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Abstract

q–ary codes capable of correcting all unidirectional errors of certain level 1 ≤ ℓ ≤
q − 2 are considered. We also discuss some related extremal combinatorial problems.

1 Introduction

An extensive theory of error control coding has been developed under the assumption of
symmetric errors in the data bits; i.e. errors of type 0 → 1 and 1 → 0 can occur in a
codeword.However in many digital systems such as fiber optical communications and optical
disks the ratio between probability of errors of type 1 → 0 and 0 → 1 can be large. Practically
we can assume that only one type of errors can occur in those systems. These errors are called
asymmetric. The statistics also shows that in some of the recently developed LSI/VLSI ROM
and RAM memories the most likely faults are of the unidirectional type. The unidirectional
errors slightly differ from asymmetric type of errors: both 1 → 0 and 0 → 1 type of errors
are possible, but in any particular word all the errors are of the same type.The problem
of protection against unidirectional errors arises also in designing fault–tolerant sequential
machines, in write–once memory systems, in asynchronous systems et al.Codes correcting
asymmetric/unidirectional errors are not well studied since they encounter more complicated
structures than those for symmetric errors. (for more information see a good collection
of papers in [2]). The first construction of nonlinear codes correcting asymmetric single
errors was given by Varshamov and Tennengolts [5]. Modifications of VT–codes where used
to construct new codes correcting t–asymmetric errors and burst of errors [2]. Very few
constructions are known for codes correcting unidirectional errors (see [2]). We call a code
of length n, correcting t–asymmetric errors a generalized VT–code if it is given by the set of
solutions (x1, . . . , xn) ∈ {0, 1}n of a linear congruence of the type

n
∑

i=1

f(i)xi ≡ a mod M
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where f(i) (i = 1, . . . , n) is an integer valued function, a and M are integers. There are deep
relationships between VT–codes and some difficult problems in Additive Number Theory
[6], [3]. In [6] Varshamov introduced a q–ary asymmetric channel. The inputs and outputs
of the channel are n–sequences over a q–ary alphabet labelled with integers {0, 1, . . . , q −
1}. If the symbol i is transmitted then the only symbols which the receiver can get are
{i, i + 1, . . . , q − 1}. Thus for any transmitted vector (x1, . . . , xn) the received vector is of
the form (x1 + e1, . . . , xn + en) where ei ∈ {0, . . . , q − 1} and xi + ei ≤ q − 1, i = 1, . . . , n.

Then Varshamov says that t–errors have occured if e1 + · · · + en = t. Generalizing the idea
of VT–codes Varshamov presented [6] several ingenious constructions of t–error correcting
codes for the defined channel. These codes has been shown to be superior to BCH codes
correcting t errors for q ≥ 2 and for large n.

2 ℓ–AUEC–codes and related problems

The number of symmetric errors in real systems is usually limited, while the number of
unidirectional/asymmetric errors can be fairly large. This motivated several authors to
consider codes that correct a few symmetrical errors and detect/correct all/many unidirec-
tional (asymmetric) errors.We introduce now a special type of asymmetric errors in a q–ary
channel. As above the alphabet Q is labelled with integers {0, 1, . . . , q − 1} and for every
transmitted vector x = (x1, . . . , xn) the output is of the form (x1 + e1, . . . , xn + en), where
“+” denotes real addition, and xi + ei ≤ q − 1; i = 1, . . . , n.We say that an asymmetric
error e = (e1, . . . , en) is of level 1 ≤ ℓ ≤ q − 1 if 0 ≤ ei ≤ ℓ. We also say that t asymmetric
errors have occured if for the Hamming weight wtH(e) = t. Correspondingly we say that
t unidirectional errors have occured, if the output is either x + e or x − e. The difference
between the channel described above and Varshamov’s channel for q > 2, l = 1 is seen in
the figure below.
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Here we concentrate on the case t = n. That is we consider q–ary codes correcting all asym-
metric or unidirectional errors of given level ℓ. For those we use the abreviations ℓ–AAEC–
and ℓ–AUEC–codes, respectively.For given 1 ≤ ℓ ≤ q − 2 let Aa(n, ℓ)q and Au(n, ℓ)q denote
the maximum number of codewords in a q–ary code of length n, correcting all asymmetric
and unidirectional errors, respectively. Clearly Au(n, ℓ)q ≤ Aa(n, ℓ)q. Define two distances
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between x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Qn = {0, 1, . . . , q − 1}n.

da(x, y) = max{|xi − yi| : i = 1, . . . , n}

du(x, y) =

{

da(x, y), if x ≥ y or x ≤ y

2da(x, y), if x and y are incomparable

where x ≥ y means that xi − yi ≥ 0, for i = 1, . . . , n.

