
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/103/$6.00 c©2003 János Bolyai Mathematical Society

Combinatorica 23 (1) (2003) 5–22

MAXIMUM NUMBER OF CONSTANT WEIGHT VERTICES
OF THE UNIT n-CUBE

CONTAINED IN A k-DIMENSIONAL SUBSPACE

R. AHLSWEDE, H. AYDINIAN, L. KHACHATRIAN

Received November 11, 1999

We introduce and solve a natural geometrical extremal problem. For the set E(n,w) ={
xn∈{0,1}n :xn has w ones

}
of vertices of weight w in the unit cube of R

n we determine

M(n,k,w)�max
{
|Un

k ∩E(n,w)| :Un
k is a k-dimensional subspace of R

n
}
. We also present

an extension to multi–sets and explain a connection to a higher dimensional Erdős–Moser
type problem.

1. Introduction and main result

Let E(n) denote the vertices of the unit n-cube in real n-dimensional space
that is let E(n)={0,1}n ⊂R

n. Let also E(n,w) denote the vertices of weight
w, that is, E(n,w)=

{
xn∈E(n) :xn has w ones

}
.

The following question can arise in a natural way in the study of geomet-
rical properties of E(n). Let H be a hyperplane passing through the origin.
How many vertices of the unit cube can H contain? In other words we ask
for max

H
|H ∩E(n)|. It is an easy exercise to show that the answer is 2n−1

(the maximum cannot exceed |E(n−1)×{0}|). The same question we ask
for the vertices of given weight w, 1≤w≤n.

One can expect (by analogy to the previous case) that this number cannot
be greater than

(n−1
w

)
, that is, H cannot contain more vertices of weight w

than those of E(n−1,w)×{0}. However a small example shows that this is
not the case.
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Let n = 4, w = 2. Then take H = span
{
(1,1,0,0), (0,0,1,1), (1,0,1,0),

(0,1,0,1)
}
. Thus |H ∩E(4,2)|=4 instead of the expected number

(3
2

)
=3.

Note also that max |H ∩E(4,1)| = max |H ∩E(4,3)| = 3 (with evident
constructions). This small example shows that depending on w the structure
of optimal sets of vertices contained in a hyperplane can be quite different.

Let us consider a more general problem. Let Un
k be a k-dimensional sub-

space of R
n. Define

M(n, k,w) = max
{
|Un

k ∩E(n,w)| : Un
k ⊂ R

n}.
In this paper we completely solve this problem. Here is our main result.

Theorem 1.(a) M(n,k,w)=M(n,k,n−w)

(b) For w≤ n
2 we have M(n,k,w)=



(k
w

)
, if (i) 2w≤k(2(k−w)

k−w

)
22w−k, if (ii) k<2w<2(k−1)

2k−1, if (iii) k−1≤w.

The sets giving the claimed values of M(n,k,w) in the three cases are1

(i) S1 =E(k,w)×{0}n−k

(ii) S2 =E
(
2(k−w),k−w

)
×{10,01}2w−k ×{0}n−2w

(iii) S3 ={10,01}k−1×{1}w−k+1×{0}n−k−w+1.

The corresponding k-dimensional subspaces V (S1), V (S2), V (S3) con-
taining these sets (up to the permutations of the coordinates) can be de-
scribed by their basis vectors.

V (S1):

b1 = (1, 0, . . . , 0, . . . , 0)
b2 = (0, 1, 0, . . . , . . . , 0)
. . . . . . . . . . . . . . . . . . . . . . . .

bk = (0, . . . , 1, 0, . . . , 0).

Clearly V (S1)=span(S1).

1 After completion of this work we learned that the case k=n−1 was considered already
by Longstaff [12]. He also presented an interesting application. The complete solution for
this case was given by Odlyzko [14].
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V (S2):

b1 = (1, 0, . . . , 0, 0, . . . , 0,
1

k − w
, . . . ,

1
k − w

, 0, . . . , 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b2k−2w
= (0, . . . , 0, 1︸ ︷︷ ︸

2k−2w

, 0, . . . , 0︸ ︷︷ ︸
2k−k

,
1

k − w
, . . . ,

1
k − w︸ ︷︷ ︸

2w−k

, 0, . . . , 0︸ ︷︷ ︸
n−2w

)

b2k−2w+1
= (0, . . . , 0, 1, . . . , 0,−1, 0, . . . , 0, 0, . . . , 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bk = (0, . . . , 0︸ ︷︷ ︸
2k−2w

, 0, . . . , 1︸ ︷︷ ︸
2w−k

, 0, 0, . . . ,−1︸ ︷︷ ︸
2w−k

, 0, . . . , 0︸ ︷︷ ︸
n−2w

).

