MAXIMUM NUMBER OF CONSTANT WEIGHT VERTICES OF THE UNIT n-CUBE CONTAINED IN A k-DIMENSIONAL SUBSPACE

R. AHLSWEDE, H. AYDINIAN, L. KHACHATRIAN

Received November 11, 1999

We introduce and solve a natural geometrical extremal problem. For the set $E(n,w) = \{x^n \in \{0,1\}^n : x^n \text{ has } w \text{ ones}\}$ of vertices of weight w in the unit cube of \mathbb{R}^n we determine $M(n,k,w) \triangleq \max\{|U_k^n \cap E(n,w)| : U_k^n \text{ is a } k\text{-dimensional subspace of } \mathbb{R}^n\}$. We also present an extension to multi–sets and explain a connection to a higher dimensional Erdős–Moser type problem.

1. Introduction and main result

Let E(n) denote the vertices of the unit *n*-cube in real *n*-dimensional space that is let $E(n) = \{0,1\}^n \subset \mathbb{R}^n$. Let also E(n,w) denote the vertices of weight w, that is, $E(n,w) = \{x^n \in E(n) : x^n \text{ has } w \text{ ones}\}.$

The following question can arise in a natural way in the study of geometrical properties of E(n). Let H be a hyperplane passing through the origin. How many vertices of the unit cube can H contain? In other words we ask for $\max_{H} |H \cap E(n)|$. It is an easy exercise to show that the answer is 2^{n-1} (the maximum cannot exceed $|E(n-1) \times \{0\}|$). The same question we ask for the vertices of given weight $w, 1 \le w \le n$.

One can expect (by analogy to the previous case) that this number cannot be greater than $\binom{n-1}{w}$, that is, H cannot contain more vertices of weight w than those of $E(n-1,w) \times \{0\}$. However a small example shows that this is not the case.

Mathematics Subject Classification (2000): 05D05, 15A03

Let n = 4, w = 2. Then take $H = \text{span}\{(1,1,0,0), (0,0,1,1), (1,0,1,0), (0,1,0,1)\}$. Thus $|H \cap E(4,2)| = 4$ instead of the expected number $\binom{3}{2} = 3$.

Note also that $\max |H \cap E(4,1)| = \max |H \cap E(4,3)| = 3$ (with evident constructions). This small example shows that depending on w the structure of optimal sets of vertices contained in a hyperplane can be quite different.

Let us consider a more general problem. Let U_k^n be a k-dimensional subspace of \mathbb{R}^n . Define

$$M(n,k,w) = \max\{|U_k^n \cap E(n,w)| : U_k^n \subset \mathbb{R}^n\}.$$

In this paper we completely solve this problem. Here is our main result.

Theorem 1. (a)
$$M(n,k,w) = M(n,k,n-w)$$

(b) For $w \le \frac{n}{2}$ we have $M(n,k,w) = \begin{cases} \binom{k}{w}, & \text{if (i) } 2w \le k \\ \binom{2(k-w)}{k-w} 2^{2w-k}, & \text{if (ii) } k < 2w < 2(k-1) \\ 2^{k-1}, & \text{if (iii) } k-1 \le w. \end{cases}$

The sets giving the claimed values of M(n,k,w) in the three cases are¹

(i)
$$S_1 = E(k, w) \times \{0\}^{n-k}$$

(ii) $S_2 = E(2(k-w), k-w) \times \{10, 01\}^{2w-k} \times \{0\}^{n-2w}$
(iii) $S_3 = \{10, 01\}^{k-1} \times \{1\}^{w-k+1} \times \{0\}^{n-k-w+1}$.

The corresponding k-dimensional subspaces $V(S_1)$, $V(S_2)$, $V(S_3)$ containing these sets (up to the permutations of the coordinates) can be described by their basis vectors.

 $V(S_1)$:

$$b_1 = (1, 0, \dots, 0, \dots, 0)$$

$$b_2 = (0, 1, 0, \dots, \dots, 0)$$

$$\cdots$$

$$b_k = (0, \dots, 1, 0, \dots, 0).$$

Clearly $V(S_1) = \operatorname{span}(S_1)$.

¹ After completion of this work we learned that the case k=n-1 was considered already by Longstaff [12]. He also presented an interesting application. The complete solution for this case was given by Odlyzko [14].

$$V(S_{2}):$$

$$b_{1} = (1, 0, \dots, 0, 0, \dots, 0, \frac{1}{k - w}, \dots, \frac{1}{k - w}, 0, \dots, 0)$$

$$\dots$$

$$b_{2_{k-2w}} = (\underbrace{0, \dots, 0, 1}_{2_{k-2w}}, \underbrace{0, \dots, 0}_{2_{k-k}}, \underbrace{\frac{1}{k - w}, \dots, \frac{1}{k - w}}_{2_{w} - k}, \underbrace{0, \dots, 0}_{n-2w})$$

$$b_{2_{k-2w+1}} = (0, \dots, 0, 1, \dots, 0, -1, 0, \dots, 0, 0, \dots, 0)$$

$$\dots$$

$$b_{k} = (\underbrace{0, \dots, 0}_{2_{k-2w}}, \underbrace{0, \dots, 1}_{2w - k}, \underbrace{0, \dots, -1}_{2w - k}, \underbrace{0, \dots, 0}_{n-2w}).$$

This case is slightly more complicated. To obtain 0,1-vectors we should consider only the linear combinations with coefficients 0 or 1. Moreover the linear combinations of the first 2k - 2w vectors must have exactly k - w ones in first 2k - 2w coordinates. Combining each of those vectors with all possible 0,1-combinations of the remaining basis vectors we clearly get exactly $\binom{2k-2w}{k-w}2^{2w-k}$ vectors of weight w.

