Cone Dependence-A Basic Combinatorial Concept

RUDOLF AHLSWEDE

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

LEVON KHACHATRIAN

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

Communicated by: A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel, J. A. Thas

Abstract

We call $A \subset \mathbb{E}^{n}$ cone independent of $B \subset \mathbb{E}^{n}$, the euclidean n-space, if no $a=\left(a_{1}, \ldots, a_{n}\right) \in A$ equals a linear combination of $B \backslash\{a\}$ with non-negative coefficients. If A is cone independent of A we call A a cone independent set. We begin the analysis of this concept for the sets $P(n)=\left\{A \subset\{0,1\}^{n} \subset \mathbb{E}^{n}: A\right.$ is cone independent $\}$ and their maximal cardinalities $c(n) \triangleq \max \{|A|: A \in P(n)\}$.

We show that $\lim _{n \rightarrow \infty} \frac{c(n)}{2^{n}}>\frac{1}{2}$, but can't decide whether the limit equals 1 . Furthermore, for integers $1<k<\ell \leq n$ we prove first results about $c_{n}(k, \ell) \triangleq \max \left\{|A|: A \in P_{n}(k, \ell)\right\}$, where $P_{n}(k, \ell)=\left\{A: A \subset V_{k}^{n}\right.$ and V_{ℓ}^{n} is cone independent of $\left.A\right\}$ and V_{k}^{n} equals the set of binary sequences of length n and Hamming weight k. Finding $c_{n}(k, \ell)$ is in general a very hard problem with relations to finding Turan numbers.

Keywords: combinatorial extremal problems, Turan problem, positive linear combinations, binary sequences
Mathematics Subject Classification: 05C35, 05B30, 52C99

1. Introduction

We begin with our notation. \mathbb{Z} is the set of integers, \mathbb{N} denotes the set of positive integers, \mathbb{R} is the set of real numbers, and \mathbb{E}^{n} is the Euclidean space of dimension n. For $i, j \in \mathbb{N}$, $i<j$, the set $\{i, i+1, \ldots, j\}$ is abbreviated as $[i, j]$, and $[n]$ stands for $[1, n]$. For $k, n \in \mathbb{N}$, we set

$$
2^{[n]}=\{E: E \subset[n]\}, \quad\binom{[n]}{k}=\left\{E \in 2^{[n]}:|E|=k\right\} .
$$

There is a natural bijection T between $2^{[n]}$ and $\{0,1\}^{n}$-the set of binary sequences of length n : for any $E \in 2^{[n]} T(E)=\left(v_{1}, \ldots, v_{n}\right)=v \in\{0,1\}^{n}$, where $v_{i}=\left\{\begin{array}{ll}1 & \text { if } i \in E \\ 0 & \text { if } i \notin E\end{array}\right.$.

More generally, for $\mathcal{E} \subset 2^{[n]}$ (resp. $H \subset\{0,1\}^{n}$) define

$$
T(\mathcal{E})=\{T(E): E \in \mathcal{E}\}\left(\text { resp. } T^{-1}(H)\right)
$$

In particular $T\left(2^{[n]}\right)=\{0,1\}^{n}$ and $T\binom{[n]}{k}=V_{k}^{n}$-the set of binary sequences of length n and Hamming weight k.

Now new concepts and questions follow.

New Definitions

Definition 1. $\quad A \subset \mathbb{E}^{n}$ is cone independent of $B \subset \mathbb{E}^{n}$ if no $a=\left(a_{1}, \ldots, a_{n}\right) \in A$ equals a linear combination of $B \backslash\{a\}$ with non-negative coefficients.

Definition 2. If A is cone independent of A we call A a cone independent set.
Definition 3. We study the case $A, B \subset\{0,1\}^{n} \subset \mathbb{E}^{n}$ and in particular consider $P(n)=$ $\left\{A \subset\{0,1\}^{n}: A\right.$ is cone independent $\}$.

Problems

Problem 1. Find

$$
c(n) \triangleq \max \{|A|: A \in P(n)\}
$$

Problem 2. For integers $1<k<\ell \leq n$ find

$$
c_{n}(k, \ell) \triangleq \max \left\{|A|: A \in P_{n}(k, \ell)\right\},
$$

where $P_{n}(k, \ell)=\left\{A: A \subset V_{k}^{n}\right.$ and V_{ℓ}^{n} is cone independent of $\left.A\right\}$
Remark. Finding $c_{n}(k, \ell)$ is in general a very hard problem.
We have

$$
c_{n}(k, k+1)=\tau_{n}(k, k+1)
$$

where $\tau_{n}(k, \ell) \triangleq$ Turan number $\triangleq \max \left\{|\mathcal{A}|: \mathcal{A} \subset\binom{[n]}{k}\right.$, no $B \in\binom{[n]}{\ell}$ contains more than $\binom{\ell}{k}-1$ members of $\left.\mathcal{A}\right\}$.

