Cone Dependence—A Basic Combinatorial Concept

RUDOLF AHLSWEDE Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

LEVON KHACHATRIAN Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

Communicated by: A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel, J. A. Thas

Abstract. We call $A \subset \mathbb{E}^n$ *cone independent* of $B \subset \mathbb{E}^n$, the euclidean *n*-space, if no $a = (a_1, \ldots, a_n) \in A$ equals a linear combination of $B \setminus \{a\}$ with non-negative coefficients. If *A* is cone independent of *A* we call *A* a *cone independent set*. We begin the analysis of this concept for the sets $P(n) = \{A \subset \{0, 1\}^n \subset \mathbb{E}^n : A \text{ is cone independent}\}$ and their maximal cardinalities $c(n) \triangleq \max\{|A| : A \in P(n)\}$.

We show that $\lim_{n\to\infty} \frac{c(n)}{2^n} > \frac{1}{2}$, but can't decide whether the limit equals 1.

Furthermore, for integers $1 < k < \ell \le n$ we prove first results about $c_n(k, \ell) \triangleq \max\{|A| : A \in P_n(k, \ell)\}$, where $P_n(k, \ell) = \{A : A \subset V_k^n \text{ and } V_\ell^n \text{ is cone independent of } A\}$ and V_k^n equals the set of binary sequences of length n and Hamming weight k. Finding $c_n(k, \ell)$ is in general a very hard problem with relations to finding Turan numbers.

Keywords: combinatorial extremal problems, Turan problem, positive linear combinations, binary sequences

Mathematics Subject Classification: 05C35, 05B30, 52C99

1. Introduction

We begin with our notation. \mathbb{Z} is the set of integers, \mathbb{N} denotes the set of positive integers, \mathbb{R} is the set of real numbers, and \mathbb{E}^n is the Euclidean space of dimension *n*. For *i*, *j* $\in \mathbb{N}$, i < j, the set $\{i, i + 1, ..., j\}$ is abbreviated as [i, j], and [n] stands for [1, n]. For $k, n \in \mathbb{N}$, we set

$$2^{[n]} = \{E : E \subset [n]\}, \quad {\binom{[n]}{k}} = \{E \in 2^{[n]} : |E| = k\}.$$

There is a natural bijection *T* between $2^{[n]}$ and $\{0, 1\}^n$ —the set of binary sequences of length *n*: for any $E \in 2^{[n]} T(E) = (v_1, \ldots, v_n) = v \in \{0, 1\}^n$, where $v_i = \{ \begin{smallmatrix} 1 & \text{if } i \in E \\ 0 & \text{if } i \notin E \end{smallmatrix} \}$.

More generally, for $\mathcal{E} \subset 2^{[n]}$ (resp. $H \subset \{0, 1\}^n$) define

$$T(\mathcal{E}) = \{T(E) : E \in \mathcal{E}\} (\text{resp. } T^{-1}(H)).$$

In particular $T(2^{[n]}) = \{0, 1\}^n$ and $T({[n] \atop k}) = V_k^n$ —the set of binary sequences of length *n* and Hamming weight *k*.

Now new concepts and questions follow.

New Definitions

Definition 1. $A \subset \mathbb{E}^n$ is *cone independent* of $B \subset \mathbb{E}^n$ if no $a = (a_1, \ldots, a_n) \in A$ equals a linear combination of $B \setminus \{a\}$ with non-negative coefficients.

Definition 2. If A is cone independent of A we call A a cone independent set.

Definition 3. We study the case $A, B \subset \{0, 1\}^n \subset \mathbb{E}^n$ and in particular consider $P(n) = \{A \subset \{0, 1\}^n : A \text{ is cone independent}\}.$

Problems

PROBLEM 1. Find

 $c(n) \triangleq \max\{|A| : A \in P(n)\}$

PROBLEM 2. For integers $1 < k < \ell \le n$ find

 $c_n(k, \ell) \triangleq \max\{|A| : A \in P_n(k, \ell)\},\$

where $P_n(k, \ell) = \{A : A \subset V_k^n \text{ and } V_\ell^n \text{ is cone independent of } A\}$

Remark. Finding $c_n(k, \ell)$ is in general a very hard problem. We have

 $c_n(k, k+1) = \tau_n(k, k+1)$

where $\tau_n(k, \ell) \triangleq$ Turan number $\triangleq \max\{|\mathcal{A}| : \mathcal{A} \subset {\binom{[n]}{k}}$, no $B \in {\binom{[n]}{\ell}}$ contains more than $\binom{\ell}{k} - 1$ members of $\mathcal{A}\}$.