Note that $\operatorname{span}(S_2)$ is equivalent to $V(S_2)$ up to the permutations of the coordinates. Indeed

$$\begin{split} V(S_2) \cap E(n,w) &= E\left(2(k-w), k-w\right) \times \left\{(a_1, \dots, a_{2w-k}, 1-a_1, \dots, 1-a_{2w-k}) : \\ (a_1, \dots, a_{2w-k}) \in E(2w-k)\right\} \times \{0\}^{n-2w} \sim E\left(2(k-w), k-w\right) \times \left\{(a_1, 1-a_1, \dots, a_{2w-k}, 1-a_{2w-k}) : (a_1, \dots, a_{2w-k}) \in E(2w-k)\right\} \times \{0\}^{n-2w} = S_2. \\ V(S_3): \end{split}$$

$$b_{1} = (1, 0, \dots, -1, 0, \dots, 0, 0, \dots, 0)$$

$$b_{2} = (0, 1, 0, \dots, -1, 0, \dots, 0, 0, \dots, 0)$$

$$\dots$$

$$b_{k-1} = (0, \dots, 1, 0, \dots, -1, 0, \dots, 0, 0, \dots, 0)$$

$$b_{k} = (\underbrace{0, \dots, 0}_{k-1}, \underbrace{1, \dots, 1}_{k-1}, \underbrace{1, \dots, 1}_{w-k+1}, 0, \dots, 0).$$

Clearly all 2^{k-1} possible 0,1-combinations of the first k-1 basis vectors added to b_k give us 0,1-vectors of weight w. Note also that $V(S_3) \sim \text{span}(S_3)$ up to the permutations of the coordinates.

2. An auxiliary geometric result

A nonzero vector $u^n = (u_1, \ldots, u_n) \in \mathbb{R}^n$ is called *nonnegative* (resp. positive) if $u_i \ge 0$ (resp. $u_i > 0$) for all $i = 1, 2, \ldots, n$.

Lemma 1. Assume a k-dimensional subspace $V_k^n \subset \mathbb{R}^n$ contains a nonnegative vector. Then it also contains a nonnegative vector with at least k-1 zero coordinates.

Proof. We apply induction on k and n. The case k = 1 is trivial. Assume the statement is valid for $k' \leq k-1$ and any n.

Suppose V_k^n is the row space of a $k \times n$ matrix

$$G = \begin{bmatrix} v_1^n \\ \vdots \\ v_k^n \end{bmatrix}, v_1^n, \dots, v_k^n \in \mathbb{R}^n$$

and let $u^n \in V_k^n$ be a nonnegative vector. If u^n has zero coordinates, then we are done. Indeed, suppose that $u = (u_1, \ldots, u_\ell, 0, \ldots, 0)$ for $n - k + 1 < \ell < n$ and $u_i > 0$ for $i = 1, \ldots, \ell$. Then clearly G can be transformed to the form shown in Figure 1,

where B is a matrix of rank $(B) = s \le n - \ell < k - 1$, A is a matrix of rank k - s and 0 is an all zero matrix.

Now by the induction hypothesis the row space of A contains a nonnegative vector with at least k-s-1 zero coordinates. Hence in the row space of G there is a nonnegative vector containing at least $k-s-1+n-\ell \ge k-1$ zeros, proving the lemma in this case. Suppose now u^n is a positive vector.

Let $v^n \in V_k^n$ with $v^n \neq \alpha u^n$, $\alpha \in \mathbb{R}$. W.l.o.g. assume $\frac{v_1}{u_1} \geq \cdots \geq \frac{v_n}{u_n}$. Then one can easily see that $\frac{v_1}{u_1}u^n - v^n \in V_k^n$ is a nonnegative vector with zero in the first coordinate. This completes the proof because we come to the case considered above.

3. A step form of a real matrix

Definition. We say that a matrix M of size $k \times n$ and rank M = k has a *step form* if it has the form, shown in Figure 2, up to the permutations of the columns.

Fig. 2

Each shade (called a "step") of size $\ell_i \ge 1$ $(i=1,\ldots,k)$, $\sum_{i=1}^k \ell_i = n$ depicts ℓ_i positive entries of the *i*-th row, and above the steps *M* has only zero entries.

Clearly any matrix can be transformed to a step form of Figure 2 by elementary row operations and permutations of the columns.

We say also that M has *positive step form* if all the steps have positive entries.

Lemma 2. A subspace $V_k^n \subset \mathbb{R}^n$ has a generator matrix in a positive step form iff V_k^n contains a positive vector.

