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Abstract. In this paper we continue our investigation on “Extremal problems under dimension constraint” intro-
duced in [2].

Let E(n, k) be the set of (0,1)-vectors in Rn with k one’s. Given 1 ≤ m, w ≤ n let X ⊂ E(n, m) satisfy
span(X)∩ E(n, w) = ∅. How big can |X | be?

This is the main problem studied in this paper. We solve this problem for all parameters 1 ≤ m, w ≤ n and
n > n0(m, w).
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1. Introduction

Let N be the set of positive integers. For the set {i, i +1, . . . , j} (i, j ∈ N) we use the
notation [i, j]. For k, n ∈ N, k ≤ n we set

2[n] = {A : A ⊂ [1, n]},
(

[n]

k

)
= {

A ∈ 2[n] : |A| = k
}
.

For any subset X ∈ 2[n] define its characteristic vector χ(X) = (x1, . . . , xn), where xi = 1 if
i ∈ X and xi = 0, if i /∈ X . We also define χ(A) = {χ(X) : X ∈ A} for any family A ⊂ 2[n]

and as a shorthand mostly just write A for χ(A) or B for χ(B) etc.
The set of (0,1)-vectors in Rn is denoted by E(n) = {0, 1}n . Correspondingly for “k-

uniform” vectors we use the notation

E(n, k) = {xn ∈ E(n) : xn has k ones}.



18 AHLSWEDE ET AL.

We consider the following problem. Given m, w ∈ N determine

F(n, w, m) = max{|X | : X ⊂ E(n, m), span(X)∩ E(n, w) = ∅}.
An equivalent formulation of the function F(n, w, m) is as follows:

Let V be an (n −1)-dimensional subspace of Rn so that V ∩ E(n, w) = ∅. Then

F(n, w, m) = max
V

|V ∩ E(n, m)|.

To see the equivalence of these formulations note that any subspace U ⊂ Rn of dimension
k < n −1 can be embedded in a subspace V of dimension n −1 so that

U ∩ E(n) = V ∩ E(n).

We state now our main results.

THEOREM 1.

(i) For m � w, m < w and n > n0(w, m) we have

F(n, w, m) = max
1≤�<n

1≤i≤m−1

(
�

i

)(
n −�

m − i

)
=

(
t

1

)(
n − t

m −1

)
, (n = tm + r, 0 < r < m).

(ii) For w < m we have

F(n, w, m) = max
1≤�<n

1≤i≤m−1

(
�

i

)(
n −�

m − i

)
=

(
t

1

)(
n − t

m −1

)
, (n = tm + r, 0 ≤ r < m).

THEOREM 2. For w = sm, s ∈ N and n > n0(w, m) we have

F(n, sm, m) = (s −1)

(
n − s +1

m −1

)
.

2. Auxiliary Results and Tools

Let A ⊂ 2[n]. A is called an antichain if A1 �⊂ A2 holds for all A1, A2 ∈ A. Correspondingly
A is called a chain if A1 ⊂ A2 or A1 ⊃ A2 holds for all A1, A2 ∈ A. We need the following
result from [3].

LEMMA 1. Let the ground set [1, n] be partitioned into two parts [1, n] = [1, �]∪ [�+1, n].
Let A ⊂ 2[n] be a family with the property

(P) For any two members A and B of A one has the following properties:
if A ∩ [1, �] and B ∩ [1, �] form a chain then A ∩ [�+1, n] and B ∩ [�+1, n] form an
antichain.

Define

αi j = #{A ∈ A : |A ∩ [1, �]| = i, |A ∩ [�+1, n] = j}.
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Then we have the following LYM type inequality (for LYM see e.g. [11])∑
i, j

αi j(
�

i

)(n−�

j

) ≤ 1.

LEMMA 2.