We begin with a bound and a conjecture for Problem 1 in Section 2.

Section 3 contains classical results for graphs and hypergraphs, which are used in the analysis of Problem 2.

The results on this problem are stated as Theorems 1, 2 in Section 4, where also further conjectures about $c_n(k, \ell)$ are stated.

The rest of the paper is devoted to proofs of the theorems, auxiliary results needed are with their proofs in Section 5, Theorem 2 is proved in Section 6, and finally Theorem 2 is proved in Section 7.

2. A Bound for Problem 1

Consider the set

 $C = \{v^n = (v_1, \dots, v_n) \in \{0, 1\}^n : v_1 = 1\}.$

Clearly $|C| = 2^{n-1}$ and it is easy to see that $C \in P(n)$.

One more naive construction is

 $D = \{10, 01\} \times \{0, 1\}^{n-2} = \{v^n = (v_1, \dots, v_n) \in \{0, 1\}^n : (v_1, v_2) \in \{(0, 1), (1, 0)\}\}.$ Again we have $|D| = 2^{n-1}$ and $D \in P(n)$.

PROPOSITION

- (*i*) $c(n+1) \ge 2c(n)$
- (*ii*) If an $A \in P(n)$ and $1^n = (1, ..., 1) \in A$, then $|A| \le 2^{n-1}$.

Proof. (i) For an $A \in P(n)$ consider $A' = A \times \{0, 1\} = \{v^{n+1} = (v_1, \dots, v_n, v_{n+1}) \in \{0, 1\}^{n+1} : (v_1, \dots, v_n) \in A\}.$

We have |A'| = 2|A| and verify that $A' \in P(n+1)$.

(ii) follows from the observation that from every complemented pair $(v^n, 1^n - v^n)$ at most one can be in *A*.

Can we beat the naive bound 2^{n-1} ? The following construction shows that this is the case for $n \ge 5$.

CONSTRUCTION. Let $C \in P(n)$ and $1^n \notin C$. Take an $m \in \mathbb{N}$ with m > |C|. Consider

$$C' = \{C \times \{\{0, 1\}^m \setminus \{0\}^m\}\} \cup \{1^n \times \{e_1, \dots, e_m\}\},\$$

where e_1, \ldots, e_m are unit vectors in the ground set [n+1, n+m]. It can be easily proved that $C' \in P(n+m)$. We have

 $|C'| = |C| \cdot (2^m - 1) + m = |C| \cdot 2^m + m - |C| > |C| \cdot 2^m.$

Now choose n = 2, $C = \{(1, 0), (0, 1)\}$, m = 3, (3 > 2 = |C|). *Since* $C \in P(2)$ *and* $(1, 1) = 1^2 \notin C$ we can apply the construction to get

 $C' = \{(10100), (10010), (10001), (10110), (10101), (10011), (10111), (01100), (01010), (01001), (01001), (01101), (01111), (01111), (11100), (11010), (11001)\}$

with $C' \in P(5)$, |C'| = 17. It is convenient to introduce the parameter $\beta(n) = \frac{c(n)}{2^n}$.

LEMMA 1.

(i) $\beta = \lim_{n \to \infty} \beta(n)$ exists.

(ii) β is never assumed, i.e., $\beta > \beta(n)$ for all $n \in \mathbb{N}$.

Proof. (i) directly follows from (i) in the proposition.

(ii) We know that $\beta(n) \ge \frac{17}{32}$, $n \ge 5$ and hence by the proposition ((ii)) an optimal $A \in P(n)$ does not contain the vector 1^n . Consequently we can apply the construction to get $\beta(n+m) > \beta(n)$ (for a suitable *m*).

How far can we go with the construction? A simple calculation shows that we can have only $\beta > 0$, 55. We **conjecture** that $\beta < 1$.

