MAXIMUM NUMBER OF CONSTANT WEIGHT VERTICES OF THE UNIT n-CUBE CONTAINED IN A k-DIMENSIONAL SUBSPACE

R. AHLSWEDE, H. AYDINIAN, L. KHACHATRIAN

Received November 11, 1999

We introduce and solve a natural geometrical extremal problem. For the set $E(n, w)=$ $\left\{x^{n} \in\{0,1\}^{n}: x^{n}\right.$ has w ones $\}$ of vertices of weight w in the unit cube of \mathbb{R}^{n} we determine $M(n, k, w) \triangleq \max \left\{\left|U_{k}^{n} \cap E(n, w)\right|: U_{k}^{n}\right.$ is a k-dimensional subspace of $\left.\mathbb{R}^{n}\right\}$. We also present an extension to multi-sets and explain a connection to a higher dimensional Erdős-Moser type problem.

1. Introduction and main result

Let $E(n)$ denote the vertices of the unit n-cube in real n-dimensional space that is let $E(n)=\{0,1\}^{n} \subset \mathbb{R}^{n}$. Let also $E(n, w)$ denote the vertices of weight w, that is, $E(n, w)=\left\{x^{n} \in E(n): x^{n}\right.$ has w ones $\}$.

The following question can arise in a natural way in the study of geometrical properties of $E(n)$. Let H be a hyperplane passing through the origin. How many vertices of the unit cube can H contain? In other words we ask for $\max _{H}|H \cap E(n)|$. It is an easy exercise to show that the answer is 2^{n-1} (the maximum cannot exceed $|E(n-1) \times\{0\}|$). The same question we ask for the vertices of given weight $w, 1 \leq w \leq n$.

One can expect (by analogy to the previous case) that this number cannot be greater than $\binom{n-1}{w}$, that is, H cannot contain more vertices of weight w than those of $E(n-1, w) \times\{0\}$. However a small example shows that this is not the case.

Mathematics Subject Classification (2000): 05D05, 15A03

Let $n=4, w=2$. Then take $H=\operatorname{span}\{(1,1,0,0),(0,0,1,1),(1,0,1,0)$, $(0,1,0,1)\}$. Thus $|H \cap E(4,2)|=4$ instead of the expected number $\binom{3}{2}=3$.

Note also that $\max |H \cap E(4,1)|=\max |H \cap E(4,3)|=3$ (with evident constructions). This small example shows that depending on w the structure of optimal sets of vertices contained in a hyperplane can be quite different.

Let us consider a more general problem. Let U_{k}^{n} be a k-dimensional subspace of \mathbb{R}^{n}. Define

$$
M(n, k, w)=\max \left\{\left|U_{k}^{n} \cap E(n, w)\right|: U_{k}^{n} \subset \mathbb{R}^{n}\right\} .
$$

In this paper we completely solve this problem. Here is our main result.
Theorem 1.(a) $M(n, k, w)=M(n, k, n-w)$
(b) For $w \leq \frac{n}{2}$ we have $M(n, k, w)= \begin{cases}\binom{k}{w}, & \text { if (i) } 2 w \leq k \\ \binom{2 k-w)}{k-w} 2^{2 w-k}, & \text { if (ii) } k<2 w<2(k-1) \\ 2^{k-1}, & \text { if (iii) } k-1 \leq w .\end{cases}$

The sets giving the claimed values of $M(n, k, w)$ in the three cases are ${ }^{1}$
(i) $\mathcal{S}_{1}=E(k, w) \times\{0\}^{n-k}$
(ii) $\mathcal{S}_{2}=E(2(k-w), k-w) \times\{10,01\}^{2 w-k} \times\{0\}^{n-2 w}$
(iii) $\mathcal{S}_{3}=\{10,01\}^{k-1} \times\{1\}^{w-k+1} \times\{0\}^{n-k-w+1}$.

The corresponding k-dimensional subspaces $V\left(S_{1}\right), V\left(S_{2}\right), V\left(S_{3}\right)$ containing these sets (up to the permutations of the coordinates) can be described by their basis vectors.
$V\left(S_{1}\right)$:

$$
\begin{aligned}
b_{1} & =(1,0, \ldots, 0, \ldots, 0) \\
b_{2} & =(0,1,0, \ldots, \ldots, 0) \\
\ldots & \ldots \ldots \ldots \ldots \ldots \\
b_{k} & =(0, \ldots, 1,0, \ldots, 0)
\end{aligned}
$$

Clearly $V\left(S_{1}\right)=\operatorname{span}\left(S_{1}\right)$.

[^0]$V\left(S_{2}\right)$:
\[

$$
\begin{aligned}
& b_{1}=\left(1,0, \ldots, 0,0, \ldots, 0, \frac{1}{k-w}, \ldots, \frac{1}{k-w}, 0, \ldots, 0\right) \\
& b_{2_{k-2 w}}=(\underbrace{0, \ldots, 0,1}_{2_{k-2 w}}, \underbrace{0, \ldots, 0}_{2_{k}-k}, \underbrace{\frac{1}{k-w}, \ldots, \frac{1}{k-w}}_{2_{w}-k}, \underbrace{0, \ldots, 0}_{n-2 w}) \\
& b_{2_{k-2 w+1}}=(0, \ldots, 0,1, \ldots, 0,-1,0, \ldots, 0,0, \ldots, 0) \\
& b_{k}=(\underbrace{0, \ldots, 0}_{2_{k-2 w}}, \underbrace{0, \ldots, 1}_{2 w-k}, \underbrace{0,0, \ldots,-1}_{2 w-k}, \underbrace{0, \ldots, 0}_{n-2 w}) .
\end{aligned}
$$
\]

This case is slightly more complicated. To obtain 0,1 -vectors we should consider only the linear combinations with coefficients 0 or 1 . Moreover the linear combinations of the first $2 k-2 w$ vectors must have exactly $k-w$ ones in first $2 k-2 w$ coordinates. Combining each of those vectors with all possible 0,1 -combinations of the remaining basis vectors we clearly get exactly $\binom{2 k-2 w}{k-w} 2^{2 w-k}$ vectors of weight w.