Proof. Suppose V_k^n contains a positive vector. By Lemma 1 it also contains a nonnegative vector v^n with at least k-1 zero entries. W.l.o.g. $v^n = (v_1, \ldots, v_\ell, 0, \ldots, 0)$, where $\ell \leq n-k+1$ and $v_i > 0$; $i = 1, \ldots, \ell$. Clearly a generator matrix of V_k^n can be transformed to the form shown in Figure 1 where B has rank $1 \leq s \leq k-1$ and rank(A) = k-s.

Clearly the row spaces of A and B contain a positive vector. Now A and B can be transformed to a positive step form separately applying induction

on k and n. The converse implication is also clear because in a positive step form we can get a positive vector choosing suitable coefficients for the row vectors of the generator matrix.

4. An extremal problem for families of w-element sets involving antichain properties for certain restrictions

For any finite set X we use the notation

$$2^{X} = \{A : A \subset X\}, {\binom{X}{w}} = \{A \in 2^{X} : |A| = w\}.$$

A family $\mathcal{F} \subset 2^X$ is called an antichain if $F_1 \not\subset F_2$ holds for all $F_1, F_2 \in \mathcal{F}$. Correspondingly $\mathcal{F} = \{F_1, \ldots, F_s\}$ is called a chain of size *s* if $F_1 \subset \cdots \subset F_s$. If s = |X| + 1 then \mathcal{F} is called a maximal chain.

Lemma 3. Let $X = X_1 \cup ... \cup X_s$ with $|X_i| = n_i$ for i = 1, ..., s and let $\mathcal{A} \subset {X \choose w}$ be a family with the following property:

(P) for any $A, B \in \mathcal{A}$ and $j = 1, \ldots, s$

$$E \triangleq A \cap \left(\bigcup_{i=1}^{j} X_i\right) \neq B \cap \left(\bigcup_{i=1}^{j} X_i\right) \triangleq F$$

implies that E and F are incomparable (form an antichain).

Then

(4.1)
$$|\mathcal{A}| \leq \max_{\substack{\sum \\ i=1}^{s} w_i = w} \prod_{i=1}^{s} \binom{n_i}{w_i}.$$

Proof. Define a "product maximal chain" in X (shortly *p*-chain) as a sequence $\mathcal{C} = (\mathcal{C}_1, \ldots, \mathcal{C}_s)$ where $\mathcal{C}_i \subset 2^{X_i}$ $(i = 1, \ldots, s)$ is a maximal chain in X_i . Clearly the number of all *p*-chains is $\prod_{i=1}^{s} n_i!$. Let us also represent each element $A \in \mathcal{A}$ as a sequence $A = (A_1, \ldots, A_s)$ where $A_i = A_i \cap X_i$, $i = 1, \ldots, s$. We say that $A \in \mathcal{C}$ iff $A_i \in \mathcal{C}_i$, $i = 1, \ldots, s$.

In view of property (P) each *p*-chain \mathcal{C} contains at most one element from \mathcal{A} . On the other hand given $A \in \mathcal{A}$ there are exactly $\prod_{i=1}^{s} |A_i|!(n_i - |A_i|)!$ *p*-chains containing A. Hence the probability that a random *p*-chain \mathcal{C} meets

our family ${\cal A}$ is

$$\frac{\sum_{A \in \mathcal{A}} \prod_{i=1}^{s} |A_i|! (n_i - |A_i|)!}{\prod_{i=1}^{s} n_i!} \le 1.$$

Equivalently

$$\sum_{A \in \mathcal{A}} \frac{1}{\prod_{i=1}^{s} \binom{n_i}{|A_i|}} \le 1.$$

Further clearly we have

$$\frac{|\mathcal{A}|}{\max_{A \in \mathcal{A}} \prod_{i=1}^{s} {n_i \choose |A_i|}} \leq \sum_{A \in \mathcal{A}} \frac{1}{\prod_{i=1}^{s} {n_i \choose |A_i|}} \leq 1$$

which gives the desired result.

Using the same argument one can prove a more general statement.

Lemma 3'. Under the conditions of Lemma 3 let $A \subset \binom{X}{\leq w} = \{A \subset X : |A| \leq w\}$. Then

$$|\mathcal{A}| \leq \begin{cases} \max_{\Sigma w_i = w} \prod_{i=1}^{s} \binom{n_i}{w_i}, & \text{if } 2w < n \\ \\ \prod_{i=1}^{s} \binom{n_i}{\lfloor \frac{n_i}{2} \rfloor}, & \text{if } 2w \ge n. \end{cases}$$

Next we show how to calculate the maximum in (4.1).

Lemma 4. Let $n, w, s \in \mathbb{N}$, $s \le n$, $2w \le n$. Then we have

$$M \triangleq \max_{\substack{\sum_{i=1}^{s} n_i = n, n_i \ge 1 \\ \sum_{i=1}^{s} w_i = w}} \prod_{i=1}^{s} \binom{n_i}{w_i} = \begin{cases} \binom{n-s+1}{w}, & \text{if } 2w \le n-s+1 \\ \binom{2(n-s+1)-2w}{n-s+1-w} \\ 2^{2w-(n-s+1)}, & \text{if } n-s+1 < 2w < 2(n-s) \\ 2^{n-s}, & \text{if } w \ge n-s. \end{cases}$$

Proof. Consider a representation of M in the following form

(4.3)
$$M = \prod_{i=1}^{s} \binom{m_i}{k_i}$$

where $\sum_{i=1}^{s} m_i = n, m_i \ge 1, \sum_{i=1}^{s} k_i = w, k_i \ge 0.$

We say that $\binom{\ell}{t}$ is a factor of M iff $\ell = m_i, t = k_i$ for some $i \in \{1, \ldots, s\}$ in a representation of M in the form (4.3).