3. Some Classical Results

THEOREM (Mantel [6]). Let $G = (\mathcal{V}, \mathcal{E})$ be a graph on *n* vertices not containing triangles. Then

$$|\mathcal{E}| \le M_n \triangleq \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil.$$
⁽¹⁾

THEOREM (Erdős–Gallai [3]). Let $G = (V, \mathcal{E})$ be a graph on *n* vertices not containing *s* pairwise disjoint edges. Then for $s \ge 2$, $n \ge 2s$

$$|\mathcal{E}| \le g_n(2,s) \triangleq \max\left(\binom{2s-1}{s}, \binom{s-1}{2} + (s-1)(n-s+1)\right).$$
(2)

Moreover, equality holds here iff-up to permutation-

$$\mathcal{E} = \binom{[2s-1]}{2} \text{ or } \left\{ A \in \binom{[n]}{2} : |A \cap [1, s-1]| \neq 0 \right\}.$$

CONJECTURE (Erdős [2]). Let $\mathcal{F} \subset {[n] \choose k}$ not contain pairwise disjoint sets. Then for $n \geq ks$

$$|\mathcal{F}| \le g_n(k,s) \triangleq \max\left(\binom{ks-1}{k}, \binom{n}{k} - \binom{n-s+1}{k}\right).$$
(3)

1965 Erdős proved (3) for $n > n_0(k, s)$. 1976 Bollobas, Daykin, Erdős proved (3) for $n > 2k^3s$. 1987 Frankl, Füredi proved (3) for $n > 100ks^3$.

THEOREM (Frankl [5]).

$$g_n(k,s) \le (s-1)\binom{n-1}{k-1}.$$

In particular for n = ks

$$g_{ks}(k,s) = \binom{ks-1}{k}.$$

It is convenient to write $g_n(s)$ instead of $g_n(2, s)$.

4. Results and Conjectures for Problem 2

We succeeded in settling two special cases.

The case $\ell = n$. Clearly $c_n(k, n) \ge \binom{n-1}{k}$, because $1^n = (1, 1, \dots, 1)$ is cone independent of $V_k^{n-1} \times \{0\}$ and $|V_k^{n-1}| = \binom{n-1}{k}$.

In case k | n any $A \subset V_k^n$ cone independent of 1^n does not contain $\frac{n}{k}$ pairwise disjoint elements and hence by Theorem F we get

$$c_n(k,n) = \binom{n-1}{k}.$$

Thus we have proved part (a) of the following theorem. The main work consists in proving part (b) in Sections 5, 6.

THEOREM 1.

$$c_n(k,n) = \binom{n-1}{k}, \text{ if } \begin{cases} (a) & k \mid n \\ (b) & k \nmid n \text{ and } n > n_0(k). \end{cases}$$

The case k = 2. Recall the numbers $g_n(s)$ (Theorem EG) and M_n (Theorem M).

THEOREM 2.

$$c_n(2,\ell) = \begin{cases} g_n\left(\frac{\ell}{2}\right), & \text{if } 2 \mid \ell \\ \max\left\{M_n, g_n\left(\frac{\ell+1}{2}\right)\right\}, & \text{if } 2 \nmid \ell. \end{cases}$$
(4)

Conjectures

For $1 \le s \le k$ define $n_s = \lceil \frac{n \cdot s}{k} \rceil - 1$ and the set

$$H_{s} = \left\{ v = (v_{1}, \dots, v_{n}) \in V_{k}^{n} : \sum_{i=1}^{n_{s}} v_{i} \ge s \right\}, \quad |H_{s}| = \sum_{i=0}^{k-s} {n_{s} \choose s+i} {n-n_{s} \choose k-s-i}.$$

It can be easily verified that $H_s \in P_n(k, n)$ for all $1 \le s \le k$.

CONJECTURE 1.

$$c_n(k,n) = \max_s |H_s|.$$

Theorem 1 proves this conjecture for n > n(k). For big $n \max_{s} |H_s| = |H_k| = \binom{n-1}{k}$.

Clearly, cone dependence is a stronger concept than linear dependence. The difference seems to be smaller for very different parameters k, ℓ , n.