Note that $\operatorname{span}\left(S_{2}\right)$ is equivalent to $V\left(S_{2}\right)$ up to the permutations of the coordinates. Indeed
$V\left(S_{2}\right) \cap E(n, w)=E(2(k-w), k-w) \times\left\{\left(a_{1}, \ldots, a_{2 w-k}, 1-a_{1}, \ldots, 1-a_{2 w-k}\right):\right.$ $\left.\left(a_{1}, \ldots, a_{2 w-k}\right) \in E(2 w-k)\right\} \times\{0\}^{n-2 w} \sim E(2(k-w), k-w) \times\left\{\left(a_{1}, 1-\right.\right.$ $\left.\left.a_{1}, \ldots, a_{2 w-k}, 1-a_{2 w-k}\right):\left(a_{1}, \ldots, a_{2 w-k}\right) \in E(2 w-k)\right\} \times\{0\}^{n-2 w}=S_{2}$.
$V\left(S_{3}\right)$:

$$
\begin{aligned}
& b_{1}=(1,0, \ldots,-1,0, \ldots, 0,0, \ldots, 0) \\
& b_{2}=(0,1,0, \ldots,-1,0, \ldots, 0,0, \ldots, 0) \\
& b_{k-1}=(0, \ldots, 1,0, \ldots,-1,0, \ldots, 0,0, \ldots, 0) \\
& b_{k}=(\underbrace{0, \ldots, 0}_{k-1}, \underbrace{1, \ldots \ldots, 1}_{k-1}, \underbrace{1, \ldots, 1}_{w-k+1}, 0, \ldots, 0) .
\end{aligned}
$$

Clearly all 2^{k-1} possible 0,1 -combinations of the first $k-1$ basis vectors added to b_{k} give us 0,1 -vectors of weight w. Note also that $V\left(S_{3}\right) \sim \operatorname{span}\left(S_{3}\right)$ up to the permutations of the coordinates.

2. An auxiliary geometric result

A nonzero vector $u^{n}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ is called nonnegative (resp. positive) if $u_{i} \geq 0\left(\right.$ resp. $\left.u_{i}>0\right)$ for all $i=1,2, \ldots, n$.

Lemma 1. Assume a k-dimensional subspace $V_{k}^{n} \subset \mathbb{R}^{n}$ contains a nonnegative vector. Then it also contains a nonnegative vector with at least $k-1$ zero coordinates.

Proof. We apply induction on k and n. The case $k=1$ is trivial. Assume the statement is valid for $k^{\prime} \leq k-1$ and any n.

Suppose V_{k}^{n} is the row space of a $k \times n$ matrix

$$
G=\left[\begin{array}{c}
v_{1}^{n} \\
\vdots \\
v_{k}^{n}
\end{array}\right], v_{1}^{n}, \ldots, v_{k}^{n} \in \mathbb{R}^{n}
$$

and let $u^{n} \in V_{k}^{n}$ be a nonnegative vector. If u^{n} has zero coordinates, then we are done. Indeed, suppose that $u=\left(u_{1}, \ldots, u_{\ell}, 0, \ldots, 0\right)$ for $n-k+1<\ell<n$ and $u_{i}>0$ for $i=1, \ldots, \ell$. Then clearly G can be transformed to the form shown in Figure 1,

Fig. 1
where B is a matrix of $\operatorname{rank}(B)=s \leq n-\ell<k-1, A$ is a matrix of rank $k-s$ and 0 is an all zero matrix.

Now by the induction hypothesis the row space of A contains a nonnegative vector with at least $k-s-1$ zero coordinates. Hence in the row space of G there is a nonnegative vector containing at least $k-s-1+n-\ell \geq k-1$ zeros, proving the lemma in this case. Suppose now u^{n} is a positive vector.

Let $v^{n} \in V_{k}^{n}$ with $v^{n} \neq \alpha u^{n}, \alpha \in \mathbb{R}$. W.l.o.g. assume $\frac{v_{1}}{u_{1}} \geq \cdots \geq \frac{v_{n}}{u_{n}}$. Then one can easily see that $\frac{v_{1}}{u_{1}} u^{n}-v^{n} \in V_{k}^{n}$ is a nonnegative vector with zero in the first coordinate. This completes the proof because we come to the case considered above.

3. A step form of a real matrix

Definition. We say that a matrix M of size $k \times n$ and rank $M=k$ has a step form if it has the form, shown in Figure 2, up to the permutations of the columns.

Fig. 2

Each shade (called a "step") of size $\ell_{i} \geq 1(i=1, \ldots, k), \sum_{i=1}^{k} \ell_{i}=n$ depicts ℓ_{i} positive entries of the i-th row, and above the steps M has only zero entries.

Clearly any matrix can be transformed to a step form of Figure 2 by elementary row operations and permutations of the columns.

We say also that M has positive step form if all the steps have positive entries.

Lemma 2. A subspace $V_{k}^{n} \subset \mathbb{R}^{n}$ has a generator matrix in a positive step form iff V_{k}^{n} contains a positive vector.

Proof. Suppose V_{k}^{n} contains a positive vector. By Lemma 1 it also contains a nonnegative vector v^{n} with at least $k-1$ zero entries. W.l.o.g. $v^{n}=\left(v_{1}, \ldots, v_{\ell}, 0, \ldots, 0\right)$, where $\ell \leq n-k+1$ and $v_{i}>0 ; i=1, \ldots, \ell$. Clearly a generator matrix of V_{k}^{n} can be transformed to the form shown in Figure 1 where B has rank $1 \leq s \leq k-1$ and $\operatorname{rank}(A)=k-s$.