We begin with a bound and a conjecture for Problem 1 in Section 2.
Section 3 contains classical results for graphs and hypergraphs, which are used in the analysis of Problem 2.

The results on this problem are stated as Theorems 1, 2 in Section 4, where also further conjectures about $c_{n}(k, \ell)$ are stated.

The rest of the paper is devoted to proofs of the theorems, auxiliary results needed are with their proofs in Section 5, Theorem 2 is proved in Section 6, and finally Theorem 2 is proved in Section 7.

2. A Bound for Problem 1

Consider the set

$$
C=\left\{v^{n}=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}: v_{1}=1\right\} .
$$

Clearly $|C|=2^{n-1}$ and it is easy to see that $C \in P(n)$.

One more naive construction is

$$
D=\{10,01\} \times\{0,1\}^{n-2}=\left\{v^{n}=\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}:\left(v_{1}, v_{2}\right) \in\{(0,1),(1,0)\}\right\}
$$

Again we have $|D|=2^{n-1}$ and $D \in P(n)$.

Proposition

(i) $c(n+1) \geq 2 c(n)$
(ii) If an $A \in P(n)$ and $1^{n}=(1, \ldots, 1) \in A$, then $|A| \leq 2^{n-1}$.

Proof. (i) For an $A \in P(n)$ consider $A^{\prime}=A \times\{0,1\}=\left\{v^{n+1}=\left(v_{1}, \ldots, v_{n}, v_{n+1}\right) \in\right.$ $\left.\{0,1\}^{n+1}:\left(v_{1}, \ldots, v_{n}\right) \in A\right\}$.
We have $\left|A^{\prime}\right|=2|A|$ and verify that $A^{\prime} \in P(n+1)$.
(ii) follows from the observation that from every complemented pair $\left(v^{n}, 1^{n}-v^{n}\right)$ at most one can be in A.

Can we beat the naive bound 2^{n-1} ? The following construction shows that this is the case for $n \geq 5$.

Construction. Let $C \in P(n)$ and $1^{n} \notin C$. Take an $m \in \mathbb{N}$ with $m>|C|$.
Consider

$$
C^{\prime}=\left\{C \times\left\{\{0,1\}^{m} \backslash\{0\}^{m}\right\}\right\} \cup\left\{1^{n} \times\left\{e_{1}, \ldots, e_{m}\right\}\right\},
$$

where e_{1}, \ldots, e_{m} are unit vectors in the ground set $[n+1, n+m]$.
It can be easily proved that $C^{\prime} \in P(n+m)$. We have

$$
\left|C^{\prime}\right|=|C| \cdot\left(2^{m}-1\right)+m=|C| \cdot 2^{m}+m-|C|>|C| \cdot 2^{m} .
$$

Now choose $n=2, C=\{(1,0),(0,1)\}, m=3,(3>2=|C|)$. Since $C \in P(2)$ and $(1,1)=$ $1^{2} \notin C$ we can apply the construction to get
$C^{\prime}=\{(10100),(10010),(10001),(10110),(10101),(10011),(10111),(01100),(01010)$,
(01001), (01110), (01101), (01011), (01111), (11100), (11010), (11001)\}
with $C^{\prime} \in P(5),\left|C^{\prime}\right|=17$.
It is convenient to introduce the parameter $\beta(n)=\frac{c(n)}{2^{n}}$.
Lemma 1.
(i) $\beta=\lim _{n \rightarrow \infty} \beta(n)$ exists.
(ii) β is never assumed, i.e., $\beta>\beta(n)$ for all $n \in \mathbb{N}$.

Proof. (i) directly follows from (i) in the proposition.
(ii) We know that $\beta(n) \geq \frac{17}{32}, n \geq 5$ and hence by the proposition ((ii)) an optimal $A \in$ $P(n)$ does not contain the vector 1^{n}. Consequently we can apply the construction to get $\beta(n+m)>\beta(n)$ (for a suitable m).

How far can we go with the construction? A simple calculation shows that we can have only $\beta>0,55$. We conjecture that $\beta<1$.