CONJECTURE 2. For $k \ll \ell \ll n c_n(k, \ell)$ behaves like in the case where positive independence is replaced by linear independence.

5. Auxiliary Results: Left-Compression

The following method was introduced in [4] (see [5] for a nice survey). For integers $1 \le i < j \le n$ and a family $\mathcal{F} \subset 2^{[n]}$ define the (i, j)-shift S_{ij} as follows:

$$S_{ij}(F) = \begin{cases} (F \setminus \{j\}) \cup \{i\} = F_1 & \text{if } i \notin F, \ j \in F, \ F_1 \notin \mathcal{F} \\ F & \text{otherwise} \end{cases}$$
$$S_{ij}(\mathcal{F}) = \{S_{ij}(F) : F \in \mathcal{F}\}.$$

Now, for $\mathcal{F} \subset 2^{[n]} T(\mathcal{F}) = A \subset \{0, 1\}^n$, and the (i, j)-shift is defined in a natural way:

$$S_{ij}(A) = T(S_{ij}(T^{-1}(A))).$$

For a $v \in \{0, 1\}^n$, $i, j \in \mathbb{N}$, we also define $E_{ij}(v)$, which is a vector obtained from v by exchanging the *i*th and *j*th coordinates, and for $B \subset \{0, 1\}^n$ define

$$E_{ij}(B) = \{E_{ij}(v) : v \in B\}.$$

LEMMA 2.

- (i) $|S_{ij}(A)| = |A|$
- (ii) if $A \subset V_k^n$, then $S_{ij}(A) \subset V_k^n$ as well.
- (iii) if $A \in P_n(k, n)$, then $S_{ij}(A) \in P_n(k, n)$ as well.

Proof. (i) and (ii) are trivial. To prove (iii), assume to the opposite, for some $A \in P_n(k, n)$ and $1 \le i < j \le n$, $S_{ij}(A) \notin P_n(k, n)$ holds, that is, there is a subset $V \subset S_{ij}(A)$ and positive numbers $\{\lambda_v : v \in V\}$ such that

$$(1,\ldots,1) = 1^n = \sum_{v \in V} \lambda_v \cdot v.$$
⁽⁵⁾

Let

$$V = V_{00} \,\dot{\cup} \, V_{10} \,\dot{\cup} \, V_{01} \,\dot{\cup} \, V_{11},$$

where $V_{\varepsilon\delta}$ is the set of vectors of *V* having ε in the position *i* and δ in the position *j*. By the definition of the (i, j)-shift we have

$$(V \setminus A) = V_{10}' \subset V_{10} \tag{6}$$

and that for every

$$v \in V_{01}, \quad v \in A \quad \text{and} \quad E_{ij}(v) \in A.$$
 (7)

Denote $E_{ij}(V_{01})$ by W. We look at the equality (5) for the *i*th and *j*th components. We have

$$\sum_{v \in V_{10} \cup V_{11}} \lambda_v = 1 \quad \text{and} \quad \sum_{v \in V_{01} \cup V_{11}} \lambda_v = 1.$$
(8)

It follows from (8) that

$$\sum_{v \in V_{10}} \lambda_v = \sum_{v \in V_{01}} \lambda_v \tag{9}$$

and by (6) and the positivity of λ_v 's we get

$$\sum_{v \in V'_{10}} \lambda_v \le \sum_{v \in V_{01}} \lambda_v. \tag{10}$$

Let $U \subset A$ be the image of V'_{10} , that is $S_{ij}(U) = V'_{10}$. Clearly, also $U = E_{ij}(V'_{10})$. Consider the set

$$V^* = U \cup (V \setminus V'_{10}) \cup W.$$

We have $V^* \subset A$. By (10) we can split the coefficients λ_v , $v \in V_{01}$, in such a way, that

$$\lambda_v = \lambda'_v + \lambda''_v, \lambda'_v, \lambda''_v \ge 0$$
 for every $v \in V_{01}$

and

$$\sum_{v \in V_{01}} \lambda_v = \sum_{v \in V_{01}} (\lambda'_v + \lambda''_v) = \sum_{v \in W} \lambda'_v + \sum_{v \in V_{01}} \lambda''_v = \sum_{v \in V'_{10}} \lambda_v + \sum_{v \in V_{01}} \lambda''_v.$$
(11)