This case is slightly more complicated. To obtain 0,1-vectors we should
consider only the linear combinations with coefficients 0 or 1. Moreover the
linear combinations of the first 2k− 2w vectors must have exactly k−w
ones in first 2k − 2w coordinates. Combining each of those vectors with
all possible 0,1-combinations of the remaining basis vectors we clearly get
exactly

(2k−2w
k−w

)
22w−k vectors of weight w.

Note that span(S2) is equivalent to V (S2) up to the permutations of the
coordinates. Indeed

V (S2)∩E(n,w)=E
(
2(k−w),k−w

)
×
{
(a1, . . . ,a2w−k,1−a1, . . . ,1−a2w−k) :

(a1, . . . ,a2w−k) ∈ E(2w − k)
}
× {0}n−2w ∼ E

(
2(k − w),k − w

)
×
{
(a1,1 −

a1, . . . ,a2w−k,1−a2w−k) :(a1, . . . ,a2w−k)∈E(2w−k)
}
×{0}n−2w =S2.

V (S3):

b1 = (1, 0, . . . ,−1, 0, . . . , 0, 0, . . . , 0)
b2 = (0, 1, 0, . . . ,−1, 0, . . . , 0, 0, . . . , 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bk−1 = (0, . . . , 1, 0, . . . ,−1, 0, . . . , 0, 0, . . . , 0)
bk = (0, . . . , 0︸ ︷︷ ︸

k−1

, 1, ........, 1︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
w−k+1

, 0, . . . , 0).

Clearly all 2k−1 possible 0,1-combinations of the first k−1 basis vectors
added to bk give us 0,1-vectors of weight w. Note also that V (S3)∼span(S3)
up to the permutations of the coordinates.

2. An auxiliary geometric result

A nonzero vector un =(u1, . . . ,un)∈R
n is called nonnegative (resp. positive)

if ui≥0 (resp. ui>0) for all i=1,2, . . . ,n.
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Lemma 1. Assume a k-dimensional subspace V n
k ⊂R

n contains a nonneg-
ative vector. Then it also contains a nonnegative vector with at least k−1
zero coordinates.

Proof. We apply induction on k and n. The case k = 1 is trivial. Assume
the statement is valid for k′≤k−1 and any n.

Suppose V n
k is the row space of a k×n matrix

G =



vn
1
...
vn
k


 , vn

1 , . . . , v
n
k ∈ R

n

and let un∈V n
k be a nonnegative vector. If un has zero coordinates, then we

are done. Indeed, suppose that u= (u1, . . . ,u�,0, . . . ,0) for n−k+1< �< n
and ui > 0 for i= 1, . . . , �. Then clearly G can be transformed to the form
shown in Figure 1,

G=

A 0

B s

k−s

n−�︷ ︸︸ ︷�︷ ︸︸ ︷







Fig. 1

where B is a matrix of rank(B)=s≤n−�<k−1, A is a matrix of rank
k−s and 0 is an all zero matrix.

Now by the induction hypothesis the row space of A contains a nonneg-
ative vector with at least k−s−1 zero coordinates. Hence in the row space
of G there is a nonnegative vector containing at least k−s−1+n−�≥k−1
zeros, proving the lemma in this case. Suppose now un is a positive vector.

Let vn ∈ V n
k with vn =αun, α∈ R. W.l.o.g. assume v1

u1
≥ ·· · ≥ vn

un
. Then

one can easily see that v1
u1
un−vn ∈V n

k is a nonnegative vector with zero in
the first coordinate. This completes the proof because we come to the case
considered above.
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3. A step form of a real matrix

Definition. We say that a matrix M of size k×n and rank M = k has a
step form if it has the form, shown in Figure 2, up to the permutations of
the columns.

