ [n� s� 2q + 1; n]j � q	 :Obviously, these families are t{intersecting and s{cointersecting. Verifying aconjecture of Katona, Frankl [10] proved:Theorem 14. We haveM (I(n; 1) \ C(n; s)) = jS(n; 1; s; 0)j:Moreover, Frankl [11] and Bang, Sharp and Winkler [4] propose:Conjecture 15. We haveM (I(n; t) \ C(n; s)) = max�jS(n; t; s; r)j : r = 0; : : : ; �n�t�s2 �	 :In [4] this conjecture is proved for n� t� s � 3.>From Theorem 1 one easily obtains that for �xed tM(I(n; t)) � 2n�1 as n!1:This gives, applying in a standard way Kleitman's inequality (cf. [7, p.266]):Proposition 16. Let t and s be �xed and let n!1. ThenM (I(n; t) \ C(n; s)) � 2n�2 � max�jS(n; t; s; r)j : r = 0; : : : ; �n�t�s2 �	 :In addition, we have the following result:Theorem 17. Let t = �n + o(n), s = �n + o(n), �; � > 0, � + � < 1 andn!1. ThenM (I(n; t) \ C(n; s)) � max�jS(n; t; s; r)j : r = 0; : : : ; �n�t�s2 �	 :Thus Conjecture 15 is supported by Proposition 16 and Theorem 17.4



3 Short proofs for results concerning I�k(n; t)Proof of Theorem 7. It is easy to see that (1) holds for some k if it holdsfor some k0 with k0 < k (see Lemma 19). Hence it is su�cient to prove theassertion for k = �n + t2 + cpn�We use the well{known fact that for constants a; b (with a < b) and forn!1 Xn2+ 12pna+o(pn)�j�n2+ 12pnb+o(pn)�nj� � (�(b)� �(a))2n (3)uniformly in a; b 2 R, where � is the Gaussian distribution. SincekXi=bn+t2 c+1�ni� � ��S�k �n; t; �n�t2 ���� � kXi=bn+t2 c�ni�we have ��S�k �n; t; �n�t2 ���� � (�(2c)� �(0)) 2n = ��(2c)� 12� 2n: (4)Now choose r := bn 14 c. From (3) it follows thatk�iXj=0 �n� t� 2rj � � �(2c)2n�t�2runiformly in i 2 [t+ r; t+ 2r] and thatt+2rXi=t+r�t+ 2ri � � �(0)2t+2r:Consequently,jS�k(n; t; r)j = t+2rXi=t+r�t+ 2ri � k�iXj=0 �n� t� 2rj �� �(0)2t+2r�(2c)2n�t�2r = 12�(2c)2n: (5)Since �(2c)� 12 < 12�(2c) we have by (4) and (5) for su�ciently large n��S�k �n; t; �n�t2 ���� < jS�k(n; t; r)j :5



Proof of Theorem 9. Analogously to the proof of Theorem 7 we prove theassertion only for k = �n + t2 + c� :W.l.o.g. we may assume that c is an integer. Moreover, we suppose that2 j n+ t. If 2 - n+ t the proof can be modi�ed in a straightforward way. Wehave k = n+t2 + c and put d := 3(c + 2)2. Note that for constant integers aand b �n�a` �� n`+b� � (1� `=n)a � `=n1� `=n�b : (6)Let � := tn . We take r := n�t2 �d and compare jS�k(n; t; r)jwith ��S�k �n; t; �n�t2 ����.We have (with t + r + c+ d = k)jS�k(n; t; r)j = c+dXi=0 � n� 2dt+ r + i� c+d�iXj=0 �2dj �:Using (6) we obtainjS�k(n; t; r)j� n(n+t)=2� � �1� �2 �2d c+dXi=0 �1 + �1� ��d�i c+d�iXj=0 �2dj �:Analogously, ��S�k �n; t; �n�t2 ���� = cXj=0 � n(n+ t)=2 + j�;��S�k �n; t; �n�t2 ����� n(n+t)=2� � cXj=0 �1 + �1� ���j :For the proof it is enough to show that there are �; � > 0 such that for � � �,independently of n,�1� �2 �2d c+dXi=0 �1 + �1� � �d�i c+d�iXj=0 �2dj � � cXj=0 �1 + �1� ���j + � (7)since then for su�ciently large n and t � �njS�k(n; t; r)j > ��S�k �n; t; �n�t2 ���� :6