Finally from (5)–(11) we have

$$1^{n} = \sum_{v \in V} \lambda_{v} \cdot v = \sum_{v \in V \setminus (V'_{10} \cup V_{01})} \lambda_{v} \cdot v + \sum_{v \in V'_{10}} \lambda_{v} \cdot v + \sum_{v \in V_{01}} \lambda_{v} \cdot v$$
$$= \sum_{v \in V \setminus (V'_{10} \cup V_{01})} \lambda_{v} \cdot v + \sum_{\substack{u = E_{ij}(v) \\ v \in V'_{10}}} \lambda_{v} \cdot u + \sum_{\substack{w = E_{ij}(v) \\ v \in V_{01}}} \lambda'_{v} \cdot w + \sum_{v \in V_{01}} \lambda''_{v} v$$

i.e., 1^n is positively dependent on $V^* \subset A$, a contradiction to $A \in P_n(k, n)$.

Definition 4. A $\mathcal{B} \subset 2^{[n]}$ (resp. $B \subset \{0, 1\}^n$) is said to be stable or left-compressed if $S_{ij}(\mathcal{B}) = \mathcal{B}$ for all $1 \le i < j \le n$ (resp. $S_{ij}(B) = B$). Denote by $LP_n(k, n)$ the set of all stable systems of $P_n(k, n)$.

By Lemma 2 (after finitely many shifts) we get

$$C_n(k,n) = \max_{A \in P_n(k,n)} |A| = \max_{A \in LP_n(k,n)} |A|.$$
 (12)

Definition 5. A vector $v = (v_1, ..., v_n) \in \mathbb{E}^n$, $v_i \ge 0$ is called "good" if there exists an $s \in \mathbb{N}, 1 \le s \le n-1$, such that

$$\frac{\sum_{i=1}^{s} v_i}{s} > \frac{\sum_{i=s+1}^{n} v_i}{n-s}.$$

Otherwise, it is called "bad."

We observe that a positive, linear combination of any "bad" vectors is again "bad," but the similar statement with respect to "good" vectors, in general, is false.

We also observe that for any $\alpha > 0$ $\alpha \cdot v$ is "good" (resp. "bad") whenever v is "good" (resp. "bad"). We note that clearly 1^n is a "bad" vector.

LEMMA 3. Let $A \subset V_k^n$ be left-compressed. Then $A \in P_n(k, n)$ (and hence $A \in LP_n(k, n)$) if and only if any non-negative, nonzero combination of A produces a "good" vector. In particular, if $A \in LP_n(k, n)$, then necessarily all vectors of A are "good."

Proof. Since the vector 1^n is a "bad" vector, the "if" part of the lemma is trivially true.

To prove the part "only if" we assume to the opposite, that $A \in LP_n(k, n)$ but there exists a nonempty subset $A' \subset A$ and positive coefficients $\lambda_v > 0 : v \in A'$ such that $\sum_{v \in A'} \lambda_v \cdot v$ is a "bad" vector.

Clearly, we can assume that all coefficients λ_v are rational numbers, and consequently (multiplying all coefficients by a suitable integer) we can assume

$$\lambda_{v} \in \mathbb{N}; \ v \in A', \qquad \sum_{v \in A'} \lambda_{v} \cdot v = v^{*} = (a_{1}, \dots, a_{n}),$$

$$\sum_{i=1}^{n} a_{i} = m \cdot n \quad \text{for some } m \in \mathbb{N} \quad \text{and} \quad v^{*} \text{ is a "bad" vector.}$$
(13)

In other words, v^* is a sum of vectors of A' (possibly taken with multiplicity). By the definition of "bad" vectors for v^* we have

$$a_1 \le \frac{a_2 + \dots + a_n}{n-1}, \quad \frac{a_1 + a_2}{2} \le \frac{a_3 + \dots + a_n}{n-2} \dots \frac{a_1 + \dots + a_{n-1}}{n-1} \le a_n$$