(a) Given 0 < i < k < n, n = tk + k1, with t, k1 ∈ N, t ≥ 2, 0 < k1 < k, then

max
i≤�<n

(
�

i

)(
n −�

k − i

)
=

(
�i

i

)(
n −�i

k − i

)
, where �i = i t +

⌊
i(k1 +1)

k

⌋
. (1)

(b) Given 0 < �, k < n, then

max
1≤i<k

(
�

i

)(
n −�

k − i

)
=

(
�

i�

)(
n −�

k − i�

)
, where i� =

⌊
(�+1)(k +1)

n +2

⌋
. (2)

(c) Given 0 < k < n, then

max
1≤�<n
1≤i<k

(
�

i

)(
n −�

k − i

)
=

(
t

1

)(
n − t

k −1

)
. (3)

Proof.

(a) Suppose the maximum in (1) (with a fixed 0 < i < k) is attained for some �, i ≤ � < n.
Then we have(

�

i

)(
n −�

k − i

)
≥

(
�−1

i

)(
n −�+1

k − i

)
and

(
�

i

)(
n −�

k − i

)
≥

(
�+1

i

)(
n −�−1

k − i

)
,

which implies that

i(n +1) ≥ �k and (�+1)k ≥ i(n +1).

Hence

i(n +1)

k
−1 ≤ � ≤ i(n +1)

k
.

Note that for n = kt + k −1 we have two choices for �i :

�i = i(t +1) or �i = i(t +1)−1.

(b) Suppose now � is fixed and the maximum in (2) is attained for some 1 ≤ i ≤ k. Then
we use the inequalities(

�

i

)(
n −�

k − i

)
≥

(
�

i −1

)(
n −�

k − i +1

)
and

(
�

i

)(
n −�

k − i

)
≥

(
�

i +1

)(
n −�

k − i −1

)
,

which give

(�+1)(k +1) ≥ i(n +2) ≥ (�+1)(k +1)− (n +2)

and (2) follows.
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(c) We have n = tk + k1, 0 ≤ k1 ≤ k −1. In view of (a) it suffices to prove that(
t

1

)(
(k −1)t + k1

k −1

)
>

(
i t +α

i

)(
(k − i)t + k1 −α

k − i

)
, (4)

where α = 
i(k1 +1)k�, i ∈ {0, 1, . . . , 
 k
2�}.

We proceed by induction on k1 and k.

Induction beginning k1 = 0

CLAIM. For i = 0, 1, . . . , 
 k
2� we have monotonicity in the RHS of (4) with respect to i ,

that is,(
i t

i

)(
(k − i)t

k − i

)
>

(
(i +1)t

i +1

)(
(k − i −1)t

k − i −1

)
. (5)

Proof. (5) is equivalent to

t (k − i)(t (k − i)−1) · · · (t (k − i −1)+1)

(k − i)((t −1)(k − i))((t −1)(k − i)−1) · · · ((t −1)(w − i −1)+1)

>
t (i +1)(t (i +1)−1) · · · (ti +1)

(i +1)(t −1)(i +1)((t −1)(k − i)−1) · · · ((t −1)i +1)
.

If now for 1 ≤ a ≤ t −1 holds

(k − i)t −a

(k − i)(t −1)−a +1
>

t (i +1)−a

(i +1)(t −1)−a +1
, (6)

then clearly we are done.
But (6) is equivalent to

t (k −2i −1) > a(w −2i −1)

and the latter is true because i < k
2 . This completes the case k1 = 0.

Induction Step k1 −1 → k1

We have(
t

1

)(
(k −1)t + k1

k −1

)
=

(
t

1

)(
(k −1)t + k1 −1

k −1

)
(k −1)t + k1

(k −1)(t −1)+ k1(
i t +α

i

)(
(k − i)t + k1 −α

k − i

)
=

(
i t +α

i

)(
(k − i)t + k1 −α

k − i

)
i t +α

i(t −1)+α

=
(

i t +α

i

)(
(k − i)t + k1 −α −1

k − i

)
(k − i)t + k1 −α

(k − i)(t −1)+ k1 −α
.
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Case 1.

(k −1)t + k1

(k −1)(t −1)+ k1
≥ i t +α

i(t −1)+α
⇔ (k −1)

(k −1)(t −1)+ k1

≥ i

i(t −1)+α
⇔ α ≥ ik1

k −1
. (7)

Then we are done by induction hypothesis.