Clearly the row spaces of A and B contain a positive vector. Now A and B can be transformed to a positive step form separately applying induction
on k and n. The converse implication is also clear because in a positive step form we can get a positive vector choosing suitable coefficients for the row vectors of the generator matrix.

4. An extremal problem for families of w-element sets involving antichain properties for certain restrictions

For any finite set X we use the notation

$$
2^{X}=\{A: A \subset X\},\binom{X}{w}=\left\{A \in 2^{X}:|A|=w\right\}
$$

A family $\mathcal{F} \subset 2^{X}$ is called an antichain if $F_{1} \not \subset F_{2}$ holds for all $F_{1}, F_{2} \in \mathcal{F}$. Correspondingly $\mathcal{F}=\left\{F_{1}, \ldots, F_{s}\right\}$ is called a chain of size s if $F_{1} \subset \cdots \subset F_{s}$. If $s=|X|+1$ then \mathcal{F} is called a maximal chain.

Lemma 3. Let $X=X_{1} \dot{\cup} \ldots \dot{\cup} X_{s}$ with $\left|X_{i}\right|=n_{i}$ for $i=1, \ldots, s$ and let $\mathcal{A} \subset\binom{X}{w}$ be a family with the following property:
(P) for any $A, B \in \mathcal{A}$ and $j=1, \ldots, s$

$$
E \triangleq A \cap\left(\bigcup_{i=1}^{j} X_{i}\right) \neq B \cap\left(\bigcup_{i=1}^{j} X_{i}\right) \triangleq F
$$

implies that E and F are incomparable (form an antichain).
Then

$$
\begin{equation*}
|\mathcal{A}| \leq \max _{\sum_{i=1}^{s} w_{i}=w} \prod_{i=1}^{s}\binom{n_{i}}{w_{i}} \tag{4.1}
\end{equation*}
$$

Proof. Define a "product maximal chain" in X (shortly p-chain) as a sequence $\mathcal{C}=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}\right)$ where $\mathcal{C}_{i} \subset 2^{X_{i}}(i=1, \ldots, s)$ is a maximal chain in X_{i}. Clearly the number of all p-chains is $\prod_{i=1}^{s} n_{i}$!. Let us also represent each element $A \in \mathcal{A}$ as a sequence $A=\left(A_{1}, \ldots, A_{s}\right)$ where $A_{i}=A_{i} \cap X_{i}, i=1, \ldots, s$. We say that $A \in \mathcal{C}$ iff $A_{i} \in \mathcal{C}_{i}, i=1, \ldots, s$.

In view of property (P) each p-chain \mathcal{C} contains at most one element from \mathcal{A}. On the other hand given $A \in \mathcal{A}$ there are exactly $\prod_{i=1}^{s}\left|A_{i}\right|!\left(n_{i}-\left|A_{i}\right|\right)!p$ chains containing A. Hence the probability that a random p-chain \mathcal{C} meets
our family \mathcal{A} is

$$
\frac{\sum_{A \in \mathcal{A}} \prod_{i=1}^{s}\left|A_{i}\right|!\left(n_{i}-\left|A_{i}\right|\right)!}{\prod_{i=1}^{s} n_{i}!} \leq 1
$$

Equivalently

$$
\sum_{A \in \mathcal{A}} \frac{1}{\prod_{i=1}^{s}\binom{n_{i}}{\left|A_{i}\right|}} \leq 1
$$

Further clearly we have

$$
\frac{|\mathcal{A}|}{\max _{A \in \mathcal{A}} \prod_{i=1}^{s}\binom{n_{i}}{\left|A_{i}\right|}} \leq \sum_{A \in \mathcal{A}} \frac{1}{\prod_{i=1}^{s}\binom{n_{i}}{\left|A_{i}\right|}} \leq 1
$$

which gives the desired result.
Using the same argument one can prove a more general statement.
Lemma 3'. Under the conditions of Lemma 3 let $\mathcal{A} \subset\binom{X}{\leq w}=\{A \subset X:|A| \leq$ $w\}$. Then

$$
|\mathcal{A}| \leq \begin{cases}\max _{\Sigma w_{i}=w} \prod_{i=1}^{s}\binom{n_{i}}{w_{i}}, & \text { if } 2 w<n \\ \prod_{i=1}^{s}\binom{n_{i}}{\left\lfloor\frac{n_{i}}{2}\right\rfloor}, & \text { if } 2 w \geq n\end{cases}
$$

Next we show how to calculate the maximum in (4.1).
Lemma 4. Let $n, w, s \in \mathbb{N}, s \leq n, 2 w \leq n$. Then we have

$$
M \triangleq \max _{\sum_{i=1}^{s} n_{i}=n, n_{i} \geq 1} \prod_{i=1}^{s}\binom{n_{i}}{w_{i}}=\left\{\begin{array}{l}
\binom{n-s+1}{w}, \quad \text { if } 2 w \leq n-s+1 \\
\binom{2(n-s+1)-2 w}{n-s+1-w} 2^{2 w-(n-s+1)}, \\
\text { if } n-s+1<2 w<2(n-s) \\
2^{n-s}, \quad \text { if } w \geq n-s .
\end{array}\right.
$$

Proof. Consider a representation of M in the following form

$$
\begin{equation*}
M=\prod_{i=1}^{s}\binom{m_{i}}{k_{i}} \tag{4.3}
\end{equation*}
$$

where $\sum_{i=1}^{s} m_{i}=n, m_{i} \geq 1, \sum_{i=1}^{s} k_{i}=w, k_{i} \geq 0$.
We say that $\binom{\ell}{t}$ is a factor of M iff $\ell=m_{i}, t=k_{i}$ for some $i \in\{1, \ldots, s\}$ in a representation of M in the form (4.3).