3. Some Classical Results

THEOREM (Mantel [6]). Let $G=(\mathcal{V}, \mathcal{E})$ be a graph on n vertices not containing triangles. Then

$$
\begin{equation*}
|\mathcal{E}| \leq M_{n} \triangleq\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil \tag{1}
\end{equation*}
$$

ThEOREM (Erdős-Gallai [3]). Let $G=(\mathcal{V}, \mathcal{E})$ be a graph on n vertices not containing s pairwise disjoint edges. Then for $s \geq 2, n \geq 2 s$

$$
\begin{equation*}
|\mathcal{E}| \leq g_{n}(2, s) \triangleq \max \left(\binom{2 s-1}{s},\binom{s-1}{2}+(s-1)(n-s+1)\right) \tag{2}
\end{equation*}
$$

Moreover, equality holds here iff-up to permutation-

$$
\mathcal{E}=\binom{[2 s-1]}{2} \text { or }\left\{A \in\binom{[n]}{2}:|A \cap[1, s-1]| \neq 0\right\} .
$$

CONJECTURE (Erdős [2]). Let $\mathcal{F} \subset\binom{[n]}{k}$ not contain pairwise disjoint sets. Then for $n \geq k s$

$$
\begin{equation*}
|\mathcal{F}| \leq g_{n}(k, s) \triangleq \max \left(\binom{k s-1}{k},\binom{n}{k}-\binom{n-s+1}{k}\right) \tag{3}
\end{equation*}
$$

1965 Erdős proved (3) for $n>n_{0}(k, s)$.
1976 Bollobas, Daykin, Erdős proved (3) for $n>2 k^{3} s$.
1987 Frankl, Füredi proved (3) for $n>100 k s^{3}$.
THEOREM (Frankl [5]).

$$
g_{n}(k, s) \leq(s-1)\binom{n-1}{k-1}
$$

In particular for $n=k s$

$$
g_{k s}(k, s)=\binom{k s-1}{k} .
$$

It is convenient to write $g_{n}(s)$ instead of $g_{n}(2, s)$.

4. Results and Conjectures for Problem 2

We succeeded in settling two special cases.
The case $\boldsymbol{\ell}=\boldsymbol{n}$. Clearly $c_{n}(k, n) \geq\binom{ n-1}{k}$, because $1^{n}=(1,1, \ldots, 1\}$ is cone independent of $V_{k}^{n-1} \times\{0\}$ and $\left|V_{k}^{n-1}\right|=\binom{n-1}{k}$.

In case $k \mid n$ any $A \subset V_{k}^{n}$ cone independent of 1^{n} does not contain $\frac{n}{k}$ pairwise disjoint elements and hence by Theorem F we get

$$
c_{n}(k, n)=\binom{n-1}{k}
$$

Thus we have proved part (a) of the following theorem. The main work consists in proving part (b) in Sections 5, 6.

Theorem 1.

$$
c_{n}(k, n)=\binom{n-1}{k}, \text { if } \begin{cases}(a) & k \mid n \\ (b) & k \nmid n \text { and } n>n_{0}(k) .\end{cases}
$$

The case $\boldsymbol{k}=\mathbf{2}$. Recall the numbers $g_{n}(s)$ (Theorem EG) and M_{n} (Theorem M).
THEOREM 2.

$$
c_{n}(2, \ell)= \begin{cases}g_{n}\left(\frac{\ell}{2}\right), & \text { if } 2 \mid \ell \tag{4}\\ \max \left\{M_{n}, g_{n}\left(\frac{\ell+1}{2}\right)\right\}, & \text { if } 2 \nmid \ell\end{cases}
$$

Conjectures

For $1 \leq s \leq k$ define $n_{s}=\left\lceil\frac{n \cdot s}{k}\right\rceil-1$ and the set

$$
H_{s}=\left\{v=\left(v_{1}, \ldots, v_{n}\right) \in V_{k}^{n}: \sum_{i=1}^{n_{s}} v_{i} \geq s\right\}, \quad\left|H_{s}\right|=\sum_{i=0}^{k-s}\binom{n_{s}}{s+i}\binom{n-n_{s}}{k-s-i}
$$

It can be easily verified that $H_{s} \in P_{n}(k, n)$ for all $1 \leq s \leq k$.

CONJECTURE 1.

$$
c_{n}(k, n)=\max _{s}\left|H_{s}\right| .
$$

Theorem 1 proves this conjecture for $n>n(k)$. For big $n \max _{s}\left|H_{s}\right|=\left|H_{k}\right|=\binom{n-1}{k}$.
Clearly, cone dependence is a stronger concept than linear dependence. The difference seems to be smaller for very different parameters k, ℓ, n.

CONJECTURE 2. For $k \ll \ell \ll n c_{n}(k, \ell)$ behaves like in the case where positive independence is replaced by linear independence.