Let now $M = M_1 {\binom{2}{1}}^{s_1}$ with $s_1 \ge 0$, where M_1 has no factors ${\binom{2}{1}}$. Then we claim that M_1 does not contain the following factors:

- $\begin{array}{l} (\alpha) \quad \binom{m}{k} \text{ and } \binom{\ell}{t} \text{ with } m, \ell > 1 \\ (\beta) \quad \binom{m}{k} \text{ with } m < 2k \\ (\gamma) \quad \binom{m}{k} \text{ with } m > 2k + 1, \ s_1 \ge 1 \\ (\delta) \quad \binom{m}{k} \text{ and } \binom{1}{1} \text{ with } m \neq 1 \end{array}$

- (α) Let $\binom{m}{k}$, $\binom{\ell}{t} \neq \binom{2}{1}$, $m, \ell \neq 1$. Then the following inequalities can be easily verified.

If
$$m \neq 2k$$
, $\ell \neq 2t$ then

$$\binom{m}{k}\binom{\ell}{t} < \max\left\{\binom{m+\ell-1}{k+t}\binom{1}{0}, \binom{m+\ell-1}{k+t-1}\binom{1}{1}\right\}$$

If m = 2k, $\ell = 2t$, then

$$\binom{m}{k}\binom{\ell}{t} < \binom{m+\ell-2}{k+t-1}\binom{2}{1}$$

Each of these inequalities contradicts the maximality of M, if $\binom{m}{k}$ and $\binom{\ell}{t}$ are factors of M_1 .

(β) Suppose M has a factor $\binom{m}{k}$ with m < 2k. Then (α) with $2w \le n$ implies the existence of the factor $\binom{1}{0}$, which leads to a contradiction with

$$\binom{m}{k}\binom{1}{0} < \binom{m}{k-1}\binom{1}{1}.$$

(γ) If M_1 has a factor $\binom{m}{k}$ with m > 2k+1 and $s_1 \ge 1$ then

$$\binom{m}{k}\binom{2}{1} < \binom{m+1}{k+1}\binom{1}{0}.$$

(δ) Let now M_1 contain factors $\binom{m}{k}$ and $\binom{1}{1}$ with $m \neq 1$. Then we get a contradiction with

$$\binom{m}{k}\binom{1}{1} < \binom{m-1}{k}\binom{2}{1}$$
, if $m > 2k$.

If now m = 2k, then

$$\binom{m}{k}\binom{1}{1}\binom{1}{0} < \binom{m-2}{k-1}\binom{2}{1}^2$$

gives a contradiction.

Now we can sum up our observations above as follows. M can have only the following form

(4.4)
$$M = \binom{m_1}{k_1} \binom{2}{1}^{s_1} \binom{1}{1}^{s_2} \binom{1}{0}^{s_3},$$

where $m_1 + 2s_1 + s_2 + s_3 = n$, $k_1 + s_1 + s_2 = w$, $s_1 + s_2 + s_3 + 1 = s$; $s_1, s_2, s_3 \ge 0$, $k_1 \ge 1$, $m_1 \ge 2k_1$.

Finally an inspection shows that

1. $w \ge n-s$ implies $s_2 \ge k_1 - 1$. Therefore in both cases, $s_2 = 0$ or $s_2 > 0$, by (δ) we get $k_1 = 1$, $m_1 = 2$ which means that

$$M = 2^{s_1 + 1} = 2^{n - s}.$$

2. $2w \le n - s + 1$ with (γ) implies $s_1 + 2s_2 \le 1$. Hence $s_2 = 0$ and $s_1 = 0$ or 1 which gives

$$M = \binom{m_1 + s_1}{k_1 + s_1} = \binom{n - s + 1}{w}$$

3. n-s+1 < 2w < 2(n-s) gives $s_1+2s_2 > 0$, $s_2 < k_1-1$ which with (δ) implies $s_2=0$. Hence

$$M = 2^{s_1} \binom{2k_1}{k_1},$$

where $s_1 = 2w - (n - s + 1)$, $k_1 = n - s + 1 - w$. This completes the proof.

5. Proof of Theorem 1

(a) First we prove that M(n,k,w) = M(n,k,n-w). Let $\mathcal{A} \subset E(n,w)$ with $\operatorname{rank}(\mathcal{A}) = k$ (dimension of $\operatorname{span}(\mathcal{A})$) such that $|\mathcal{A}| = M(n,k,w)$. Suppose v_1^n, \ldots, v_k^n are linearly independent vectors in \mathcal{A} . Every $v^n \in \mathcal{A}$ can be written as

(5.1)
$$\sum_{i=1}^{k} \alpha_i v_i^n = v^n,$$

and since $\mathcal{A} \subset E(n, w)$ we easily conclude that

(5.2)
$$\sum_{i=1}^{k} \alpha_i = 1.$$

Consider now the following set $\mathcal{B} = \{1^n - v^n : v^n \in \mathcal{A}\}$ and notice that $\mathcal{B} \subset E(n, n-w), |\mathcal{B}| = |\mathcal{A}|.$ By (5.1) (5.2) we obtain

By (5.1), (5.2) we obtain

$$\sum_{i=1}^{k} \alpha_i (1^n - v_i^n) = 1^n - v^n,$$

which shows that $\operatorname{rank}(\mathcal{B}) \leq k$ (in fact it is easily seen that $\operatorname{rank}(\mathcal{B}) = k$). Therefore $M(n,k,w) \leq M(n,k,n-w)$ and, symmetrically, $M(n,k,w) \geq M(n,k,n-w)$.