Both sides of (7) are continuous functions of � . Hence it is enough to consider� = 0 and to proveL := c+dXi=0 c+d�iXj=0 �2dj � > (c+ 1)22d =: R: (8)Let a 2 f0; : : : ; c� 1g and consider on the LHS of (8) the terms with i = aand i = 2c� a. We havec+d�aXj=0 �2dj �+ c+d�(2c�a)Xj=0 �2dj � = c+d�aXj=0 �2dj � + d�c+aXj=0 � 2d2d� j�= c+d�aXj=0 �2dj � + 2dXj=c+d�a�2dj �> 22d:For i = c, c+d�iXj=0 �2dj � = 1222d + 12�2dd �:Consequently, we have the following estimation for the LHS of (8):L > �c+ 12� 22d + 12�2dd � + c+dXi=2c+1 c+d�iXj=0 �2dj �: (9)For i � 2c+ 1, c+d�iXj=0 �2dj � = dXj=0 �2dj �� dXj=c+d�i+1�2dj �> 1222d + 12�2dd �� (i� c)�2dd �= 1222d � �i� c� 12��2dd �:Considering in (8) only the terms with i = 2c+ 1; 2c+ 2; 2c+ 3 givesL > (c+ 1)22d + 22d � (3c+ 4)�2dd �:7



Accordingly, L > R (i.e. (7) holds) if22d > �2dd �(3c+ 4): (10)It is well{known (cf. [12, p.283]) that�2dd � � 22dp3d+ 1 :Hence (10) holds ifp3d+ 1 > 3c+4. Indeed (using d = 3(c+2)2), p3d+ 1 >p9(c+ 2)2 = 3(c+ 2) > 3c+ 4.4 Asymptotic estimates of M(I�k(n; t)) andM(I(n; t) \ C(n; s))Proof of Theorem 13. For any family F we use the notationFh := fX 2 F : jXj = hg:Let F 2 I�k(n; t). Clearly, jFj = kXh=0 jFhj: (11)First we estimate each jFhj. In the following the maximum is always exten-dend over r 2 f0; : : : ; �n�t2 �g. By Theorem 2,jFhj � max fjSh(n; t; r)jg = max( rXi=0 �t+ 2rr � i �� n� t� 2rh� t� r � i�)� max(�t+ 2rr ��n� t� 2rh� t� r � 1Xi=0 � rt + r + 1 h� t� rn� h� r + 1�i)� max(�t+ 2rr ��n� t� 2rk � t� r �� k � t� rn� k � r + 1�k�h 11� rt+r+1 k�t�rn�k�r+1) :(12)We will see that almost all numbers jFhj can be neglected. Only the valuesjFhj with h near to k give an essential contribution. Clearly, it is enough toextend the maximum only over r 2 f0; : : : ; k � tg. Thenrt+ r + 1 � k � tk + 1 = 1� �� + o(1):8



Moreover, for large n, k � t� r < n� k � r + 1, hencek � t� rn� k � r + 1 � k � tn� k + 1 = �� �1� � + o(1) < 1:Choose � such that ���1�� < � < 1. Then, for any � > 0 and any h withh � k � �n,jFhj � 1(1� �=�)���nmax��t+ 2rr ��n� t� 2rk � t� r ��and Xh�k��n jFhj � 1(1� �=�)�n��nmax��t+ 2rr ��n� t� 2rk � t� r �� : (13)We put � := n� 12 . Now let h be near to k, i.e. k � h � �n. By Theorem 2,maxfjSh(n; t; r)jg is attained at some r = r(k) with(�� �� �)�n1� 2�+ 2� + 2� � o(n) � r � (�� �)�n1� 2�+ 2� + o(n):Then, uniformly for k � �n � h � k,rt+ r + 1 = �� �1� (�� �) + o(1);k � t� rn� k � r + 1 = �� �1� (�� �) + o(1):Let ! := ���1�(���) . From (12) we obtainjFhj � max��t + 2rr ��n� t� 2rk � t� r � (! + o(1))k�h 11� !2 � o(1)�and, consequently,Xk��n<h�k jFhj � 11� ! 11� !2 (1 + o(1))max��t + 2rr ��n� t� 2rk � t� r �� :(14)Since n��n = o(1), we �nally get from (11), (13) and (14)jFj � 11� ! 11� !2 (1 + o(1))max��t+ 2rr ��n� t� 2rk � t� r �� : (15)On the other hand, using more or less the same estimations, one can derivemax fjS�k(n; t; r)jg � 11� ! 11� !2 (1 + o(1))max��t+ 2rr ��n� t� 2rk � t� r ��which proves together with (15) the assertion.9