5. Auxiliary Results: Left-Compression

The following method was introduced in [4] (see [5] for a nice survey). For integers $1 \leq$ $i<j \leq n$ and a family $\mathcal{F} \subset 2^{[n]}$ define the (i, j)-shift $S_{i j}$ as follows:

$$
\begin{aligned}
& S_{i j}(F)= \begin{cases}(F \backslash\{j\}) \cup\{i\}=F_{1} & \text { if } i \notin F, j \in F, F_{1} \notin \mathcal{F} \\
F & \text { otherwise }\end{cases} \\
& S_{i j}(\mathcal{F})=\left\{S_{i j}(F): F \in \mathcal{F}\right\} .
\end{aligned}
$$

Now, for $\mathcal{F} \subset 2^{[n]} T(\mathcal{F})=A \subset\{0,1\}^{n}$, and the (i, j)-shift is defined in a natural way:

$$
S_{i j}(A)=T\left(S_{i j}\left(T^{-1}(A)\right)\right)
$$

For a $v \in\{0,1\}^{n}, i, j \in \mathbb{N}$, we also define $E_{i j}(v)$, which is a vector obtained from v by exchanging the i th and j th coordinates, and for $B \subset\{0,1\}^{n}$ define

$$
E_{i j}(B)=\left\{E_{i j}(v): v \in B\right\} .
$$

LEmMA 2.

(i) $\left|S_{i j}(A)\right|=|A|$
(ii) if $A \subset V_{k}^{n}$, then $S_{i j}(A) \subset V_{k}^{n}$ as well.
(iii) if $A \in P_{n}(k, n)$, then $S_{i j}(A) \in P_{n}(k, n)$ as well.

Proof. (i) and (ii) are trivial. To prove (iii), assume to the opposite, for some $A \in P_{n}(k, n)$ and $1 \leq i<j \leq n, S_{i j}(A) \notin P_{n}(k, n)$ holds, that is, there is a subset $V \subset S_{i j}(A)$ and positive numbers $\left\{\lambda_{v}: v \in V\right\}$ such that

$$
\begin{equation*}
(1, \ldots, 1)=1^{n}=\sum_{v \in V} \lambda_{v} \cdot v \tag{5}
\end{equation*}
$$

Let

$$
V=V_{00} \dot{U} V_{10} \dot{U} V_{01} \dot{\cup} V_{11},
$$

where $V_{\varepsilon \delta}$ is the set of vectors of V having ε in the position i and δ in the position j. By the definition of the (i, j)-shift we have

$$
\begin{equation*}
(V \backslash A)=V_{10}^{\prime} \subset V_{10} \tag{6}
\end{equation*}
$$

and that for every

$$
\begin{equation*}
v \in V_{01}, \quad v \in A \quad \text { and } \quad E_{i j}(v) \in A \tag{7}
\end{equation*}
$$

Denote $E_{i j}\left(V_{01}\right)$ by W. We look at the equality (5) for the i th and j th components. We have

$$
\begin{equation*}
\sum_{v \in V_{10} \cup V_{11}} \lambda_{v}=1 \quad \text { and } \quad \sum_{v \in V_{11} \cup V_{11}} \lambda_{v}=1 . \tag{8}
\end{equation*}
$$

It follows from (8) that

$$
\begin{equation*}
\sum_{v \in V_{10}} \lambda_{v}=\sum_{v \in V_{01}} \lambda_{v} \tag{9}
\end{equation*}
$$

and by (6) and the positivity of λ_{v} 's we get

$$
\begin{equation*}
\sum_{v \in V_{10}^{\prime}} \lambda_{v} \leq \sum_{v \in V_{01}} \lambda_{v} . \tag{10}
\end{equation*}
$$

Let $U \subset A$ be the image of V_{10}^{\prime}, that is $S_{i j}(U)=V_{10}^{\prime}$. Clearly, also $U=E_{i j}\left(V_{10}^{\prime}\right)$.
Consider the set

$$
V^{*}=U \cup\left(V \backslash V_{10}^{\prime}\right) \cup W
$$

We have $V^{*} \subset A$. By (10) we can split the coefficients $\lambda_{v}, v \in V_{01}$, in such a way, that

$$
\lambda_{v}=\lambda_{v}^{\prime}+\lambda_{v}^{\prime \prime}, \lambda_{v}^{\prime}, \lambda_{v}^{\prime \prime} \geq 0 \quad \text { for every } v \in V_{01}
$$

and

$$
\begin{equation*}
\sum_{v \in V_{01}} \lambda_{v}=\sum_{v \in V_{01}}\left(\lambda_{v}^{\prime}+\lambda_{v}^{\prime \prime}\right)=\sum_{v \in W} \lambda_{v}^{\prime}+\sum_{v \in V_{01}} \lambda_{v}^{\prime \prime}=\sum_{v \in V_{10}^{\prime}} \lambda_{v}+\sum_{v \in V_{01}} \lambda_{v}^{\prime \prime} . \tag{11}
\end{equation*}
$$