Case 2.

(k −1)t + k1

(k −1)(t −1)+ k1
≥ (k − i)t + k1 −α

(k − i)(t −1)+ k1 −α
⇔ k −1

(k −1)(t −1)+ k1

≥ k − i

(k − i)(t −1)+ k1 −α
⇔ α ≤ k1(i −1)

k −1
. (8)

Then again we are done by the same reason.
Thus it remains to consider the

Case 3.

(i −1)k1

k −1
< α <

ik1

k −1
. (9)

We have(
t

1

)(
(k −1)t + k1

k −1

)
=

(
t

1

)(
(k −2)t + k1

k −2

)
λ1,

where

λ1 = ((k −1)t + k1)((k −1)t + k1 −1) · · · ((k −2)t + k1 +1)

(k −1) · ((k −1)(t −1)+ k1) · · · ((k −2)(t −1)+ k1 +1)

and (
i t +α

i

)(
(k − i)t + k1 −α

k − i

)
=

(
t (i −1)+α

i −1

)(
(k − i)t + k1 −α

k − i

)
λ2,

where

λ2 = (i t +α)(i t +α −1) · · · ((i −1)t +α +1)

i(i(t −1)+α)(i(t −1)+α) · · · ((i −1)(t −1)+α +1)
.

If λ1 ≥ λ2 we are done by induction hypothesis.
First show that

(k −1)t + k1

k −1
>

i t +α

i
,

or equivalently

α <
ik1

k −1
.

But this is true in view of (9).
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Further show that for 0 ≤ a ≤ t −2 holds

(k −1)t + k1 −1−a

(k −1)(t −1)+ k1 −a
≥ i t +α −1−a

i(t −1)+α −a

⇔ (k − i −1)(t −1−a)+α(k −2) ≥ (i −1)k1

and for a = t −2
⇔ (k − i −1)+α(k −2) ≥ (i −1)k1

⇔ α(k −2) ≥ (i −1)(k1 −1) (since k − i −1 ≥ i −1)
⇔ α ≥ (i−1)(k1−1)

k−2 .
By (9) we have

α >
(i −1)k1

k −1

and clearly

(i −1)k1

k −1
>

(i −1)(k1 −1)

k −2
,

since

k ≥ k1 +1.

Remark 2. Note that for n ≥ k2/2 statement (c) in Lemma 2 can be sharpened as follows
(c′) For n = tk + k1 > k2/2, 1 ≤ r ≤ k/2

max
1≤�<n

r≤i≤k−r

(
�

i

)(
n −�

k − i

)
=

(
r t +α

r

)(
n − r t −α

k − r

)
,

where

α =
⌊

r(k1 +1)

k

⌋
. (10)

The proof is somewhat tedious and we omit it.
Note also that in general (10) does not hold. For example take n = 76, k = 33. Then

t = 2, k1 = 10. In view of (1) we get �15 = 35, �16 = 37.
Now we can verify that (10) fails, that is(

35

15

)(
41

18

)
<

(
37

16

)(
39

17

)
.

The next statement directly follows from Lemmas 1 and 2.

LEMMA 3. Given a1, . . . , an ∈ R+ and integer 0 < � < n. Let X be the (0,1)-solutions of
the equation

�∑
i=1

ai xi −
n∑

j−�+1

a j x j = 0 (11)

with
∑n

i=1 xi = k (that is X ⊂ E(n, k)).
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Then

(i) |X | ≤ max
1≤i≤k

(
�

i

)(
n −�

k − i

)
=

(
�

i�

)(
n −�

k − i�

) (
i� =

⌈
�k

n +1

⌉)
. (12)

(ii) The equality in (12) holds iff a1 = · · · = a� = 1, a�+1 = · · · = an = i�
k−i�

(we take a1 =
1), that is an optimal X is unique up to permutations of coordinates.

One can also easily obtain a slightly sharpened version of Lemma 3.