The last inequality together with (13) implies $a_n \ge m$. If $a_n > m$, then we build a new "bad" vector as follows:

Let $i, 1 \le i \le n-1$ be the largest index for which $a_i < m$ (such an index always exists by (13)). Consider the vector $u = (a_1, \ldots, a_{i-1}, a_i + 1, a_{i+1}, \ldots, a_{n-1}, a_n - 1)$. It is easy to verify that u is a "bad" vector. Moreover, since $a_n > m, a_i < m$, then in A' there exists a vector (call it w), which has 1 in the *n*th component and 0 in the *i*th component. Since A is a left-compressed set, then $E_{ij}(w) \in A$ as well, and consequently the vector u also can be positively produced from A.

The sum of coordinates of u is still $m \cdot n$. Continuing, we get a "bad" vector where the last component equals m.

Now we follow the same procedure with respect to the (n - 1)th component and so on. Finally, we produce the vector (m, m, ..., m), equivalently, the vector $(1, 1, ..., 1) = 1^n$, a contradiction.

Remark. In the proof we did not use the weight of vectors in *A*. With it Lemma 3 can be formulated in a more general form.

6. Proof of Theorem 1

Let $A \in P_n(k, n)$ and $|A| = c_n(k, n)$. By (12) we can assume that $A \in LP_n(k, n)$. We partition *A* by the last component: $A = A_0 \cup A_1$, where

$$A_0 = \{A = (a_1, \ldots, a_n) \in A : a_n = 0\}, A_1 = A \setminus A_0.$$

We want to prove, and this is equivalent to the statement (b) in Theorem 1, that $A_1 = \emptyset$ if *n* is big enough. Assume to the opposite, that $A_1 \neq \emptyset$ for infinitely many *n*, $k \nmid n$. Write

$$n = mk + r$$
, where $1 \le r < k$.

Since *A* is a left-compressed set and by assumption $A_1 \neq \emptyset$, then clearly $v^* = (v_1, \ldots, v_n) \in A_1$, where

$$v_1 = \dots = v_{k-1} = 1, \quad v_k = \dots = v_{n-1} = 0, \quad v_n = 1.$$
 (14)

CLAIM. Assume $A_1 \neq \emptyset$, then

$$|A_0| \le \binom{mk+r-1}{k} - \binom{mk-k-1}{k-1}.$$
(15)

Proof of the claim. Let $B \subset A_0$ be the set of all vectors having all k ones in the interval [k+r, mk+r-1] (of length k(m-1)). If $|B| \leq \binom{k(m-1)}{k} - \binom{k(m-1)-1}{k-1}$ then (15) trivially holds. Otherwise, since k divides the length of the interval, by the part (b) of the Theorem, the vector $u = (u_1, \ldots, u_{mk+r})$, where

$$u_1 = u_2 = \dots = u_{k+r-1} = 0, \quad u_{k+r} = \dots = u_{mk+r-1} = 1, \quad u_{mk+r} = 0$$

can be positively built using vectors of B.

The vector *u* is a "bad" vector in the ground set [k, mk + r - 1], and *A* is left-compressed. Hence by Lemma 3, we can positively build, from vectors of *A*, also the vector $u^* = (u_1^*, \ldots, u_{mk+r}^*)$, where

$$u_1^* = \dots = u_{k-1}^* = 0, \quad u_k^* = \dots = u_{mk+r-1}^* = 1, \quad u_{mk+r}^* = 0$$

Now

$$v^* + u^* = (1, 1, \dots, 1) = 1^n$$
,

where $v^* \in A_1$ is the vector in (14), a contradiction.