Let now $M=M_{1}\binom{2}{1}^{s_{1}}$ with $s_{1} \geq 0$, where M_{1} has no factors $\binom{2}{1}$. Then we claim that M_{1} does not contain the following factors:
(α) $\binom{m}{k}$ and $\binom{\ell}{t}$ with $m, \ell>1$
(β) $\binom{m}{k}$ with $m<2 k$
$(\gamma)\binom{m}{k}$ with $m>2 k+1, s_{1} \geq 1$
(δ) $\binom{m}{k}$ and $\binom{1}{1}$ with $m \neq 1$
(α) Let $\binom{m}{k},\binom{\ell}{t} \neq\binom{ 2}{1}, m, \ell \neq 1$. Then the following inequalities can be easily verified.
If $m \neq 2 k, \ell \neq 2 t$ then

$$
\binom{m}{k}\binom{\ell}{t}<\max \left\{\binom{m+\ell-1}{k+t}\binom{1}{0},\binom{m+\ell-1}{k+t-1}\binom{1}{1}\right\}
$$

If $m=2 k, \ell=2 t$, then

$$
\binom{m}{k}\binom{\ell}{t}<\binom{m+\ell-2}{k+t-1}\binom{2}{1}
$$

Each of these inequalities contradicts the maximality of M, if $\binom{m}{k}$ and $\binom{\ell}{t}$ are factors of M_{1}.
(β) Suppose M has a factor $\binom{m}{k}$ with $m<2 k$. Then (α) with $2 w \leq n$ implies the existence of the factor $\binom{1}{0}$, which leads to a contradiction with

$$
\binom{m}{k}\binom{1}{0}<\binom{m}{k-1}\binom{1}{1}
$$

(γ) If M_{1} has a factor $\binom{m}{k}$ with $m>2 k+1$ and $s_{1} \geq 1$ then

$$
\binom{m}{k}\binom{2}{1}<\binom{m+1}{k+1}\binom{1}{0}
$$

(δ) Let now M_{1} contain factors $\binom{m}{k}$ and $\binom{1}{1}$ with $m \neq 1$. Then we get a contradiction with

$$
\binom{m}{k}\binom{1}{1}<\binom{m-1}{k}\binom{2}{1}, \text { if } m>2 k
$$

If now $m=2 k$, then

$$
\binom{m}{k}\binom{1}{1}\binom{1}{0}<\binom{m-2}{k-1}\binom{2}{1}^{2}
$$

gives a contradiction.

Now we can sum up our observations above as follows. M can have only the following form

$$
\begin{equation*}
M=\binom{m_{1}}{k_{1}}\binom{2}{1}^{s_{1}}\binom{1}{1}^{s_{2}}\binom{1}{0}^{s_{3}} \tag{4.4}
\end{equation*}
$$

where $m_{1}+2 s_{1}+s_{2}+s_{3}=n, k_{1}+s_{1}+s_{2}=w, s_{1}+s_{2}+s_{3}+1=s ; s_{1}, s_{2}, s_{3} \geq 0$, $k_{1} \geq 1, m_{1} \geq 2 k_{1}$.

Finally an inspection shows that

1. $w \geq n-s$ implies $s_{2} \geq k_{1}-1$. Therefore in both cases, $s_{2}=0$ or $s_{2}>0$, by (δ) we get $k_{1}=1, m_{1}=2$ which means that

$$
M=2^{s_{1}+1}=2^{n-s}
$$

2. $2 w \leq n-s+1$ with (γ) implies $s_{1}+2 s_{2} \leq 1$. Hence $s_{2}=0$ and $s_{1}=0$ or 1 which gives

$$
M=\binom{m_{1}+s_{1}}{k_{1}+s_{1}}=\binom{n-s+1}{w}
$$

3. $n-s+1<2 w<2(n-s)$ gives $s_{1}+2 s_{2}>0, s_{2}<k_{1}-1$ which with (δ) implies $s_{2}=0$. Hence

$$
M=2^{s_{1}}\binom{2 k_{1}}{k_{1}}
$$

where $s_{1}=2 w-(n-s+1), k_{1}=n-s+1-w$. This completes the proof.

5. Proof of Theorem 1

(a) First we prove that $M(n, k, w)=M(n, k, n-w)$. Let $\mathcal{A} \subset E(n, w)$ with $\operatorname{rank}(\mathcal{A})=k($ dimension of $\operatorname{span}(\mathcal{A}))$ such that $|\mathcal{A}|=M(n, k, w)$.
Suppose $v_{1}^{n}, \ldots, v_{k}^{n}$ are linearly independent vectors in \mathcal{A}. Every $v^{n} \in \mathcal{A}$ can be written as

$$
\begin{equation*}
\sum_{i=1}^{k} \alpha_{i} v_{i}^{n}=v^{n} \tag{5.1}
\end{equation*}
$$

and since $\mathcal{A} \subset E(n, w)$ we easily conclude that

$$
\begin{equation*}
\sum_{i=1}^{k} \alpha_{i}=1 \tag{5.2}
\end{equation*}
$$

Consider now the following set $\mathcal{B}=\left\{1^{n}-v^{n}: v^{n} \in \mathcal{A}\right\}$ and notice that $\mathcal{B} \subset E(n, n-w),|\mathcal{B}|=|\mathcal{A}|$.
By (5.1), (5.2) we obtain