0

�k︷ ︸︸ ︷�1︷ ︸︸ ︷ · · ·
�2︷ ︸︸ ︷

M =

· · · · · · · · · · · · · · · · · · · · · · · ·




k

����������

����������

����������

����������

Fig. 2

Each shade (called a “step”) of size �i≥1 (i=1, . . . ,k),
k∑

i=1
�i =n depicts �i

positive entries of the i-th row, and above the steps M has only zero entries.
Clearly any matrix can be transformed to a step form of Figure 2 by

elementary row operations and permutations of the columns.
We say also that M has positive step form if all the steps have positive

entries.

Lemma 2. A subspace V n
k ⊂R

n has a generator matrix in a positive step
form iff V n

k contains a positive vector.

Proof. Suppose V n
k contains a positive vector. By Lemma 1 it also con-

tains a nonnegative vector vn with at least k − 1 zero entries. W.l.o.g.
vn =(v1, . . . ,v�,0, . . . ,0), where �≤n−k+1 and vi>0; i=1, . . . , �. Clearly a
generator matrix of V n

k can be transformed to the form shown in Figure 1
where B has rank 1≤s≤k−1 and rank(A)=k−s.

Clearly the row spaces of A and B contain a positive vector. Now A and
B can be transformed to a positive step form separately applying induction
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on k and n. The converse implication is also clear because in a positive step
form we can get a positive vector choosing suitable coefficients for the row
vectors of the generator matrix.

4. An extremal problem for families of w-element sets involving
antichain properties for certain restrictions

For any finite set X we use the notation

2X = {A : A ⊂ X},
(
X

w

)
= {A ∈ 2X : |A| = w}.

A family F⊂2X is called an antichain if F1 ⊂F2 holds for all F1,F2∈F .
Correspondingly F = {F1, . . . ,Fs} is called a chain of size s if F1 ⊂ ·· ·⊂Fs.
If s= |X|+1 then F is called a maximal chain.

Lemma 3. Let X=X1
.
∪. . .

.
∪Xs with |Xi|=ni for i=1, . . . ,s and let A⊂

(X
w

)
be a family with the following property:

(P) for any A,B∈A and j=1, . . . ,s

E � A ∩


 j⋃

i=1

Xi


 = B ∩


 j⋃

i=1

Xi


 � F

implies that E and F are incomparable (form an antichain).

Then

|A| ≤ max
s∑

i=1

wi=w

s∏
i=1

(
ni

wi

)
.(4.1)

Proof. Define a “product maximal chain” in X (shortly p-chain) as a se-
quence C = (C1, . . . ,Cs) where Ci ⊂ 2Xi (i = 1, . . . ,s) is a maximal chain in

Xi. Clearly the number of all p-chains is
s∏

i=1
ni!. Let us also represent each

element A∈A as a sequence A=(A1, . . . ,As) where Ai =Ai∩Xi, i=1, . . . ,s.
We say that A∈C iff Ai∈Ci, i=1, . . . ,s.

In view of property (P) each p-chain C contains at most one element from

A. On the other hand given A ∈A there are exactly
s∏

i=1
|Ai|!(ni −|Ai|)! p-

chains containing A. Hence the probability that a random p-chain C meets
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our family A is ∑
A∈A

s∏
i=1

|Ai|!(ni − |Ai|)!
s∏

i=1
ni!

≤ 1.

Equivalently ∑
A∈A

1
s∏

i=1

( ni
|Ai|
) ≤ 1.

Further clearly we have

|A|

max
A∈A

s∏
i=1

( ni
|Ai|
) ≤ ∑

A∈A

1
s∏

i=1

( ni
|Ai|
) ≤ 1

which gives the desired result.

Using the same argument one can prove a more general statement.

Lemma 3’. Under the conditions of Lemma 3 let A⊂
( X
≤w

)
={A⊂X : |A|≤

w}. Then

|A| ≤




max
Σwi=w

s∏
i=1

(
ni

wi

)
, if 2w < n

s∏
i=1

(
ni⌊ni
2

⌋
)
, if 2w ≥ n.