(b) Let U_k^n be an optimal subspace, that is, it contains a maximal number of vectors from E(n, w). Let further V_{n-k}^n be the orthogonal space of U_k^n with a basis v_1^n, \ldots, v_{n-k}^n .

Now we can reformulate our problem as follows:

Determine the maximum number of 0, 1-solutions (solutions from $\{0,1\}^n$) of the system of n-k+1 independent equations

(5.3)
$$\begin{cases} \langle v_1^n, x^n \rangle &= 0\\ \cdots & \ddots\\ \langle v_{n-k}^n, x^n \rangle &= 0\\ \langle 1^n, x^n \rangle &= w \end{cases}$$

as a function of v_1^n, \ldots, v_{n-k}^n and w ($\langle \cdot, \cdot \rangle$ means the scalar product). By Lemma 2 (5.3) can be reduced to the form

$$\langle a_i^n, x^n \rangle = c_i, \ i = 1, \dots, n - k + 1,$$

where the matrix of coefficient $[a_{ij}]_{i=1,...,n-k+1}^{j=1,...,n}$ has a positive step form. W.l.o.g. we may assume that this matrix has the form shown in Figure 2 with "steps" of size $\ell_i \ge 1$ $(i=1,\ldots,n-k+1)$ and $\sum_{i=1}^{n-k+1} \ell_i = n$.

It is not difficult to see that the 0,1-solutions Z of (5.3) satisfy the following property.

For any solutions $e^n = (e_1, \ldots, e_n)$, $h^n = (h_1, \ldots, h_n)$ and any $t_s = \ell_1 + \cdots + \ell_s$, $s = 1, \ldots, n-k+1$, if $(e_1, \ldots, e_{t_s}) \neq (h_1, \ldots, h_{t_s})$, then there exist $1 \leq i, j \leq t_s$ such that $e_i > h_i, e_j < h_j$.

Consider now (e_1, \ldots, e_{t_s}) and (h_1, \ldots, h_{t_s}) as the characteristic vectors of the corresponding sets E and H. The property above means that Eand H are incomparable. Thus considering the solutions of (5.3) as the corresponding set system $\mathcal{A} \subset {[n] \choose k}$, where [n] is partitioned into n - k + 1nonempty subsets, we see that \mathcal{A} satisfies the property (P) in Lemma 3. Consequently we have

$$|Z| \le |\mathcal{A}| \le \max_{\substack{n-k+1\\\sum_{i=1}^{n-k+1} w_i = w}} \prod_{i=1}^{n-k+1} \binom{\ell_i}{w_i}.$$

Combining this with Lemma 4 we get the desired result.

6. Related geometric problems

In [4] Erdős and Moser posed the following problems: What is the largest possible number of subsets of a given set of *integers* $\{a_1, \ldots, a_n\}$ having a common sum of elements?

What is the largest possible number, if the number of summands is a fixed integer w?

In other words, what is the maximum possible number of solutions of the equations

(6.1)
$$\sum_{i=1}^{n} a_i \varepsilon_i = b,$$
(6.2)
$$\sum_{i=1}^{n} a_i \varepsilon_i = b, \quad \sum_{i=1}^{n} \varepsilon_i = u$$

where $a_i \neq a_j$, i = 1, ..., n, $\varepsilon_i \in \{0, 1\}$. These problems were solved (for reals $a_1, ..., a_n, b$) in [17], [15] (see also [16]) using algebraic methods.

In [8] Griggs suggested the higher dimensional Erdős–Moser problem which is a natural generalization of Erdős–Moser problem for the vectors in \mathbb{R}^m . Namely instead of reals a_1, \ldots, a_n, b in (6.1) consider vectors a_1^m, \ldots, a_n^m , $b^m \in \mathbb{R}^m$, such that the vectors a_1^m, \ldots, a_n^m are in general position, that is every m of them form a basis of \mathbb{R}^m . Very few is known about this problem. Even for dimension two it is not completely solved. For more information about this problem and its application in database security see [6–8].

More generally one can consider the problem (see [7]) of maximizing the number of subset sums

$$\sum_{i\in I} a_i^n \in B \subset \mathbb{R}^m.$$

Note that this is a problem in the spirit of the famous Littlewood–Offord problem, where the a_i^n 's are required to have norm $||a_i^m|| \ge 1$ and B is an open ball of unit diameter.

The Littlewood–Offord problem (originally stated for complex numbers i.e. for dimension two) was solved by Erdős [3] for dimension one, by Katona [9] and independently by Kleitman [10] for dimension two and finally by Kleitman [11] for any dimension.