$$
\sum_{i=1}^{k} \alpha_{i}\left(1^{n}-v_{i}^{n}\right)=1^{n}-v^{n}
$$

which shows that $\operatorname{rank}(\mathcal{B}) \leq k$ (in fact it is easily seen that $\operatorname{rank}(\mathcal{B})=k)$. Therefore $M(n, k, w) \leq M(n, k, n-w)$ and, symmetrically, $M(n, k, w) \geq$ $M(n, k, n-w)$.
(b) Let U_{k}^{n} be an optimal subspace, that is, it contains a maximal number of vectors from $E(n, w)$. Let further V_{n-k}^{n} be the orthogonal space of U_{k}^{n} with a basis $v_{1}^{n}, \ldots, v_{n-k}^{n}$.
Now we can reformulate our problem as follows:
Determine the maximum number of 0,1 -solutions (solutions from $\{0,1\}^{n}$) of the system of $n-k+1$ independent equations

$$
\begin{cases}\left\langle v_{1}^{n}, x^{n}\right\rangle & =0 \tag{5.3}\\ \ldots \ldots & \\ \left\langle v_{n-k}^{n}, x^{n}\right\rangle & =0 \\ \left\langle 1^{n}, x^{n}\right\rangle & =w\end{cases}
$$

as a function of $v_{1}^{n}, \ldots, v_{n-k}^{n}$ and $w(\langle\cdot, \cdot\rangle$ means the scalar product). By Lemma 2 (5.3) can be reduced to the form

$$
\left\langle a_{i}^{n}, x^{n}\right\rangle=c_{i}, i=1, \ldots, n-k+1
$$

where the matrix of coefficient $\left[a_{i j}\right]_{i=1, \ldots, n-k+1}^{j=1, \ldots, n}$ has a positive step form. W.l.o.g. we may assume that this matrix has the form shown in Figure 2 with "steps" of size $\ell_{i} \geq 1(i=1, \ldots, n-k+1)$ and $\sum_{i=1}^{n-k+1} \ell_{i}=n$.

It is not difficult to see that the 0,1 -solutions Z of (5.3) satisfy the following property.

For any solutions $e^{n}=\left(e_{1}, \ldots, e_{n}\right), h^{n}=\left(h_{1}, \ldots, h_{n}\right)$ and any $t_{s}=\ell_{1}+\cdots+\ell_{s}$, $s=1, \ldots, n-k+1$, if $\left(e_{1}, \ldots, e_{t_{s}}\right) \neq\left(h_{1}, \ldots, h_{t_{s}}\right)$, then there exist $1 \leq i, j \leq t_{s}$ such that $e_{i}>h_{i}, e_{j}<h_{j}$.

Consider now $\left(e_{1}, \ldots, e_{t_{s}}\right)$ and $\left(h_{1}, \ldots, h_{t_{s}}\right)$ as the characteristic vectors of the corresponding sets E and H. The property above means that E and H are incomparable. Thus considering the solutions of (5.3) as the corresponding set system $\mathcal{A} \subset\binom{[n]}{k}$, where $[n]$ is partitioned into $n-k+1$ nonempty subsets, we see that \mathcal{A} satisfies the property (P) in Lemma 3. Consequently we have

$$
|Z| \leq|\mathcal{A}| \leq \max _{\sum_{i=1}^{n-k+1} w_{i}=w} \prod_{i=1}^{n-k+1}\binom{\ell_{i}}{w_{i}}
$$

Combining this with Lemma 4 we get the desired result.

6. Related geometric problems

In [4] Erdős and Moser posed the following problems: What is the largest possible number of subsets of a given set of integers $\left\{a_{1}, \ldots, a_{n}\right\}$ having a common sum of elements?

What is the largest possible number, if the number of summands is a fixed integer w ?

In other words, what is the maximum possible number of solutions of the equations

$$
\begin{align*}
& \sum_{i=1}^{n} a_{i} \varepsilon_{i}=b \tag{6.1}\\
& \sum_{i=1}^{n} a_{i} \varepsilon_{i}=b, \sum_{i=1}^{n} \varepsilon_{i}=w \tag{6.2}
\end{align*}
$$

where $a_{i} \neq a_{j}, i=1, \ldots, n, \varepsilon_{i} \in\{0,1\}$. These problems were solved (for reals $\left.a_{1}, \ldots, a_{n}, b\right)$ in [17], [15] (see also [16]) using algebraic methods.

In [8] Griggs suggested the higher dimensional Erdős-Moser problem which is a natural generalization of Erdős-Moser problem for the vectors in \mathbb{R}^{m}. Namely instead of reals a_{1}, \ldots, a_{n}, b in (6.1) consider vectors $a_{1}^{m}, \ldots, a_{n}^{m}$, $b^{m} \in \mathbb{R}^{m}$, such that the vectors $a_{1}^{m}, \ldots, a_{n}^{m}$ are in general position, that is every m of them form a basis of \mathbb{R}^{m}. Very few is known about this problem. Even for dimension two it is not completely solved. For more information about this problem and its application in database security see [6-8].

More generally one can consider the problem (see [7]) of maximizing the number of subset sums

$$
\sum_{i \in I} a_{i}^{n} \in B \subset \mathbb{R}^{m} .
$$

Note that this is a problem in the spirit of the famous Littlewood-Offord problem, where the a_{i}^{n} 's are required to have norm $\left\|a_{i}^{m}\right\| \geq 1$ and B is an open ball of unit diameter.

The Littlewood-Offord problem (originally stated for complex numbers i.e. for dimension two) was solved by Erdős [3] for dimension one, by Katona [9] and independently by Kleitman [10] for dimension two and finally by Kleitman [11] for any dimension.

It was proved that the number of subset sums inside of any unit ball is bounded by ($\left.\left\lfloor\frac{n}{2}\right\rfloor\right)$.

The further generalization of this result for an open ball of diameter $d>1$ is due to Frankl and Füredi [5].

Let us now return to our main problem. Clearly one can formulate it as follows.