By Lemma 3 all vectors of A_1 must be "good." We estimate from below (very roughly) the number of "bad" vectors: consider the partition of the ground set

$$[1, mk+r] = [1, m+r-1] \cup [m+r, 2m+r-1] \cup \dots$$
$$[(k-1)m+r, km+r-1] \cup \{mk+r\}$$

and the set $W \subset V_k^{mk+r}$ consisting of the vectors having all 0-s in the first part and single 1-s in every remaining part. It is easy to verify that all vectors of W are "bad" and $|W| = m^{k-1}$. Hence

$$|A_1| \le \binom{mk+r-1}{k-1} - m^{k-1}.$$
(16)

The combination of (15) and (16) gives

$$|A| = |A_0| + |A_1| \le \binom{mk+r-1}{k} - \binom{mk-k-1}{k-1} + \binom{mk+r-1}{k-1} - m^{k-1}.$$

It is easily seen that $RHS < \binom{mk+r-1}{k}$ if $m > m_0(k)$ (hence $n > n_0(k)$), because by the binomial formula $\binom{mk-k-1}{k-1} = \frac{(mk)^{k-1}}{(k-1)!} + 0(mk)^{k-2}$, $\binom{mk+r-1}{k-1} = \frac{(mk)^{k-1}}{(k-1)!} + 0(mk)^{k-2}$ and therefore their difference is smaller than $O(m^{k-1})$. Therefore $|A| < \binom{n-1}{k}$ if $n > n_0(k)$, a contradiction. Hence $A_1 = \emptyset$ for $m > n_0(k)$, $|A| = c_n(k, m) = \binom{n-1}{k}$ and the optimal set is unique up to permutation.

Remarks.

1. It is easy to calculate $c_n(2, n)$ (k = 2). Moreover, this is a special case of Theorem 2. We have

$$c_n(2,n) = \binom{n-1}{2}$$
 for all $2 \mid n, c_n(2,3) = 2, c_n(2,5) = 7$

and the optimal set is

Let $n = 2\ell + 1$. Look at the sets A_0, A_1 in the proof of Theorem 1. It is easily seen that there are ℓ "bad" vectors and consequently $|A_1| \leq \ell$. Since $|A_0| \leq \binom{2\ell}{2} - \binom{2\ell-3}{1}$ (by claim), then

$$|A| = |A_0| + |A_1| \le \binom{2\ell}{2} + \ell - (2\ell - 3) = \binom{2\ell}{2} - \ell + 3$$

Hence $A \le \binom{2\ell}{2} = c_n(2, n)$ for $\ell \ge 3$. Note, that in the case n = 7 ($\ell = 3$) we have the second optimal set: Take

$$A = \{v = (v_1, \dots, v_7) \in V_2^7 : v_1 + v_2 + v_3 \ge 1\}.$$

It is easy to verify that $A \in P_7(2, 7)$. We have $|A| = \binom{3}{2} + \binom{3}{1} \cdot \binom{4}{1} = 15 = \binom{6}{2}$.

2. The estimation (16) used in the proof of Theorem 1 is very rough, and of course can be greatly improved.¹

7. Proof of Theorem 2

At first we show, that the bound in (4) can be achieved. For this we just take the 0, 1 images of optimal graphs in Theorem M (only for odd values of ℓ) and in Theorem EG. It can be easily shown that these sets belong to $P_n(2, \ell)$.

Now, the case $2 \mid \ell$ is trivial, since having $\frac{\ell}{2}$ pairwise disjoint 2-sets, we just sum the corresponding vectors and get a vector of weight ℓ , a contradiction.

Let $\ell = 2\ell_1 + 1$, $A \in P_n(2, \ell)$ be with $|A| = c_n(2, \ell)$.

If $T^{-1}(A) \subset {[n] \choose 2}$ does not contain $\frac{\ell+1}{2} = \ell_1 + 1$ pairwise disjoint edges (2-sets), then

 $|T^{-1}(A)| = |A| \le g_n\left(\frac{\ell+1}{2}\right)$

proving the Theorem in this case.

CLAIM. Assume $T^{-1}(A)$ contains $\ell_1 + 2$ pairwise disjoint edges. Then $T^{-1}(A)$ does not contain triangles, and hence $|T^{-1}(A)| = |A| \le M_n$.

Proof of the claim. Assume to the opposite, that the graph with $\mathbb{E} = T^{-1}(A)$ contains a triangle, say {{1, 2}, {1, 3}, {2, 3}}, and we denote by v_1^n, v_2^n, v_3^n the corresponding vectors in A.