Finally from (5)-(11) we have

$$
\begin{aligned}
1^{n} & =\sum_{v \in V} \lambda_{v} \cdot v=\sum_{v \in V \backslash\left(V_{10}^{\prime} \cup V_{011}\right)} \lambda_{v} \cdot v+\sum_{v \in V_{10}^{\prime}} \lambda_{v} \cdot v+\sum_{v \in V_{01}} \lambda_{v} \cdot v \\
& =\sum_{v \in V \backslash\left(V_{10}^{\prime} \cup V_{01}\right)} \lambda_{v} \cdot v+\sum_{\substack{u=E_{i j}(v) \\
v \in V_{10}^{\prime}}} \lambda_{v} \cdot u+\sum_{\substack{w=E_{i j}(v) \\
v \in V_{01}}} \lambda_{v}^{\prime} \cdot w+\sum_{v \in V_{01}} \lambda_{v}^{\prime \prime} v
\end{aligned}
$$

i.e., 1^{n} is positively dependent on $V^{*} \subset A$, a contradiction to $A \in P_{n}(k, n)$.

Definition 4. A $\mathcal{B} \subset 2^{[n]}$ (resp. $B \subset\{0,1\}^{n}$) is said to be stable or left-compressed if $S_{i j}(\mathcal{B})=\mathcal{B}$ for all $1 \leq i<j \leq n$ (resp. $\left.S_{i j}(B)=B\right)$. Denote by $L P_{n}(k, n)$ the set of all stable systems of $P_{n}(k, n)$.

By Lemma 2 (after finitely many shifts) we get

$$
\begin{equation*}
c_{n}(k, n)=\max _{A \in P_{n}(k, n)}|A|=\max _{A \in L P_{n}(k, n)}|A| . \tag{12}
\end{equation*}
$$

Definition 5. A vector $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{E}^{n}, v_{i} \geq 0$ is called "good" if there exists an $s \in \mathbb{N}, 1 \leq s \leq n-1$, such that

$$
\frac{\sum_{i=1}^{s} v_{i}}{s}>\frac{\sum_{i=s+1}^{n} v_{i}}{n-s}
$$

Otherwise, it is called "bad."
We observe that a positive, linear combination of any "bad" vectors is again "bad," but the similar statement with respect to "good" vectors, in general, is false.

We also observe that for any $\alpha>0 \alpha \cdot v$ is "good" (resp. "bad") whenever v is "good" (resp. "bad"). We note that clearly 1^{n} is a "bad" vector.

Lemma 3. Let $A \subset V_{k}^{n}$ be left-compressed. Then $A \in P_{n}(k, n)$ (and hence $A \in L P_{n}(k, n)$) if and only if any non-negative, nonzero combination of A produces a "good" vector. In particular, if $A \in L P_{n}(k, n)$, then necessarily all vectors of A are "good."

Proof. Since the vector 1^{n} is a "bad" vector, the "if" part of the lemma is trivially true.
To prove the part "only if" we assume to the opposite, that $A \in L P_{n}(k, n)$ but there exists a nonempty subset $A^{\prime} \subset A$ and positive coefficients $\lambda_{v}>0: v \in A^{\prime}$ such that $\sum_{v \in A^{\prime}} \lambda_{v} \cdot v$ is a "bad" vector.
Clearly, we can assume that all coefficients λ_{v} are rational numbers, and consequently (multiplying all coefficients by a suitable integer) we can assume

$$
\begin{align*}
& \lambda_{v} \in \mathbb{N} ; v \in A^{\prime}, \quad \sum_{v \in A^{\prime}} \lambda_{v} \cdot v=v^{*}=\left(a_{1}, \ldots, a_{n}\right), \\
& \sum_{i=1}^{n} a_{i}=m \cdot n \quad \text { for some } m \in \mathbb{N} \quad \text { and } \quad v^{*} \text { is a "bad" vector. } \tag{13}
\end{align*}
$$

In other words, v^{*} is a sum of vectors of A^{\prime} (possibly taken with multiplicity).
By the definition of "bad" vectors for v^{*} we have

$$
a_{1} \leq \frac{a_{2}+\cdots+a_{n}}{n-1}, \quad \frac{a_{1}+a_{2}}{2} \leq \frac{a_{3}+\cdots+a_{n}}{n-2} \cdots \frac{a_{1}+\cdots+a_{n-1}}{n-1} \leq a_{n} .
$$