For $a_{1}^{m}, \ldots, a_{n}^{m}, b^{m} \in \mathbb{R}^{m} \backslash\left\{0^{m}\right\}$ with $\operatorname{rank}\left\{a_{1}^{m}, \ldots, a_{n}^{m}\right\}=r$ determine the maximum possible number of solutions of the equation

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{m} \varepsilon_{i}=b^{m}, \varepsilon_{i} \in\{0,1\}, \sum_{i=1}^{n} \varepsilon_{i}=w . \tag{6.3}
\end{equation*}
$$

Consider also the same problem without the restriction $\sum_{i=1}^{n} \varepsilon_{i}=w$ (we will see below that this problem is easier than the first one).

Thus our problem can be viewed as a modified version of higher dimensional Erdős-Moser problem.

Denote by $N(n, m, r)$ the maximum number of solutions of equation

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{m} \varepsilon_{i}=b^{m}, \varepsilon_{i} \in\{0,1\} \tag{6.4}
\end{equation*}
$$

over all choices of $a_{1}^{m}, \ldots, a_{n}^{m} \in \mathbb{R}^{m} \backslash\left\{0^{m}\right\}$ of rank r and all $b^{m} \in \mathbb{R}^{m}$.
Theorem 2.

$$
N(n, m, r)= \begin{cases}2^{n-r}, & \text { if } 2 r \geq n \\ 2^{r-1}\binom{n-2(r-1)}{\left\lfloor\frac{n-2(r-1)}{2}\right\rfloor}, & \text { if } 2 r<n\end{cases}
$$

Proof. Let $b^{m}=\left(b_{1}, \ldots, b_{m}\right)$ and denote $A=\left[\begin{array}{c}a_{1}^{m} \\ \vdots \\ a_{n}^{m}\end{array}\right]$.
We can rewrite the equation (6.4) in the matrix form

$$
\begin{equation*}
A^{T}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{T}=\left(b_{1}, \ldots, b_{m}\right)^{T} \tag{6.5}
\end{equation*}
$$

Clearly we can reduce (6.5) to the equivalent form

$$
B\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{T}=\left(c_{1}, \ldots, c_{r}\right)^{T}
$$

where B is an $r \times n$ matrix of rank r having a step form with "steps" of size $\ell_{i} \geq 1, \sum_{i=1}^{r} \ell_{i}=n$.

Let now $\alpha_{i j} ; i=1, \ldots, r ; j \in I_{i} \subseteq\left[\ell_{i-1}+1, \ldots, \ell_{i}\right]$ be the negative entries of i-th "step".

Let us also denote $\sum_{j \in I_{i}} \alpha_{i j}=s_{i}$.
Consider now the following transformation $B \rightarrow B^{\prime}$. Change the sign of the entries of all columns $h_{j} ; j=1, \ldots, n$; of B for which $j \in \bigcup_{i=1}^{r} I_{i}=I$. Correspondingly $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ transform to $\left(\varepsilon_{i}^{\prime}, \ldots, \varepsilon_{n}^{\prime}\right)$, where $\varepsilon_{j}^{\prime}=1-\varepsilon_{j}$, if $j \in I$.

One can easily see now that we have another system of equations

$$
\begin{equation*}
B^{\prime}\left(\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime}\right)^{T}=\left(c_{1}-s_{1}, \ldots, c_{r}-s_{r}\right)^{T} \tag{6.6}
\end{equation*}
$$

which has as many solutions from $\{0,1\}^{n}$ as (6.5).
Note further that the set of " 0,1 -solutions" of (6.6) has the property (P) (switching to the language of sets) without the restriction on the size of sets. This implies

$$
N(n, m, r) \leq \max _{\substack{\sum_{i=1}^{r} \ell_{i}=n \\ \ell_{i} \geq 1}} \prod_{i=1}^{r}\binom{\ell_{i}}{\left\lfloor\frac{\ell_{i}}{2}\right\rfloor}
$$

and together with Lemma 4 gives the upper bound for $N(n, m, r)$. It is not difficult to see that this bound is attainable. This completes the proof.

7. Generalization to multisets

Define $S\left(q_{1}, \ldots, q_{n}\right)$ to be the set of all n-tuples of integers $a^{n}=\left(a_{1}, \ldots, a_{n}\right)$ such that $0 \leq a_{i} \leq q_{i}-1, i=1, \ldots, n$. We say that $a^{n} \leq b^{n}$ iff $a_{i} \leq b_{i}$ for all i. This poset is called chains product, or the lattice of all divisors of $p_{1}^{q_{1}}, \ldots, p_{n}^{q_{n}}\left(p_{1}, \ldots, p_{n}\right.$ are distinct primes) ordered by divisibility (see [1,2]). If $q_{1}=q_{2}=\cdots=q_{n}=q$ we use the notation $S_{q}(n)$.

A subset $\mathcal{A} \subset S\left(q_{1}, \ldots, q_{n}\right)$ is called an antichain if any $a^{n}, b^{n} \in \mathcal{A}$ are "incomparable" in the ordering given above.

Define the elements of level i (or elements of rank i) in poset $S\left(q_{1}, \ldots, q_{n}\right)$

$$
L_{i}=\left\{a^{n} \in S\left(q_{1}, \ldots, q_{n}\right): \sum_{j=1}^{n} a_{j}=i\right\}
$$

Clearly L_{i} is an antichain for any $i \in \mathbb{N}$.
$\left|L_{i}\right| \triangleq W_{n}^{i}$ is called Whitney number of poset $S\left(q_{1}, \ldots, q_{n}\right)$. It is known (see $[1,2]$) that $S\left(q_{1}, \ldots, q_{n}\right)$ has the Sperner property, that is for any antichain $\mathcal{A} \subset S\left(q_{1}, \ldots, q_{n}\right)$

$$
|\mathcal{A}| \leq \max _{i} W_{n}^{i}
$$

Moreover the LYM inequality holds for $S\left(q_{1}, \ldots, q_{n}\right)$, that is

$$
\sum_{i=0} \frac{\alpha_{i}}{W_{n}^{i}} \leq 1
$$

where $\alpha_{i}=\left|\left\{a^{n} \in \mathcal{A}: a^{n} \in L_{i}\right\}\right|$.
Consider now the following problems.