Next we show how to calculate the maximum in (4.1).

Lemma 4. Let n,w,s∈N, s≤n, 2w≤n. Then we have

M � max
s∑

i=1

ni=n,ni≥1

s∑
i=1

wi=w

s∏
i=1

(
ni

wi

)
=




(
n− s+ 1

w

)
, if 2w ≤ n− s+ 1

(
2(n− s+ 1) − 2w
n− s+ 1 − w

)
22w−(n−s+1),

if n− s+ 1 < 2w < 2(n − s)

2n−s, if w ≥ n− s.
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Proof. Consider a representation of M in the following form

M =
s∏

i=1

(
mi

ki

)
(4.3)

where
s∑

i=1
mi =n, mi≥1,

s∑
i=1

ki =w, ki≥0.

We say that
(�
t

)
is a factor of M iff �=mi, t=ki for some i∈{1, . . . ,s} in

a representation of M in the form (4.3).
Let now M =M1

(2
1

)s1 with s1≥0, where M1 has no factors
(2
1

)
. Then we

claim that M1 does not contain the following factors:

(α)
(m

k

)
and
(�
t

)
with m,�>1

(β)
(m

k

)
with m<2k

(γ)
(m

k

)
with m>2k+1, s1≥1

(δ)
(m

k

)
and
(1
1

)
with m =1

(α) Let
(m

k

)
,
(�
t

)
=
(2
1

)
, m,� =1. Then the following inequalities can be easily

verified.
If m =2k, � =2t then(

m

k

)(
�

t

)
< max

{(
m+ �− 1
k + t

)(
1
0

)
,

(
m+ �− 1
k + t− 1

)(
1
1

)}
.

If m=2k, �=2t, then(
m

k

)(
�

t

)
<

(
m+ �− 2
k + t− 1

)(
2
1

)
.

Each of these inequalities contradicts the maximality of M , if
(m

k

)
and(�

t

)
are factors of M1.

(β) Suppose M has a factor
(m

k

)
with m<2k. Then (α) with 2w≤n implies

the existence of the factor
(1
0

)
, which leads to a contradiction with(

m

k

)(
1
0

)
<

(
m

k − 1

)(
1
1

)
.

(γ) If M1 has a factor
(m

k

)
with m>2k+1 and s1≥1 then(
m

k

)(
2
1

)
<

(
m+ 1
k + 1

)(
1
0

)
.
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(δ) Let now M1 contain factors
(m

k

)
and
(1
1

)
with m = 1. Then we get a

contradiction with(
m

k

)(
1
1

)
<

(
m− 1
k

)(
2
1

)
, if m > 2k.

If now m=2k, then

(
m

k

)(
1
1

)(
1
0

)
<

(
m− 2
k − 1

)(
2
1

)2

gives a contradiction.

Now we can sum up our observations above as follows. M can have only
the following form

M =

(
m1

k1

)(
2
1

)s1
(

1
1

)s2
(

1
0

)s3

,(4.4)

where m1+2s1+s2+s3 =n, k1+s1+s2 =w, s1+s2+s3+1=s; s1,s2,s3≥0,
k1≥1, m1≥2k1.

Finally an inspection shows that

1. w≥n−s implies s2≥k1−1. Therefore in both cases, s2 =0 or s2>0, by
(δ) we get k1 =1, m1 =2 which means that

M = 2s1+1 = 2n−s.

2. 2w≤n−s+1 with (γ) implies s1 +2s2 ≤1. Hence s2 =0 and s1 =0 or 1
which gives

M =

(
m1 + s1

k1 + s1

)
=

(
n− s+ 1

w

)
.