It was proved that the number of subset sums inside of any unit ball is bounded by $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

The further generalization of this result for an open ball of diameter d > 1 is due to Frankl and Füredi [5].

Let us now return to our main problem. Clearly one can formulate it as follows.

For $a_1^m, \ldots, a_n^m, b^m \in \mathbb{R}^m \setminus \{0^m\}$ with rank $\{a_1^m, \ldots, a_n^m\} = r$ determine the maximum possible number of solutions of the equation

(6.3)
$$\sum_{i=1}^{n} a_i^m \varepsilon_i = b^m, \ \varepsilon_i \in \{0,1\}, \sum_{i=1}^{n} \varepsilon_i = w.$$

Consider also the same problem without the restriction $\sum_{i=1}^{n} \varepsilon_i = w$ (we will see below that this problem is easier than the first one).

Thus our problem can be viewed as a modified version of higher dimensional Erdős–Moser problem.

Denote by N(n,m,r) the maximum number of solutions of equation

(6.4)
$$\sum_{i=1}^{n} a_i^m \varepsilon_i = b^m, \ \varepsilon_i \in \{0, 1\}$$

over all choices of $a_1^m, \ldots, a_n^m \in \mathbb{R}^m \setminus \{0^m\}$ of rank r and all $b^m \in \mathbb{R}^m$. Theorem 2.

$$N(n,m,r) = \begin{cases} 2^{n-r}, & \text{if } 2r \ge n\\ 2^{r-1} \binom{n-2(r-1)}{\lfloor \frac{n-2(r-1)}{2} \rfloor}, & \text{if } 2r < n. \end{cases}$$

Proof. Let $b^m = (b_1, \ldots, b_m)$ and denote $A = \begin{bmatrix} 1 \\ \vdots \\ a_n^m \end{bmatrix}$.

We can rewrite the equation (6.4) in the matrix form

(6.5)
$$A^T(\varepsilon_1,\ldots,\varepsilon_n)^T = (b_1,\ldots,b_m)^T.$$

Clearly we can reduce (6.5) to the equivalent form

$$B(\varepsilon_1,\ldots,\varepsilon_n)^T = (c_1,\ldots,c_r)^T,$$

where B is an $r \times n$ matrix of rank r having a step form with "steps" of size $\ell_i \ge 1, \sum_{i=1}^r \ell_i = n.$

Let now α_{ij} ; $i=1,\ldots,r$; $j \in I_i \subseteq [\ell_{i-1}+1,\ldots,\ell_i]$ be the negative entries of *i*-th "step".

Let us also denote $\sum_{j \in I_i} \alpha_{ij} = s_i$.

Consider now the following transformation $B \to B'$. Change the sign of the entries of all columns h_j ; j = 1, ..., n; of B for which $j \in \bigcup_{i=1}^r I_i = I$. Correspondingly $(\varepsilon_1, ..., \varepsilon_n)$ transform to $(\varepsilon'_i, ..., \varepsilon'_n)$, where $\varepsilon'_j = 1 - \varepsilon_j$, if $j \in I$.

One can easily see now that we have another system of equations

(6.6)
$$B'(\varepsilon'_1, \dots, \varepsilon'_n)^T = (c_1 - s_1, \dots, c_r - s_r)^T,$$

which has as many solutions from $\{0,1\}^n$ as (6.5).

Note further that the set of "0,1-solutions" of (6.6) has the property (P) (switching to the language of sets) without the restriction on the size of sets. This implies

$$N(n,m,r) \le \max_{\substack{\sum_{i=1}^{r} \ell_i = n \\ \ell_i \ge 1}} \prod_{i=1}^{r} \binom{\ell_i}{\left\lfloor \frac{\ell_i}{2} \right\rfloor},$$

and together with Lemma 4 gives the upper bound for N(n,m,r). It is not difficult to see that this bound is attainable. This completes the proof.

7. Generalization to multisets

Define $S(q_1, \ldots, q_n)$ to be the set of all *n*-tuples of integers $a^n = (a_1, \ldots, a_n)$ such that $0 \le a_i \le q_i - 1$, $i = 1, \ldots, n$. We say that $a^n \le b^n$ iff $a_i \le b_i$ for all *i*. This poset is called chains product, or the lattice of all divisors of $p_1^{q_1}, \ldots, p_n^{q_n}$ $(p_1, \ldots, p_n$ are distinct primes) ordered by divisibility (see [1,2]). If $q_1 = q_2 = \cdots = q_n = q$ we use the notation $S_q(n)$.

A subset $\mathcal{A} \subset S(q_1, \ldots, q_n)$ is called an antichain if any $a^n, b^n \in \mathcal{A}$ are "incomparable" in the ordering given above.

Define the elements of level *i* (or elements of rank *i*) in poset $S(q_1, \ldots, q_n)$

$$L_{i} = \left\{ a^{n} \in S(q_{1}, \dots, q_{n}) : \sum_{j=1}^{n} a_{j} = i \right\}.$$

Clearly L_i is an antichain for any $i \in \mathbb{N}$.