1. Given $u^{m}, v_{1}^{m}, \ldots, v_{n}^{m} \in \mathbb{R}^{m} \backslash\left\{0^{m}\right\}$ with $\operatorname{rank}\left\{v_{1}^{m}, \ldots, v_{n}^{m}\right\}=m \leq n$.

Determine the maximum possible number of solutions of the equation

$$
\begin{equation*}
\sum_{i=1}^{n} v_{i}^{m} x_{i}=u^{m} \tag{7.1}
\end{equation*}
$$

where $x^{n}=\left(x_{1}, \ldots, x_{n}\right) \in S_{q}(n)$.
2. The same problem with the additional condition

$$
\sum_{i=1}^{n} x_{i}=w
$$

that is $x^{n}=\left(x_{1}, \ldots, x_{n}\right) \in L_{w}$.
The second problem can be also reformulated as follows.
How many vectors $x^{n} \in S_{q}(n)$ with $\sum_{i=1}^{n} x_{i}=w$ can a k-dimensional subspace $V_{k}^{n} \subset \mathbb{R}^{n}$ contain?

Define

$$
M_{q}(n, k, w) \triangleq \max _{V_{k}^{n}}\left|S_{q}(n) \cap V_{k}^{n}\right|
$$

Theorem 1*.

$$
M_{q}(n, k, w)=\max _{n_{i} \geq 1, \sum_{i=1}^{n-k+1} n_{i}=n}^{\sum_{i=1}^{n-k+1} w_{i}=w} W_{n_{i}}^{w_{i}}
$$

To prove this theorem we need the analogue of Lemma 3 for $S_{q}(n)$.
Assume $[n]$ is partitioned by intervals, that is, $[n]=I_{1} \dot{\cup} \ldots \dot{\cup} I_{s}$ with $\left|I_{i}\right|=n_{i} \geq 1 ; i=1, \ldots, s$. For any $j=1, \ldots, s$ define $N_{j}=\left|\bigcup_{i=1}^{j} I_{i}\right|$.

We say that $\mathcal{A} \subset S_{q}(n)$ has property $\left(\mathrm{P}^{*}\right)$ if for any $a^{n}=\left(a_{1}, \ldots, a_{n}\right), b^{n}=$ $\left(b_{1}, \ldots, b_{n}\right) \in \mathcal{A}$ and any $j=1, \ldots, s$

$$
\left(a_{1}, \ldots, a_{N_{j}}\right) \neq\left(b_{1}, \ldots, b_{N_{j}}\right)
$$

implies that $\left(a_{1}, \ldots, a_{N_{j}}\right)$ and $\left(b_{1}, \ldots, b_{N_{j}}\right)$ are incomparable.
Lemma 3^{*}. Let $\mathcal{A} \subset L_{w}\left(L_{w} \subset S_{q}(n)\right.$ is defined above) has property $\left(P^{*}\right)$. Then

$$
|\mathcal{A}| \leq \max _{\sum_{i=1}^{s} w_{i}=w} \prod_{i=1}^{s} W_{n_{i}}^{w_{i}} .
$$

The proof can easily be given using the same approach as for Lemma 3.

The proof of Theorem 1^{*} is similar to the proof of Theorem 1. Again we can reduce the system of $n-k+1$ equations to the positive step form (because we have the all-one vector in the matrix of coefficients). It is also easy to see that the set of solutions from $S_{q}(n)$ has property $\left(\mathrm{P}^{*}\right)$ (in Lemma $\left.3^{*}\right)$. This with Lemma 3^{*} gives the proof of Theorem 1^{*}.

Corollary. If $q \geq w$ then

$$
M_{q}(n, k, w)=\binom{k+w-1}{w}
$$

Proof. It is known that for $q \geq i$

$$
W_{n}^{i}=\binom{n+i-1}{i}
$$

Using this fact and the inequality

$$
\binom{n_{1}+w_{1}-1}{w_{1}}\binom{n_{2}+w_{2}-1}{w_{2}} \leq\binom{ n_{1}+n_{2}+w_{1}+w_{2}-2}{w_{1}+w_{2}}
$$

we can determine the maximum in Theorem 1*.
Denote now by $N_{q}(n, m)$ the maximum number of solutions (from $S_{q}(n)$) of equation (6.1) over all choices of $u^{m}, v_{1}^{m}, \ldots, v_{n}^{m} \in \mathbb{R}^{m} \backslash\left\{0^{m}\right\}$, where $\operatorname{rank}\left\{v_{1}^{m}, \ldots, v_{n}^{m}\right\}=m$.
Theorem 2*.

$$
N_{q}(n, m)=\max _{\substack{m \\ \sum_{i=1}^{m} n_{i}=n \\ n_{i} \geq 1}} \prod_{i=1}^{m} W_{n_{i}}^{\left\lfloor\frac{(q-1) n_{i}}{2}\right\rfloor}
$$

Proof. Consider a system of m equations in a step form which is equivalent to vector equation (7.1). The only thing we need here is to reduce this system of equations to a positive step form. We use the same transformation as in the proof of Theorem 2 . Namely let $a_{1} x_{1}+\cdots+a_{\ell} x_{\ell}=b(\ell \leq n-m+1)$ be the first equation in our system having a step form. W.l.o.g. let $a_{1}, \ldots, a_{t}<0(t \leq \ell)$ with $\sum_{i=1}^{t} a_{i}=s$. Change now the sign of all coefficients of our system in the columns $i=1, \ldots, t$. Correspondingly transform $\left(x_{1}, \ldots, x_{n}\right)$ into $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$, where $x_{i}^{\prime}=q-1-x_{i}$ for $i=1, \ldots, t$ and $x_{j}^{\prime}=x_{j}$ for $j=t+1, \ldots, n$.