The last inequality together with (13) implies $a_{n} \geq m$. If $a_{n}>m$, then we build a new "bad" vector as follows:

Let $i, 1 \leq i \leq n-1$ be the largest index for which $a_{i}<m$ (such an index always exists by (13)). Consider the vector $u=\left(a_{1}, \ldots, a_{i-1}, a_{i}+1, a_{i+1}, \ldots, a_{n-1}, a_{n}-1\right)$. It is easy to verify that u is a "bad" vector. Moreover, since $a_{n}>m, a_{i}<m$, then in A^{\prime} there exists a vector (call it w), which has 1 in the nth component and 0 in the i th component. Since A is a left-compressed set, then $E_{i j}(w) \in A$ as well, and consequently the vector u also can be positively produced from A.

The sum of coordinates of u is still $m \cdot n$. Continuing, we get a "bad" vector where the last component equals m.
Now we follow the same procedure with respect to the $(n-1)$ th component and so on. Finally, we produce the vector (m, m, \ldots, m), equivalently, the vector $(1,1, \ldots, 1)=1^{n}$, a contradiction.

Remark. In the proof we did not use the weight of vectors in A. With it Lemma 3 can be formulated in a more general form.

6. Proof of Theorem 1

Let $A \in P_{n}(k, n)$ and $|A|=c_{n}(k, n)$. By (12) we can assume that $A \in L P_{n}(k, n)$. We partition A by the last component: $A=A_{0} \cup A_{1}$, where

$$
A_{0}=\left\{A=\left(a_{1}, \ldots, a_{n}\right) \in A: a_{n}=0\right\}, A_{1}=A \backslash A_{0} .
$$

We want to prove, and this is equivalent to the statement (b) in Theorem 1, that $A_{1}=\varnothing$ if n is big enough. Assume to the opposite, that $A_{1} \neq \varnothing$ for infinitely many $n, k \nmid n$. Write

$$
n=m k+r, \quad \text { where } 1 \leq r<k .
$$

Since A is a left-compressed set and by assumption $A_{1} \neq \varnothing$, then clearly $v^{*}=\left(v_{1}, \ldots, v_{n}\right) \in$ A_{1}, where

$$
\begin{equation*}
v_{1}=\cdots=v_{k-1}=1, \quad v_{k}=\cdots=v_{n-1}=0, \quad v_{n}=1 . \tag{14}
\end{equation*}
$$

CLAIM. Assume $A_{1} \neq \varnothing$, then

$$
\begin{equation*}
\left|A_{0}\right| \leq\binom{ m k+r-1}{k}-\binom{m k-k-1}{k-1} \tag{15}
\end{equation*}
$$

Proof of the claim. Let $B \subset A_{0}$ be the set of all vectors having all k ones in the interval $[k+r, m k+r-1]$ (of length $k(m-1)$). If $|B| \leq\binom{ k(m-1)}{k}-\binom{k(m-1)-1}{k-1}$ then (15) trivially holds. Otherwise, since k divides the length of the interval, by the part (b) of the Theorem, the vector $u=\left(u_{1}, \ldots, u_{m k+r}\right)$, where

$$
u_{1}=u_{2}=\cdots=u_{k+r-1}=0, \quad u_{k+r}=\cdots=u_{m k+r-1}=1, \quad u_{m k+r}=0
$$

can be positively built using vectors of B.
The vector u is a "bad" vector in the ground set $[k, m k+r-1]$, and A is left-compressed. Hence by Lemma 3, we can positively build, from vectors of A, also the vector $u^{*}=$ $\left(u_{1}^{*}, \ldots, u_{m k+r}^{*}\right)$, where

$$
u_{1}^{*}=\cdots=u_{k-1}^{*}=0, \quad u_{k}^{*}=\cdots=u_{m k+r-1}^{*}=1, \quad u_{m k+r}^{*}=0 .
$$

Now

$$
v^{*}+u^{*}=(1,1, \ldots, 1)=1^{n}
$$

where $v^{*} \in A_{1}$ is the vector in (14), a contradiction.
By Lemma 3 all vectors of A_{1} must be "good." We estimate from below (very roughly) the number of "bad" vectors: consider the partition of the ground set

$$
\begin{aligned}
{[1, m k+r]=} & {[1, m+r-1] \cup[m+r, 2 m+r-1] \cup \ldots } \\
& {[(k-1) m+r, k m+r-1] \cup\{m k+r\} }
\end{aligned}
$$

and the set $W \subset V_{k}^{m k+r}$ consisting of the vectors having all 0 -s in the first part and single 1-s in every remaining part. It is easy to verify that all vectors of W are "bad" and $|W|=m^{k-1}$. Hence

$$
\begin{equation*}
\left|A_{1}\right| \leq\binom{ m k+r-1}{k-1}-m^{k-1} \tag{16}
\end{equation*}
$$