Proof of Theorem 17. Let F 2 I(n; t)\C(n; s). First let 2 j n+ t+ s andlet k := n+t�s2 . We divide F into two subfamiliesF 0 := k[h=0Fh; F 00 := n[h=k+1Fhand put F 000 := f[n] nX : X 2 F 00g:Obviously, F 0 2 I�k(n; t), F 000 2 I�n�k�1(n; s). Using the notations fromTheorem 13 we have (for F 0 and F 000)! = 1� � � �1 + � + �and get the estimationsjF 0j � 11� ! 11� !2 (1 + o(1))max��t+ 2rr �� n� t� 2r(n� t� s)=2� r�� ;jF 000j � 11� ! 11� !2 (1 + o(1))max��s+ 2qq �� n� s� 2q(n� t� s)=2� 1� q��= !1� ! 11� !2 (1 + o(1))max��s + 2qq �� n� s� 2q(n� t� s)=2� q�� ;and, with r := n�t�s2 � q,jF 000j � !1� ! 11� !2 (1 + o(1))max��t+ 2rr �� n� t� 2r(n� t� s)=2� r�� :Consequently,jFj = jF 0j+ jF 000j � 1(1� !)2 (1 + o(1))max��t+ 2rr �� n� t� 2r(n� t� s)=2� r�� :Again, in a similar way, one can derive thatmax�jS(n; t; s; r)j : r = 0; : : : ; n�t�s2 	� 1(1� !)2 (1 + o(1))max��t + 2rr �� n� t� 2r(n� t� s)=2� r��which proves the assertion. 10



Now let 2 - n+ t+ s. Here we put k := n+t�s�12 . With the same approachwe getjF 0j � 11� ! 11� !2 (1 + o(1))max��t + 2rr �� n� t� 2r(n� t� s� 1)=2� r�� ;jF 000j � 11� ! 11� !2 (1 + o(1))max��s+ 2qq �� n� s� 2q(n� t� s� 1)=2� q��= 11� ! 11� !2 (1 + o(1))max��t+ 2r + 1r �� n� 1� t� 2r(n� t� s� 1)=2� r�� :It is not di�cult to verify that the maximum on both RHS is attained atsome r with r � �2 1� � � �� + � n:This easily impliesjFj = jF 0j+ jF 000j � 2(1� !)2 (1 + o(1))max��t+ 2rr �� n� 1� t� 2r(n� t� s� 1)=2� r�� :But the RHS is obviously also a lower bound formax�jS(n; t; s; r)j : r = 0; : : : ; n�t�s�12 	 :
5 Comparison methods and proofs of Theo-rems 8 and 10In this section we work with size{dependent weight functions, i.e. functions! : 2[n] ! R+ for which there are numbers !0; : : : ; !n such that !(X) = !ifor all X � [n] with jXj = i, i = 0; : : : ; n. We call ! := (!0; : : : ; !n) theweight vector.A corollary of the Comparison Lemma [2] is the following result provedin [6]:Theorem 18. Let ! be size{dependent. ThenM(I(n; t); !) = ! �S(n; t; �n�t2 �)�if max� !i!i+1 : i = t; : : : ; n� 1� < 1 + t� 1�n�t2 � :11



Remark. Using a continuity argument it is easy to see that the relation \<"in the above condition can be replaced by \�".In the next lemmas we present conditions how the weight function canbe changed without changing the optimal solution.Lemma 19. Let ! be size{dependent and suppose that M(I(n; t); !) is at-tained at S(n; t; �n�t2 �). Let !0 be a new size{dependent weight de�ned byeither one of the following assignments:!0i := 8>><>>:!i � � if i = u!i + �(nu)(ǹ) if i = `!i otherwise; (16)where 0 < � � !u and, n+t2 � ` < u � n or 0 � ` < u < �n+t2 �,!0i := (!i + � if i = `!i otherwise; (17)where � > 0 and n+t2 � ` � n.Then M(I(n; t); !0) is also attained at S �n; t; �n�t2 ��.Proof. Let !0 be given by (16). Note that!0 �S �n; t; �n�t2 ��� = ! �S �n; t; �n�t2 ��� :Let F be an optimal family for !0. W.l.o.g. we may assume that F is a �lter(or upset), i.e. X 2 F ; X � Y imply Y 2 F . By the normalized matchingproperty of the Boolean lattice (cf. [7, p.149]) we havejF`j�ǹ� � jFuj�nu� :It follows!0(F) = !(F) + ��nu��ǹ� jF`j � �jFuj = !(F) + ��nu� jF`j�ǹ� � jFuj�nu� !� !(F) � ! �S �n; t; �n�t2 ��� = !0 �S �n; t; �n�t2 ��� :Now let !0 be given by (17) and let F be an optimal family for !0. Then!0(F) = !(F) + �jF`j � !(F) + ��ǹ�� ! �S �n; t; �n�t2 ���+ ��ǹ� = !0 �S �n; t; �n�t2 ��� :12