Now we have
$\sum_{i=1}^{n} a_{i}^{\prime} x_{i}^{\prime}=\sum_{i=1}^{t}-a_{i}\left(q-1-x_{i}\right)+\sum_{j=t+1}^{n} a_{j} x_{j}=b-\sum_{i=1}^{t} a_{i}(q-1)=b-s(q-1)$.
Clearly using this transformation for all "steps" we reduce our system to a positive step form. Moreover this system of equations has as many solutions in $S_{q}(n)$ as the original one.

Since the set of solutions X from $S_{q}(n)$ has property $\left(\mathrm{P}^{*}\right)$ we have

$$
|X| \leq \max _{\substack{m \\ \sum_{i=1}^{m} n_{i}=n \\ n_{i} \geq 1}} \prod_{i=1}^{m} W_{n_{i}}^{\left\lfloor\frac{(q-1) n_{i}}{2}\right\rfloor}
$$

This completes the proof.
Remark 1. It is not difficult to extend the same result to $S\left(q_{1}, \ldots, q_{n}\right)$.

8. An open problem

It seems to be interesting to consider our main problem for the vector space $G F(2)^{n}$. Namely we ask for the maximum possible number $m(n, k, w)$ of vectors of weight w contained in a k-dimensional subspace of $G F(2)^{n}$. Is there a relation between $m(n, k, w)$ and $M(n, k, w)$? The approach used above most likely does not work here. However one can observe that

$$
m(n, k, w) \geq M(n, k, w)
$$

Note that $m(n, k, w)$ depends on the parity of w. For example one can easily see that for odd w we have $m(n, k, w) \leq 2^{k-1}$. In particular if $k<w$ and $n \geq w+k-1$ we have

$$
m(n, k, w)=2^{k-1}
$$

On the other hand for suitable even w we can have

$$
m(n, k, w)=2^{k}-1
$$

It can be shown that this bound can be achieved iff $w=t 2^{k-1}, n \geq t\left(2^{k}-1\right)$, $t \in \mathbb{N}$. In this case we just take t copies of the simplex code (of length $2^{k}-1$) well known in coding theory (see e.g. [13]).

Note also that here we do not have the symmetry we had for $M(n, k, w)$. That is, in general $m(n, k, w) \neq m(n, k, n-w)$. However if w is odd and n is even we have $m(n, k, w)=m(n, k, n-w)$.

References

[1] I. Anderson: Combinatorics of Finite Sets, Clarendon Press, 1987.
[2] K. Engel: Sperner Theory, Cambridge University Press, 1997.
[3] P. Erdős: On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. (2nd ser.) 51, 898-902, 1945.
[4] P. Erdős: Extremal problems in number theory, in: Theory of Numbers, (ed.: A.L. Whiteman), Amer. Math. Soc., Providence, 181-189, 1965.
[5] P. Frankl and Z. Füredi: The Littlewood-Offord problem in higher dimensions, Annals Math. 128, 259-270, 1988.
[6] J.R. Griggs and G. Rote: On the distribution of sums of vectors in general position, Proceedings of the DIMATIA/DIMACS Conference on the Future of Discrete Mathematics, Stiřin, Amer. Math. Soc., 1997.
[7] J.R. Griggs: Concentrating subset sums at k points, Bull. Inst. Combin. Applns. 20, 65-74, 1997.
[8] J.R. Griggs: Database security and the distribution of subset sums in \mathbb{R}^{m}, Graph Theory and Combin. biology, Balatonlelle 1996, Bolyai Math. Studs. 7, 223-252, 1999.
[9] G.O.H. Katona: On a conjecture of Erdős and a stronger form of Sperner's theorem, studia Sci. Math. Hungar. 1, 59-63, 1966.
[10] D.J. Kleitman: On a Lemma of Littlewood and Offord on the distribution of certain sums, Math. Z. 90, 251-259, 1965.
[11] D.J. Kleitman: On the lemma of Littlewood and Offord on the distributions of linear combinations of vectors, Advances in Math. 5, 155-157, 1970.
[12] W.E. Lonstaff: Combinatorial of certain systems of linear equations, involving (0,1)-matrices, J. Austral. Math. Soc. 23 (Series A), 266-274, 1977.
[13] F.J. Macwilliams and N.J.A. Sloane: The Theory of Error Correcting Codes, North-Holland, Amsterdam, (1977).
[14] A.M. Odlyzko: On the ranks of some (0,1)-matrices with constant row sums, J. Austral. Math. Soc. 31 (Series A), 193-201, 1981.
[15] R.A. Proctor: Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89, 721-734, 1982.
[16] A. SÁrközy and E. Szemerédi: Über ein Problem von Erdős und Moser, Acta Arith. 11, 205-208, 1965.
[17] R.P. Stanley: Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Alg. Discr. Math. 1, 168-184, 1980.

R. Ahlswede, H. Aydinian, L. Khachatrian

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld

Germany

hollmann@mathematik.Uni-bielefeld.de
ayd@mathematik.Uni-bielefeld.de
lk@mathematik.Uni-bielefeld.de

[^0]: ${ }^{1}$ After completion of this work we learned that the case $k=n-1$ was considered already by Longstaff [12]. He also presented an interesting application. The complete solution for this case was given by Odlyzko [14].