The combination of (15) and (16) gives

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right| \leq\binom{ m k+r-1}{k}-\binom{m k-k-1}{k-1}+\binom{m k+r-1}{k-1}-m^{k-1}
$$

It is easily seen that $R H S<\binom{m k+r-1}{k}$ if $m>m_{0}(k)$ (hence $n>n_{0}(k)$), because by the binomial formula $\binom{m k-k-1}{k-1}=\frac{(m k)^{k-1}}{(k-1)!}+0(m k)^{k-2}, \quad\binom{m k+r-1}{k-1}=\frac{(m k)^{k-1}}{(k-1)!},+0(m k)^{k-2}$ and therefore their difference is smaller than $0\left(m^{k-1}\right)$. Therefore $|A|<\binom{n-1}{k}$ if $n>n_{0}(k)$, a contradiction. Hence $A_{1}=\varnothing$ for $m>n_{0}(k),|A|=c_{n}(k, m)=\binom{n-1}{k}$ and the optimal set is unique up to permutation.

Remarks.

1. It is easy to calculate $c_{n}(2, n)(k=2)$. Moreover, this is a special case of Theorem 2. We have

$$
c_{n}(2, n)=\binom{n-1}{2} \quad \text { for all } 2 \mid n, c_{n}(2,3)=2, c_{n}(2,5)=7
$$

and the optimal set is

1	1	0	0	0
1	0	1	0	0
1	0	0	1	0
1	0	0	0	1
0	1	1	0	0
0	1	0	1	0
0	1	0	0	1.

Let $n=2 \ell+1$. Look at the sets A_{0}, A_{1} in the proof of Theorem 1. It is easily seen that there are ℓ "bad" vectors and consequently $\left|A_{1}\right| \leq \ell$. Since $\left|A_{0}\right| \leq\binom{ 2 \ell}{2}-\binom{2 \ell-3}{1}$ (by claim), then

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right| \leq\binom{ 2 \ell}{2}+\ell-(2 \ell-3)=\binom{2 \ell}{2}-\ell+3 .
$$

Hence $A \leq\binom{ 2 \ell}{2}=c_{n}(2, n)$ for $\ell \geq 3$.
Note, that in the case $n=7(\ell=3)$ we have the second optimal set: Take

$$
A=\left\{v=\left(v_{1}, \ldots, v_{7}\right) \in V_{2}^{7}: v_{1}+v_{2}+v_{3} \geq 1\right\}
$$

It is easy to verify that $A \in P_{7}(2,7)$. We have $|A|=\binom{3}{2}+\binom{3}{1} \cdot\binom{4}{1}=15=\binom{6}{2}$.
2. The estimation (16) used in the proof of Theorem 1 is very rough, and of course can be greatly improved. ${ }^{1}$

7. Proof of Theorem 2

At first we show, that the bound in (4) can be achieved. For this we just take the 0,1 images of optimal graphs in Theorem M (only for odd values of ℓ) and in Theorem EG. It can be easily shown that these sets belong to $P_{n}(2, \ell)$.

Now, the case $2 \mid \ell$ is trivial, since having $\frac{\ell}{2}$ pairwise disjoint 2 -sets, we just sum the corresponding vectors and get a vector of weight ℓ, a contradiction.

Let $\ell=2 \ell_{1}+1, A \in P_{n}(2, \ell)$ be with $|A|=c_{n}(2, \ell)$.
If $T^{-1}(A) \subset\binom{[n]}{2}$ does not contain $\frac{\ell+1}{2}=\ell_{1}+1$ pairwise disjoint edges (2 -sets), then

$$
\left|T^{-1}(A)\right|=|A| \leq g_{n}\left(\frac{\ell+1}{2}\right)
$$

proving the Theorem in this case.
CLAIM. Assume $T^{-1}(A)$ contains $\ell_{1}+2$ pairwise disjoint edges. Then $T^{-1}(A)$ does not contain triangles, and hence $\left|T^{-1}(A)\right|=|A| \leq M_{n}$.

Proof of the claim. Assume to the opposite, that the graph with $\mathbb{E}=T^{-1}(A)$ contains a triangle, say $\{\{1,2\},\{1,3\},\{2,3\}\}$, and we denote by $v_{1}^{n}, v_{2}^{n}, v_{3}^{n}$ the corresponding vectors in A.