Lemma 20. Let ! be size{dependent and suppose that M(I(n; t); !) is at-tained at S(n; t; �n�t2 �). Let � > 0, 0 � ` < �n+t2 � and let !0 be a newsize{dependent weight de�ned by!0i := 8><>:!i + � if i = `!i + � `�t+1` if i = n + t� `� 1!i otherwise:Then M(I(n; t); !0) is also attained at S(n; t; �n�t2 �).Proof. Obviously,!0 �S �n; t; �n�t2 ��� = ! �S �n; t; �n�t2 ���+ �`� t+ 1` � nn+ t� `� 1�:Let F be an optimal family for !0. From Katona's theorem concerning shad-ows of t{intersecting families (cf. [7, p.301]) followsjFn+t�`�1j � � nn+ t� `� 1�� ``� t + 1 jF`j:Accordingly,!0(F) = !(F) + �jF`j+ �`� t+ 1` jFn+t�`�1j� !(F) + �`� t+ 1` � ``� t + 1 jF`j+ � nn+ t� `� 1�� ``� t + 1 jF`j�� ! �S �n; t; �n�t2 ���+ �`� t+ 1` � nn + t� `� 1� = !0 �S �n; t; �n�t2 ���Proof of Theorem 8. Obviously, it is enough to prove the assertion fork := �n+ t2 +plognpn�(e.g. apply Lemma 19 with (17)). Letq := 1 + t� 1�n�t2 � :We consider the size{dependent weight ! de�ned by!i := (1 if i < n+t21q if i � n+t2 : (18)13



By Theorem 18 (and the succeeding remark), we know that M(I(n; t); !) isattained at S �n; t; �n�t2 ��.Now we apply Lemma 19 with (16) for ` = �n+t2 � and u = k + 1; k +2; : : : ; n. This gives the new weight vector !0:!0i := 8>>>>><>>>>>:1 if i < n+t21q �1 + 1( nd(n+t)=2e)Pnu=k+1 �nu�� if i = �n+t2 �1q if �n+t2 � < i � k0 if i > k:It is known (cf. [12, p.284]) that, as n!1,� nd(n+ t)=2e� � 2n+1p2�n; (19)and, with x = o(n 16 ), x!1,Xu>n2+xpn2 �nu� � 1p2�xe�x2=22n:The last formula with x = 2plogn impliesnXu=k+1�nu� . 12p�plogn 2nn2 : (20)By (19) and (20) we have for su�ciently large n1� nd(n+t)=2e� nXu=k+1�nu� < t� 1�n�t2 � = q � 1which implies that !0i � 1 for i = �n+t2 � ; : : : ; k. Hence, by applying againLemma 8 with (17) we obtain that for large nM (I�k(n; t)) = ��S�k �n; t; �n�t2 ���� :Proof of Theorem 10. We use the same method as in the proof of Theo-rem 8, but here we put k := �n+ t2 �+ c;14



where c is an integer. Recalling (18) we have to show that there exists c suchthat for large n 1q  1 + 1� nd(n+t)=2e� nXu=k+1�nu�! � 1;or, equivalently, nXu=k+1�nu� � (q � 1)� nd(n + t)=2e�: (21)We have 1q > � nd(n+t)=2e+1�� nd(n+t)=2e� > � � � > �nn�� nn�1�and consequentlynXu=k+1�nu� < � nd(n+ t)=2e� nXu=k+1 q�(u�dn+t2 e) < � nd(n+ t)=2e�q�(c+1) 11� q�1 :Therefore, (1=q)c+11� 1=q � q � 1;or, equivalently, qc � 1(q � 1)2 (22)is su�cient for (21). Using qc � c(q � 1)we see that c � 1(q � 1)3is su�cent for (22). However, for t � �n, the last condition certainly holds(for large n) if c > �1� �2� �3 :15