Proposition 1. Let C ⊂ {0, . . . , q − 1}n. Then

(i) C is an ℓ–AAEC–code iff for every x, y ∈ C holds da(x, y) ≥ ℓ + 1

(ii) C is an ℓ–AUEC–code iff for every x, y ∈ C holds du(x, y) ≥ 2ℓ + 1.

It turns out that it is very easy to determine Aa(n, ℓ)q for any given parameters 1 ≤ ℓ ≤ q−2
and n. However this is not the case for unidirectional codes.

Theorem 1. For 1 ≤ ℓ ≤ q − 2 one has Aa(n, ℓ)q =
⌈

q

ℓ+1

⌉n
.

Theorem 2. Given integers ℓ ≥ 1, q > 2(ℓ + 1) we have c
(

q

ℓ+1

)n
≤ Au(n, ℓ)q ≤

⌈

q

ℓ+1

⌉n
for

some constant c.

Write q = 2m + ε, where ε ∈ {0, 1}, and let Q = {−m, . . . ,m + ε − 1}. Let us define X to
be the set of solutions x ∈ Qn of the equation

n−1
∑

i=0

(ℓ + 1)ixi = a. (2.1)

It is easy to see that X is a l–AUEC–code.In a special case when ℓ + 1|q we can maximize
|X| over all choices of a.

Theorem 3. For ℓ + 1|q (q = |Q|) maxa |X| =
(

q

ℓ+1

)n−1
. The maximum assumed for any

a ∈ Q in (2.1).

What can we say about Au(n, ℓ)q, when ℓ + 2 ≤ q ≤ 2(ℓ + 1)?

The simplest case is q = 2(ℓ + 1).In this case Au(n, ℓ)q = 2n. However, we have no “good”
lower bounds for other cases. A simple lower bound is Au(n, ℓ)q ≥

(

n

⌊n

2
⌋
)

.

Case: ℓ = 1

For q = 3 we have Au(n, 1)3 ≥
(

n

⌊n

2
⌋
)

.

For q = 4 Au(n, 1)4 = 2n.

q = 5. Simple bounds observed above give us c(2, 5)n ≤ Au(n, 1)5 ≤ 3n. However the lower
bound can be improved. To this end we look for good constructions of 1–AUEC codes given
by means of some equation. Let Q = {0,±1,±2}. Given integers a0, . . . , an−1, λ let X be
the set of all solutions x = (x0, . . . , xn−1) ∈ Qn of an equation

n−1
∑

i=0

aixi = λ. (2.2)
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Proposition 2.The set X is a 1–AUEC code if all subset sums of a0, . . . , an−1 are distinct.

Note that for λ = 0 this is also a necessary condition. Let {a0, . . . , an} ⊂ N has distinct
subset sums. Denote by LAu(n)5 the maximum possible number of solutions x ∈ Qn of the
(2.2) over all choices of a0, . . . , an and integer λ. A slightly modified version of this problem
was raised by Bohman (see [1]) in connection with a sum packing problem of Erdős [3].

Theorem 4. For some constants c1, c2 one has c1(2, 538)n < LAu(n)5 < c2(2, 723)n.

Error Detection Problem The detection problems for asymmetric and unidirectional
errors are equivalent, i.e. any t–error detecting asymmetric code is also a t–error detecting
unidirectional code. In fact the detection problem for unidirectional errors is much easier
than the error correction problem. This problem is completely solved for binary channels
(see Borden in [2]). That is for any 1 ≤ t ≤ n; t, n ∈ N; an optimal code of length n that
can detect up to t errors is constructed. For t < n observe that a code C detects all patterns
of t or fewer unidirectional errors, iff whenever a codeword x covers a codeword y then for
the Hamming distance d(x, y) > t + 1. In this case as an optimal code one has to take as
codewords all vectors with Hamming weight w =

⌊

n
2

⌋

mod (t + 1). This follows from a
result of Katona [4].The problem is also solved for the Varshamov’s channel, however for the
channel we described above the problem is open.
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