 $|L_i| \triangleq W_n^i$ is called Whitney number of poset $S(q_1, \ldots, q_n)$. It is known (see [1,2]) that $S(q_1, \ldots, q_n)$ has the Sperner property, that is for any antichain $\mathcal{A} \subset S(q_1, \ldots, q_n)$

$$|\mathcal{A}| \le \max_i W_n^i.$$

Moreover the LYM inequality holds for $S(q_1, \ldots, q_n)$, that is

$$\sum_{i=0} \frac{\alpha_i}{W_n^i} \le 1,$$

where $\alpha_i = |\{a^n \in \mathcal{A} : a^n \in L_i\}|.$

Consider now the following problems.

1. Given $u^m, v_1^m, \ldots, v_n^m \in \mathbb{R}^m \setminus \{0^m\}$ with rank $\{v_1^m, \ldots, v_n^m\} = m \le n$. Determine the maximum possible number of solutions of the equation

(7.1)
$$\sum_{i=1}^{n} v_i^m x_i = u^m,$$

where $x^n = (x_1, \ldots, x_n) \in S_q(n)$.

2. The same problem with the additional condition

$$\sum_{i=1}^{n} x_i = w_i$$

that is $x^n = (x_1, \ldots, x_n) \in L_w$.

The second problem can be also reformulated as follows.

How many vectors $x^n \in S_q(n)$ with $\sum_{i=1}^n x_i = w$ can a k-dimensional subspace $V_k^n \subset \mathbb{R}^n$ contain?

Define

$$M_q(n,k,w) \triangleq \max_{V_k^n} |S_q(n) \cap V_k^n|.$$

Theorem 1*.

$$M_q(n,k,w) = \max_{\substack{n_i \ge 1, \sum_{i=1}^{n-k+1} n_i = n \\ \sum_{i=1}^{n-k+1} w_i = w}} \prod_{i=1}^{n-k+1} W_{n_i}^{w_i}.$$

To prove this theorem we need the analogue of Lemma 3 for $S_q(n)$.

Assume [n] is partitioned by intervals, that is, $[n] = I_1 \cup ... \cup I_s$ with $|I_i| = n_i \ge 1; i = 1, ..., s$. For any j = 1, ..., s define $N_j = \left| \bigcup_{i=1}^j I_i \right|$.

We say that $\mathcal{A} \subset S_q(n)$ has property (P*) if for any $a^n = (a_1, \ldots, a_n), b^n = (b_1, \ldots, b_n) \in \mathcal{A}$ and any $j = 1, \ldots, s$

$$(a_1,\ldots,a_{N_j})\neq (b_1,\ldots,b_{N_j})$$

implies that (a_1, \ldots, a_{N_j}) and (b_1, \ldots, b_{N_j}) are incomparable.

Lemma 3*. Let $\mathcal{A} \subset L_w$ ($L_w \subset S_q(n)$ is defined above) has property (P*). Then

$$|\mathcal{A}| \le \max_{\sum_{i=1}^{s} w_i = w} \prod_{i=1}^{s} W_{n_i}^{w_i}.$$

The proof can easily be given using the same approach as for Lemma 3.

The proof of Theorem 1^{*} is similar to the proof of Theorem 1. Again we can reduce the system of n-k+1 equations to the positive step form (because we have the all-one vector in the matrix of coefficients). It is also easy to see that the set of solutions from $S_q(n)$ has property (P^{*}) (in Lemma 3^{*}). This with Lemma 3^{*} gives the proof of Theorem 1^{*}.

Corollary. If $q \ge w$ then

$$M_q(n,k,w) = \binom{k+w-1}{w}.$$

Proof. It is known that for $q \ge i$

$$W_n^i = \binom{n+i-1}{i}.$$

Using this fact and the inequality

$$\binom{n_1 + w_1 - 1}{w_1} \binom{n_2 + w_2 - 1}{w_2} \le \binom{n_1 + n_2 + w_1 + w_2 - 2}{w_1 + w_2}$$

we can determine the maximum in Theorem 1^* .

Denote now by $N_q(n,m)$ the maximum number of solutions (from $S_q(n)$) of equation (6.1) over all choices of $u^m, v_1^m, \ldots, v_n^m \in \mathbb{R}^m \setminus \{0^m\}$, where rank $\{v_1^m, \ldots, v_n^m\} = m$.

Theorem 2*.

$$N_q(n,m) = \max_{\substack{\sum_{i=1}^{m} n_i = n \\ n_i \ge 1}} \prod_{i=1}^{m} W_{n_i}^{\lfloor \frac{(q-1)n_i}{2} \rfloor}.$$

Proof. Consider a system of m equations in a step form which is equivalent to vector equation (7.1). The only thing we need here is to reduce this system of equations to a positive step form. We use the same transformation as in the proof of Theorem 2. Namely let $a_1x_1+\cdots+a_\ell x_\ell = b$ ($\ell \le n-m+1$) be the first equation in our system having a step form. W.l.o.g. let $a_1, \ldots, a_t < 0$ ($t \le \ell$) with $\sum_{i=1}^t a_i = s$. Change now the sign of all coefficients of our system in the columns $i=1,\ldots,t$. Correspondingly transform (x_1,\ldots,x_n) into (x'_1,\ldots,x'_n) , where $x'_i = q - 1 - x_i$ for $i=1,\ldots,t$ and $x'_i = x_j$ for $j=t+1,\ldots,n$.