LEMMA 3′. Given a1, . . . , an ∈ R+ and 0 < � < n. Let X be the (0,1)-solutions of (11) with
k −1 ≤ ∑n

i=1 xi ≤ k, k ≤ n/2. Then the statements (i) and (ii) in Lemma 3 hold as well.

Proof. To prove the lemma we just note that the (0,1)-solutions (of any equation) of two
consecutive weights form an antichain. This together with Lemma 1 gives the result.

3. Old Related Results Used

The following result is due to Erdős [8].

THEOREM E. Suppose that F ⊂ ( [n]
k ) and F contains no s pairwise disjoint sets. Then for

n > n0(w, s) holds

|F | ≤
(

n

k

)
−

(
n − s +1

k

)
.

The bound is achieved by taking

Fs =
{

A ∈
(

n

k

)
: A ∩ [1, s −1] �= ∅

}
.

A family A ⊂ 2[n] is called intersecting, if A1 ∩ A2 �= ∅ holds for all A1, A2 ∈ A. An
intersecting family A is called nontrivial intersecting system if

⋂
A∈A = ∅.

Hilton and Milner proved in [11].

THEOREM HM. Let A ⊂ ( [n]
k ) be a nontrivial intersecting system with n > 2k. Then

|A| ≤
(

n −1

k −1

)
−

(
n − k −1

k −1

)
+1.

Remark 1. The complete solution of the nontrivial t-intersecting problem is given in
[5] (see also predecessors [10], [11] and the book [7]). Bollobas, Daykin and Erdős [6]
generalized Theorem HM as follows.
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THEOREM BDE. LetA ⊂ ( [n]
k ) contain no s(s ≥ 2) pairwise disjoint sets andA �⊆ Fs . Then

for n > n0(k, s)

(i) |A| ≤ ( n
k )− ( n − s +1

k )− ( n − s +1− k
k −1 )+1.

(ii) The unique (up to permutations) family achieving the bound is

A =
(
Fs

∖{
B ∈

(
[n]

k

)
: (s −1) ∈ B, B ∩ [s, s + k −1] = ∅

})
∪ [s, s + k −1].

4. Proof of Theorem 1

(i) Let w = sm + r , 0 < r < m and let V be defined by
n∑

i=0

ai xi = 0. (13)

W.l.o.g. suppose that a1, . . . , a� > 0 (1 ≤ � < n), a�+1, . . . , ak < 0(k > �) and ak+1 = · · · =
an = 0.

Consider two cases:

(a) Case. n−k < r ≤ n−1

In this case for any solution (x1, . . . , xn) ∈ E(n, m) of equation (13) we have x1 +· · ·+ x� ≥
1 and x�+1 +· · ·+ xn ≥ 1.

Hence in view of Lemma 3 the number of solutions X ⊂ E(n, m) of (13) is bounded by

|X | ≤ max
1≤i≤m−1

(
�

i

)(
n −�

m − i

)
.

Combining this with Lemma 2 we get the desired result.

(b) Case. r ≤ n−k ≤ n−2

Partition the set of solutions X of (13) into two disjoint sets

X0 �
{

(x1, . . . , xn) ∈ X :
n−r∑
i=1

xi = m

}
and X1 = X \ X0.

The set X0 has the property: (turning to the set theoretical language) no s vectors of X0 are
pairwise disjoint. This is clear, because otherwise we would have a vector of weight sm (in
the first n − r coordinates) and consequently a vector x ∈ X of weight sw + r1.

Theorem E says that for large n we have

|X0| ≤
(

n − r

m

)
−

(
n − r − s

m

)
.

On the other hand by definition of X1 we have

|X1| ≤
(

n

m

)
−

(
n − r

m

)
.
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Therefore

|X | = |X0|+ |X1| <

(
n

m

)
−

(
n − r − s

m

)
= O(nm−1).

But ( t
1 )( n − t

m −1 ) ∼ cnm as n → ∞, a contradiction which shows that

F(n, w, m) ≤
(

t

1

)(
n −1

m −1

)
, for n > n0(w, m).