By assumption $T^{-1}(A)$ contains $\ell_1 + 2$ pairwise disjoint edges and at most 3 of them can intersect (have a common vertex) with the triangle. Hence in the ground set [4, n] one can find $(\ell_1 - 1)$ from these edges, say $\{4, 5\}, \{6, 7\}, \ldots, \{2\ell_1, 2\ell_1 + 1\}$, and let $v_4^n, \ldots, v_{\ell_1+2}^n$ be the corresponding vectors in A.

Now we just observe, that

$$\frac{1}{2}v_1^n + \frac{1}{2}v_2^n + \frac{1}{2}v_3^n + v_4^n + \dots + v_{\ell_1+2}^n = (11\dots10\dots0) \in V_{\ell}^n,$$

a contradiction.

So, it remains to treat the case, when $T^{-1}(A)$ contains exactly $\ell_1 + 1$ pairwise disjoint edges, say

$$\{1, 2\}, \{3, 4\}, \dots, \{2\ell_1 + 1, 2\ell_1 + 2\}.$$
 (17)

We observe that

- (i) in $T^{-1}(A)$ there are no edges $\{i, j\}$ with $2\ell_1 + 2 < i < j \le n$, otherwise we would have $\ell_1 + 2$ pairwise disjoint edges.
- (ii) There are no triangles involving edges from (17), otherwise if, say {1, 2}, {1, 3}, {2, 3} ∈ T⁻¹(A), then as in the claim, the positive combination of images of these and (ℓ₁ − 1) disjoint edges {5, 6}, ..., {2ℓ₁ + 1, 2ℓ₁ + 2} produces a vector from Vⁿ_ℓ, a contradiction. The case {1, 2}, {1, i}, {2, i} for i ∈ [2ℓ₁ + 3, n] is excluded by the same reason. We note, that actually we can have triangles in this case, say {1, 3}, {1, 5}, {3, 5}. Now we estimate |A| = |T⁻¹(A)| from above. By the observation we have
 - at most 2 edges between any two edges of (17), and consequently at most $2\binom{\ell_1+1}{2}$ edges in $[1, 2\ell_2 + 2]$ except the $(\ell_1 + 1)$ edges of (17).

• at most $(\ell_1 + 1)(n - 2\ell_2 - 1)$ edges $\{i, j\}$, with $1 \le i \le 2\ell_1 + 2, 2\ell_1 + 2 < j \le n$. Hence

$$|T^{-1}(A)| = |A| \le (\ell_1 + 1) + 2\binom{\ell_1 + 1}{2} + (\ell_1 + 1)(n - 2\ell_1 - 2)$$
$$= (\ell_1 + 1)(n - \ell_1 - 1) \le \left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lceil \frac{n}{2} \right\rceil = M_n.$$

AHLSWEDE AND KHACHATRIAN

Note

1. A referee suggested the following improvements: A weight *k* vector ending in 1 has in its orbit under the permutations on [n-1] at least one bad vector. Therefore (16) can be improved to $|A_1| \le (1 - \frac{1}{(k-1)!}) \binom{k-k-1}{k-1}$. Actually it can even be shown that in each orbit under rotations there is at least one bad vector. Therefore the term $\frac{1}{(k-1)!}$ can also be replaced by $\frac{1}{k-1}$.

References

- 1. B. Bollobás, D. E. Daykin and P. Erdős, Sets of independent edges of a hypergraph, *Quart. J. Math.*, Vol. 21 (1976) pp. 25–32.
- 2. P. Erdős, A Problem of Independent *r*-Tuples, Annales Univ. Budapest, Vol. 8 (1965) pp. 93–95.
- 3. P. Erdős and T. Gallai, On the maximal paths and circuits of graphs, *Acta Math. Hungar*, Vol. 10 (1959) pp. 337–357.
- 4. P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, *Quart. J. Math.*, Vol. 12 (1961) pp. 313–320.
- 5. P. Frankl, The shifting technique in extremal set theory, In *Survey in Combinatorics,* London Math. Soc., Lecture Note Series, Vol. 123, London (1987) pp. 81–110.
- 6. H. Gouwentak, W. Mantel, J. Teixeira de Mattos, F. Schuh, W. A. Wythoff and W. Mantel, Problem 28, *Wiskundige Opgaven*, Vol. 10 (1907) pp. 60–61.