Now we have

$$\sum_{i=1}^{n} a'_i x'_i = \sum_{i=1}^{t} -a_i (q-1-x_i) + \sum_{j=t+1}^{n} a_j x_j = b - \sum_{i=1}^{t} a_i (q-1) = b - s(q-1).$$

Clearly using this transformation for all "steps" we reduce our system to a positive step form. Moreover this system of equations has as many solutions in $S_q(n)$ as the original one.

Since the set of solutions X from $S_q(n)$ has property (P*) we have

$$|X| \le \max_{\substack{\sum_{i=1}^{m} n_i = n \\ n_i \ge 1}} \prod_{i=1}^{m} W_{n_i}^{\left\lfloor \frac{(q-1)n_i}{2} \right\rfloor}.$$

This completes the proof.

Remark 1. It is not difficult to extend the same result to $S(q_1, \ldots, q_n)$.

8. An open problem

It seems to be interesting to consider our main problem for the vector space $GF(2)^n$. Namely we ask for the maximum possible number m(n, k, w) of vectors of weight w contained in a k-dimensional subspace of $GF(2)^n$. Is there a relation between m(n, k, w) and M(n, k, w)? The approach used above most likely does not work here. However one can observe that

$$m(n,k,w) \ge M(n,k,w).$$

Note that m(n,k,w) depends on the parity of w. For example one can easily see that for odd w we have $m(n,k,w) \leq 2^{k-1}$. In particular if k < w and $n \geq w + k - 1$ we have

$$m(n,k,w) = 2^{k-1}.$$

On the other hand for suitable even w we can have

$$m(n,k,w) = 2^k - 1.$$

It can be shown that this bound can be achieved iff $w = t2^{k-1}$, $n \ge t(2^k-1)$, $t \in \mathbb{N}$. In this case we just take t copies of the simplex code (of length $2^k - 1$) well known in coding theory (see e.g. [13]).

Note also that here we do not have the symmetry we had for M(n,k,w). That is, in general $m(n,k,w) \neq m(n,k,n-w)$. However if w is odd and n is even we have m(n,k,w) = m(n,k,n-w).

22 R.AHLSWEDE, H.AYDINIAN, L.KHACHATRIAN: ON VERTICES OF A CUBE

References

- [1] I. ANDERSON: Combinatorics of Finite Sets, Clarendon Press, 1987.
- [2] K. ENGEL: Sperner Theory, Cambridge University Press, 1997.
- [3] P. ERDŐS: On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. (2nd ser.) 51, 898–902, 1945.
- [4] P. ERDŐS: Extremal problems in number theory, in: *Theory of Numbers*, (ed.: A.L. Whiteman), Amer. Math. Soc., Providence, 181–189, 1965.
- [5] P. FRANKL and Z. FÜREDI: The Littlewood–Offord problem in higher dimensions, Annals Math. 128, 259–270, 1988.
- [6] J.R. GRIGGS and G. ROTE: On the distribution of sums of vectors in general position, Proceedings of the DIMATIA/DIMACS Conference on the Future of Discrete Mathematics, Stiřin, Amer. Math. Soc., 1997.
- [7] J.R. GRIGGS: Concentrating subset sums at k points, Bull. Inst. Combin. Applns. 20, 65–74, 1997.
- [8] J.R. GRIGGS: Database security and the distribution of subset sums in \mathbb{R}^m , Graph Theory and Combin. biology, Balatonlelle 1996, *Bolyai Math. Studs.* 7, 223–252, 1999.
- [9] G.O.H. KATONA: On a conjecture of Erdős and a stronger form of Sperner's theorem, studia Sci. Math. Hungar. 1, 59–63, 1966.
- [10] D.J. KLEITMAN: On a Lemma of Littlewood and Offord on the distribution of certain sums, Math. Z. 90, 251–259, 1965.
- [11] D.J. KLEITMAN: On the lemma of Littlewood and Offord on the distributions of linear combinations of vectors, Advances in Math. 5, 155–157, 1970.
- [12] W.E. LONSTAFF: Combinatorial of certain systems of linear equations, involving (0,1)-matrices, J. Austral. Math. Soc. 23 (Series A), 266–274, 1977.
- [13] F.J. MACWILLIAMS and N.J.A. SLOANE: The Theory of Error Correcting Codes, North-Holland, Amsterdam, (1977).
- [14] A.M. ODLYZKO: On the ranks of some (0,1)-matrices with constant row sums, J. Austral. Math. Soc. 31 (Series A), 193–201, 1981.
- [15] R.A. PROCTOR: Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89, 721–734, 1982.
- [16] A. SÁRKÖZY and E. SZEMERÉDI: Über ein Problem von Erdős und Moser, Acta Arith. 11, 205–208, 1965.
- [17] R.P. STANLEY: Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Alg. Discr. Math. 1, 168–184, 1980.

R. Ahlswede, H. Aydinian, L. Khachatrian

Fakultät für Mathematik Universität Bielefeld Postfach 100131 33501 Bielefeld Germany hollmann@mathematik.Uni-bielefeld.de ayd@mathematik.Uni-bielefeld.de lk@mathematik.Uni-bielefeld.de