To show that F(n, w, m) ≥ ( t
1 )( n −1

m −1 ) partition the coordinate set [1, n] into two parts
[1, t]∪ [t +1, n] and consider all vectors of weight m with weight one in part [1, t]. That
is consider the set

X =
{

(x1, . . . , xn) ∈ E(n, m) :
t∑

i=1

xi = 1

}
.

This set can be described as the set of (0,1)-solutions of weight m of the equation

t∑
i=1

(m −1)xi −
n∑

j=t+1

x j = 0. (14)

Observe that if the hyperplane defined by (14) contains a vector of weight w , then one has

s(m −1) = w − s (for some 1 ≤ s ≤ w −1),

which implies that m | w , a contradiction. This completes the proof of part (i).
(ii) Consider now the case m > w .
Again suppose an optimal subspace with the required properties is defined by (13), where

a1, . . . , a� > 0 (1 ≤ � < n); a�+1, . . . , ak < 0 (k > �) and ak+1 = · · · = an = 0.
Clearly n − k ≤ w −1 and therefore for any (x1, . . . , xn) ∈ X one has

∑�
i=1 xi ≥ 1,∑n

j=�+1 x j ≥ 1.
This together with Lemma 3 implies

|X | ≤ max
1≤i≤m−1

(
�

i

)(
n −�

m − i

)
.

5. Proof of Theorem 2

We prove the identity by first showing that F(n, w, m) ≥ (s −1)( n − s +1
m −1 ). This can be seen

by taking the hyperplane H defined by

(m −1)

s−1∑
i=1

xi −
n∑

j=s

x j = 0.

Indeed obviously H ∩ E(n, w) = ∅ and |H ∩ E(n, m)| = (s −1)( n − s +1
m −1 ), which gives the

desired inequality.
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The inverse inequality is more difficult to establish. In fact we proceed by establishing 3
claims, which then yield the result.

For n large let X be an optimal family, that is |X | = F(n, w, m).

CLAIM 1. X ⊂ χ(Fs).

Proof. Assume that X �⊂ χ(Fs), then by Theorem BDE for large n we have

|X | ≤
(

n

m

)
−

(
n − s +1

m

)
−

(
n −m −1

m −1

)
+1 = (s −2)nm−1

(m −1)!
+ 0(nm−2)

<
(s −2)nm−1

(m −1)!
+0(nm−2) = (s −1)

(
n − s +1

m −1

)
≤ F(n, w, m).

This contradicts the optimality of X and hence X ⊂ χ(Fs).

CLAIM 2. Suppose that X is from a hyperplane defined by α1x1 +· · ·+αn xn = 0, then
necessarily α1 = · · · = αs−1.

Proof. Assume α1 �= α2.
Then clearly for any (x1, x2, . . . , xn) ∈ X (1− x1, 1− x2, x3, . . . , xn) /∈ X .
This implies that

|X | ≤ |Fs |−
(

n −2

m −1

)
=

(
n

m

)
−

(
n − s +1

m

)
−

(
n −2

m −1

)
and as n → ∞

< F(n, w, m), for n sufficiently large as we observed above, a contradiction.

Thus α1 = · · · = αs−1 and w.l.o.g. we can assume that α1, . . . , αs−1+� > 0, (� ≥ 0), αs+�,
αk < 0 (s +� ≤ k ≤ n) and αk+1 = · · · = αn = 0 (0 ≤ n − k ≤ m −1).

CLAIM 3. α1 �= αs+i , i = 0, . . . , �.

Proof. Suppose α1 = αs .
Then clearly

x = (1, 0, . . . , 0, xs+1, . . . , xn) /∈ X,

because otherwise y = (0, . . . , 0, 1, xs+1, . . . , xn) ∈ X (note that y cannot be excluded from
X ), a contradiction with X ⊂ Fs−1 = χ(Fs−1).

This implies that for any x ∈ X with
∑s−1

i=1 xi = 1 we have xs = 1. Hence

|X | ≤
(

n − s

m −2

)
(s −1)+ O(nm−2) < F(n, w, m), a contradiction.