By assumption $T^{-1}(A)$ contains $\ell_{1}+2$ pairwise disjoint edges and at most 3 of them can intersect (have a common vertex) with the triangle. Hence in the ground set $[4, n]$ one can find $\left(\ell_{1}-1\right)$ from these edges, say $\{4,5\},\{6,7\}, \ldots,\left\{2 \ell_{1}, 2 \ell_{1}+1\right\}$, and let $v_{4}^{n}, \ldots, v_{\ell_{1}+2}^{n}$ be the corresponding vectors in A.
Now we just observe, that

$$
\frac{1}{2} v_{1}^{n}+\frac{1}{2} v_{2}^{n}+\frac{1}{2} v_{3}^{n}+v_{4}^{n}+\cdots+v_{\ell_{1}+2}^{n}=(11 \ldots 10 \ldots 0) \in V_{\ell}^{n},
$$

a contradiction.
So, it remains to treat the case, when $T^{-1}(A)$ contains exactly $\ell_{1}+1$ pairwise disjoint edges, say

$$
\begin{equation*}
\left.\{1,2\},\{3,4\}, \ldots,\left\{2 \ell_{1}+1,2 \ell_{1}+2\right\} .\right] \tag{17}
\end{equation*}
$$

We observe that
(i) in $T^{-1}(A)$ there are no edges $\{i, j\}$ with $2 \ell_{1}+2<i<j \leq n$, otherwise we would have $\ell_{1}+2$ pairwise disjoint edges.
(ii) There are no triangles involving edges from (17), otherwise if, say $\{1,2\},\{1,3\},\{2,3\} \in$ $T^{-1}(A)$, then as in the claim, the positive combination of images of these and $\left(\ell_{1}-1\right)$ disjoint edges $\{5,6\}, \ldots,\left\{2 \ell_{1}+1,2 \ell_{1}+2\right\}$ produces a vector from V_{ℓ}^{n}, a contradiction. The case $\{1,2\},\{1, i\},\{2, i\}$ for $i \in\left[2 \ell_{1}+3, n\right]$ is excluded by the same reason.
We note, that actually we can have triangles in this case, say $\{1,3\},\{1,5\},\{3,5\}$.
Now we estimate $|A|=\left|T^{-1}(A)\right|$ from above.
By the observation we have

- at most 2 edges between any two edges of (17), and consequently at most $2\binom{\ell_{1}+1}{2}$ edges in $\left[1,2 \ell_{2}+2\right]$ except the $\left(\ell_{1}+1\right)$ edges of (17).
- at most $\left(\ell_{1}+1\right)\left(n-2 \ell_{2}-1\right)$ edges $\{i, j\}$, with $1 \leq i \leq 2 \ell_{1}+2,2 \ell_{1}+2<j \leq n$.

Hence

$$
\begin{aligned}
\left|T^{-1}(A)\right| & =|A| \leq\left(\ell_{1}+1\right)+2\binom{\ell_{1}+1}{2}+\left(\ell_{1}+1\right)\left(n-2 \ell_{1}-2\right) \\
& =\left(\ell_{1}+1\right)\left(n-\ell_{1}-1\right) \leq\left\lfloor\frac{n}{2}\right\rfloor \cdot\left\lceil\frac{n}{2}\right\rceil=M_{n}
\end{aligned}
$$

Note

1. A referee suggested the following improvements: A weight k vector ending in 1 has in its orbit under the permutations on $[n-1]$ at least one bad vector. Therefore (16) can be improved to $\left|A_{1}\right| \leq\left(1-\frac{1}{(k-1)!}\right)\binom{k m+r-1}{k-1}$. Actually it can even be shown that in each orbit under rotations there is at least one bad vector. Therefore the term $\frac{1}{(k-1)!}$ can also be replaced by $\frac{1}{k-1}$.

References

1. B. Bollobás, D. E. Daykin and P. Erdős, Sets of independent edges of a hypergraph, Quart. J. Math., Vol. 21 (1976) pp. 25-32.
2. P. Erdős, A Problem of Independent r-Tuples, Annales Univ. Budapest, Vol. 8 (1965) pp. 93-95.
3. P. Erdős and T. Gallai, On the maximal paths and circuits of graphs, Acta Math. Hungar, Vol. 10 (1959) pp. 337-357.
4. P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math., Vol. 12 (1961) pp. 313-320.
5. P. Frankl, The shifting technique in extremal set theory, In Survey in Combinatorics, London Math. Soc., Lecture Note Series, Vol. 123, London (1987) pp. 81-110.
6. H. Gouwentak, W. Mantel, J. Teixeira de Mattos, F. Schuh, W. A. Wythoff and W. Mantel, Problem 28, Wiskundige Opgaven, Vol. 10 (1907) pp. 60-61.