6 Proof of Theorem 12Lemma 21. Let ak;n = 1�nk� kXj=0 �nj�:Then ak;n is increasing in k (for k = 0; : : : ; n).Proof. For �xed n we have ak;n � ak+1;n i��nk� k+1Xj=0 �nj�� � nk + 1� kXj=0 �nj� � 0:However, this inequality is true since the LHS is not less thankXj=0 ��nk�� nj + 1�� � nk + 1��nj��and each term of the last sum is nonnegative by the log{concavity of thebinomial coe�cients.Lemma 22. Let k < n+t2 . Then the sequencejS�k(n; t; 0)j; jS�k(n; t; 1)j; : : : ; ��S�k �n; t; �n�t2 ����is unimodal.Proof. By considering jS�k(n; t; r) n S�k(n; t; r + 1)j and jS�k(n; t; r + 1) nS�k(n; t; r)j we see thatjS�k(n; t; r)j � jS�k(n; t; r + 1)jis equivalent to(t+ r)�n� t� 2r � 2k � t� r � � (t� 1) k�t�rXi=0 �n� t� 2r � 2i �: (23)We will show that jS�k(n; t; r)j � jS�k(n; t; r+1)j implies jS�k(n; t; r�1)j �jS�k(n; t; r)j. It su�ces to prove that for all r with 0 < r < �n�t2 �� n� t� 2rk � t� r + 1� k�t�rXi=0 �n� t� 2r � 2i � ��n� t� 2r � 2k � t� r � k�t�r+1Xi=0 �n� t� 2ri �;16



or, (substituting a = n � t � 2r � 2, b = k � t � r) that for all a, b with2b < a+ 2 �a+ 2b+ 1� bXi=0 �ai� � �ab� b+1Xi=0 �a + 2i �:Subtracting 2�ab� bXi=0 �ai�from the last inequality gives�� ab� 1�+ � ab + 1�� bXi=0 �ai� � �ab� b+1Xi=0 �ai�+ b�1Xi=0 �ai�! : (24)Using 2b � a+ 1 one veri�es easily that for i = 0; 1; : : : ; b� ab�1�+ � ab+1��ab� � � ai�1�+ � ai+1��ai�from which (24) follows.Proof of Theorem 12.Step 1:Let the weight vector ! be de�ned by!i := (1 if i � k0 if i > k:Let r� = r�(n; k) be the least r such thatj!(S(n; t; r))j � j!(S(n; t; r + 1))j � : : : : (25)By Lemma 22 we know that jS�k(n; t; r�)j = maxfjS�k(n; t; r)j : r = 0; : : : ; �n�t2 �g.In addition, we have !i = 0 if i � n + t2 : (26)Given an arbitrary weight vector satisfying (25) and (26) it follows by themethod of generating sets [1] thatM(I(n; t); !) = M(I(t + 2r�; t); !0);17



where the weight vector !0 is given by!0i := n�t�2r�Xj=0 !i+j�n� t� 2r�j �for i = 0; : : : ; t + 2r� (cf. [6, Theorem 15 and Example 4]). Hence, in ourcase, we have M(I�k(n; t)) = M(I(t+ 2r�; t); !0);where !0i = k�iXj=0 �n� t� 2r�j �for i = 0; : : : ; t+ 2r�.Step 2:>From Step 1 we know that there is an optimal family F (i.e. F 2I�k(n; t), jFj = M (I�k(n; t))) which has the following property:X 2 F implies Y 2 F for all Y 2 � [n]� k� with Y \ [t + 2r�] = X \ [t + 2r�]:(27)W.l.o.g. we assume that F is left{compressed, i.e. (X n fig) [ fjg 2 F forall i; j 2 [n] with i > j, i 2 X, j =2 X. We will prove by pushing{pulling [3]that F is invariant in [t+2r�], i.e. (X n fig)[fjg 2 F for all i; j 2 [t+2r�],i 2 X, j =2 X. Assume the contrary. Let` = maxfi : F is invariant in [i]gL = fX 2 F : `+ 1 =2 X; (X n fig) [ f`+ 1g =2 F for some i 2 X \ [`]gL� = fX \ [`+ 2; n] : X 2 Lg:Furthermore, let Li = fX 2 L : jX \ [`] = ig, L�i = fX \ [`+2; n] : X 2 Lig.By our assumption we have ` < t+ 2r�. The following facts follow from thepushing{pulling method (cf. [6]):(i) L is nonempty and invariant in [`].(ii) ` � t, 2 j `+ t, Li = ; for i 2 [`] n f `+t2 g.(iii) For all intersecting subfamilies T � of L�̀+t2 ,PX2T � !jXj+ `+t2PX2L�̀+t2 !jXj+ `+t2 � `� t+ 22(`+ 1) :18