In view of these claims we can describe now the set X as the (0,1)-solutions of the equations{
x1 +· · ·+ xs−1 +βs x2 +· · ·+βs−1+�xs−1+� −βs+�xs+� −· · ·− xnβn = 0
x1 +· · ·+ xn = m

, (15)
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where βs, . . . , βs+� > 0, β1 = · · · = βs−1 = 1, βi �= 1 for i = s, . . . , s +� and βs+�, . . . ,

βn ≥ 0.
Further we can reduce equation (15) to the following equivalent ones

bs xs +· · ·+bn xn = m and
n∑

i=1

xi = m,

where bi �= 0 for i = s, . . . , n and b j > 0 for j = s +�, . . . , n,
∑s−1

i=1 xi ≥ 1,
∑n

j=s+� xi ≥ 1.
Now we are going to show that for big n’s we must have � = 0. Suppose for a contradiction

that � ≥ 1. Let Y be the restriction of X on coordinates s, . . . , n. That is

Y = {(xs, . . . , xn) : (x1, . . . , xs−1, xs, . . . , xn) ∈ X}.
Define

Yi =

(xs, . . . , xn) ∈ Y :

n∑
j=s

x j = i


 for i = 1, . . . , m −1.

Then in view of Lemma 3 we have

Wi = |Yi | ≤
(

�

ki

)(
n − s +1−�

m − i − ki

)
for some 0 ≤ ki ≤ m − i.

Thus

|X | ≤
m−1∑
i=1

(
s −1

m − i

)
Wi ≤

m−1∑
i=1

(
s −1

m − i

)(
�

ki

)(
n − s +1−�

m − i − ki

)
.

As we mentioned above Ym−1 ∪Ym−2 forms an antichain. Therefore by Lemma 1 we can
write ∑

m−2≤i+ j≤m−1

αi j(
�

i

)(n−s+1−�

j

) ≤ 1. (16)

Further clearly

1 ≥ LHS (16) =
∑

i+ j=m−1

αi j
( s−1

m−i− j

)
(
�

i

)(n−s+1−�

j

)( s−1
m−i− j

) +
∑

i+ j=m−2

αi j
( s−1

m−i− j

)
(
�

i

)(n−s+1−�

j

)( s−1
m−i− j

)
≥

∑
i+ j=m−1

αi j
(s−1

1

)
(s−1

1

)
max0≤i≤m−1

(
�

i

)(n−s+1−�

m−1−i

) +
∑

i+ j=m−2

αi j
(s−1

2

)
(s−1

1

)
max0≤i≤m−2

(
�

i

)(n−s+1−�

m−2−i

) .

This implies that(
s −1

1

)
Wm−1 +

(
s −1

2

)
Wm−2 ≤ (s −1) max

0≤i≤m−1

(
�

i

)(
n −�− s +1

m −1− i

)
.

One can easily observe that

max
0≤i≤m−1
1≤�≤n−s

(
�

i

)(
n − s −�+1

m −1− i

)
=

(
1

0

)(
n − s

m −1

)
.



28 AHLSWEDE ET AL.

Hence

|X | ≤ (s −1)

(
n − s

m −1

)
+

m−1∑
i=3

(
s −1

m − i

)
Wi .

But
m−1∑
i=3

(
s −1

m − i

)
Wi <

m−1∑
i=3

(
s −1

m − i

)(
n − s +1−�

i

)
< (s −1)

(
n − s

m −2

)
for n large.

Finally we get

|X | < (s −1)

(
n − s

m −1

)
+ (s −1)

(
n − s

m −2

)
= (s −1)

(
n − s +1

m −1

)
≤ F(n, sm, m),

a contradiction which yields � = 0.
This clearly completes the proof of Theorem 2 since for � = 0 we get

|X | ≤ max
1≤i≤m−1

(
s −1

i

)(
n − s +1

m − i

)
=

(
s −1

1

)(
n − s +1

m −1

)
.
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