It is easy to see that ` = t + 2r� � 2 is impossible (e.g., since L 6= ; wehave t + 2r� =2 X for some X 2 L�̀+t2 which implies F = S�k(n; t; r� � 1) incontradiction to the choice of F and r�). Hence ` � t+2r��4. We show thatthe family T � = fX 2 L�̀+t2 : n 2 Xg contradicts fact (iii). Indeed, recalling(27), this will follow from the next inequality (we classify the members X ofL�̀+t2 and T � with respect to i = jX \ [`+ 2; t+ 2r�]j).Claim: If k � (12 � �)n and n is su�ciently large then we have for all `; iwith ` � t + 2r� � 4, 2 j `+ t, 0 � i � t + 2r� � `� 1k� `+t2 �i�1Xj=0 �n� t� 2r� � 1j � > `� t+ 22(`+ 1) k� `+t2 �iXj=0 �n� t� 2r�j �:This inequality is easily seen to be equivalent ton� t� 2r�n� t� 2r� � k + `+t2 + iPk� `+t2 �ij=0 �n�t�2r�j ��n�t�2r�k� `+t2 �i� > `+ 1t� 1 : (28)Since ` � t+ 2r� � 4 it su�ces to show that the LHS of (28) is greater thant + 2r� � 3t� 1 :For every r let �r = rt+ 2r � 1 and mr = �r�1 + �r2 :Note that r = (t�1) �r1�2�r and that �r is strictly increasing and limr!1 �r =12 . We consider the �nite setR := fr 2 N : �r � 12 � �g:Since for � < 12 , c 2 N constantlimn!1 1� nb�nc+c� b�nc+cXj=0 �nj� = 1� �1� 2�(cf. [5]), we have for su�ciently large n and all r; `; i with r 2 R, ` � t+2r�4,2 j `+ t, 0 � i � t+ 2r � `� 1n� t� 2rn� t� 2r � bmrnc + `+t2 + iPbmrnc� `+t2 �ij=0 �n�t�2rj �� n�t�2rbmrnc� `+t2 �i� > 11� 2�r�1 = t+ 2r � 3t� 1 :(29)19



Analogously, we have for su�ciently large n and all r 2 RPbmr+1nc�t�rj=0 �n�t�2r�2j �� n�t�2r�2bmr+1nc�t�r� < 1� �r+11� 2�r+1 = t + rt� 1 : (30)Now let n such that (29) and (30) are satis�ed and let r be determinedby bmrnc � k < bmr+1nc:By (23), Lemma 21 and (30) we havejS�k(n; t; r)j > jS�k(n; t; r + 1)j;hence, by Lemma 22, r� � r. Lemma 21 and (29) now imply that (28) issatis�ed.References[1] R. Ahlswede and L.H. Khachatrian. The complete intersection theoremfor systems of �nite sets. European J. Combin., 18:125{136, (1997).[2] R. Ahlswede and L.H. Khachatrian. The diametric theorem in Hammingspaces { optimal anticodes. Adv. in Appl. Math., 20:429{449, (1998).[3] R. Ahlswede and L.H. Khachatrian. A pushing{pulling method: newproofs for intersection theorems. Combinatorica, 19:1{15, (1999).[4] C. Bang, H. Sharp, and P. Winkler. On families of �nite sets with boundson unions and intersections. Discrete Math., 45:123{126, (1983).[5] E. A. Bender. Asymptotic methods in enumeration. SIAM Rev., 16:485{515, (1974).[6] C. Bey and K. Engel. Old and new results for the weighted t-intersectionproblem via AK{methods. Preprint 98/18, Univ. Rostock, (1998).[7] K. Engel. Sperner Theory. Cambridge University Press, Cambridge,(1997).[8] K. Engel and P. Frankl. An Erd}os{Ko{Rado theorem for integer se-quences of given rank. European J. Combin., 7:215{220, (1986).20
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