3. n−s+1<2w<2(n−s) gives s1+2s2>0, s2<k1−1 which with (δ) implies
s2 =0. Hence

M = 2s1

(
2k1

k1

)
,

where s1 =2w−(n−s+1), k1 =n−s+1−w. This completes the proof.
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5. Proof of Theorem 1

(a) First we prove that M(n,k,w) = M(n,k,n−w). Let A ⊂ E(n,w) with
rank(A)=k (dimension of span(A)) such that |A|=M(n,k,w).
Suppose vn

1 , . . . ,v
n
k are linearly independent vectors in A. Every vn ∈A

can be written as

k∑
i=1

αiv
n
i = vn,(5.1)

and since A⊂E(n,w) we easily conclude that

k∑
i=1

αi = 1.(5.2)

Consider now the following set B = {1n − vn : vn ∈ A} and notice that
B⊂E(n,n−w), |B|= |A|.
By (5.1), (5.2) we obtain

k∑
i=1

αi(1n − vn
i ) = 1n − vn,

which shows that rank(B)≤k (in fact it is easily seen that rank(B)=k).
Therefore M(n,k,w) ≤M(n,k,n−w) and, symmetrically, M(n,k,w) ≥
M(n,k,n−w).

(b) Let Un
k be an optimal subspace, that is, it contains a maximal number

of vectors from E(n,w). Let further V n
n−k be the orthogonal space of Un

k
with a basis vn

1 , . . . ,v
n
n−k.

Now we can reformulate our problem as follows:
Determine the maximum number of 0,1-solutions (solutions from {0,1}n)
of the system of n−k+1 independent equations



〈vn
1 , x

n〉 = 0
. . . . . .

〈vn
n−k, x

n〉 = 0
〈1n, xn〉 = w

(5.3)

as a function of vn
1 , . . . ,v

n
n−k and w (〈·, ·〉 means the scalar product).

By Lemma 2 (5.3) can be reduced to the form

〈an
i , x

n〉 = ci, i = 1, . . . , n− k + 1,
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where the matrix of coefficient [aij ]
j=1,...,n
i=1,...,n−k+1 has a positive step form.

W.l.o.g. we may assume that this matrix has the form shown in Figure 2

with “steps” of size �i≥1 (i=1, . . . ,n−k+1) and
n−k+1∑

i=1
�i =n.

It is not difficult to see that the 0,1-solutions Z of (5.3) satisfy the
following property.

For any solutions en =(e1, . . . ,en), hn =(h1, . . . ,hn) and any ts =�1+· · ·+�s,
s=1, . . . ,n−k+1, if (e1, . . . ,ets) =(h1, . . . ,hts), then there exist 1≤ i, j≤ ts
such that ei>hi, ej <hj.

Consider now (e1, . . . ,ets) and (h1, . . . ,hts) as the characteristic vectors
of the corresponding sets E and H. The property above means that E
and H are incomparable. Thus considering the solutions of (5.3) as the
corresponding set system A⊂

([n]
k

)
, where [n] is partitioned into n−k+1

nonempty subsets, we see that A satisfies the property (P) in Lemma 3.
Consequently we have

|Z| ≤ |A| ≤ max
n−k+1∑

i=1

wi=w

n−k+1∏
i=1

(
�i
wi

)
.

Combining this with Lemma 4 we get the desired result.

6. Related geometric problems

In [4] Erdős and Moser posed the following problems: What is the largest
possible number of subsets of a given set of integers {a1, . . . ,an} having a
common sum of elements?

What is the largest possible number, if the number of summands is a
fixed integer w?

In other words, what is the maximum possible number of solutions of the
equations

n∑
i=1

aiεi = b,(6.1)

n∑
i=1

aiεi = b,
n∑

i=1

εi = w(6.2)
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where ai =aj , i=1, . . . ,n, εi ∈{0,1}. These problems were solved (for reals
a1, . . . ,an, b) in [17], [15] (see also [16]) using algebraic methods.

In [8] Griggs suggested the higher dimensional Erdős–Moser problem
which is a natural generalization of Erdős–Moser problem for the vectors in
R

m. Namely instead of reals a1, . . . ,an, b in (6.1) consider vectors am
1 , . . . ,a

m
n ,

bm ∈ R
m, such that the vectors am

1 , . . . ,a
m
n are in general position, that is

every m of them form a basis of R
m. Very few is known about this problem.

Even for dimension two it is not completely solved. For more information
about this problem and its application in database security see [6–8].

More generally one can consider the problem (see [7]) of maximizing the
number of subset sums ∑

i∈I

an
i ∈ B ⊂ R

m.

Note that this is a problem in the spirit of the famous Littlewood–Offord
problem, where the an

i ’s are required to have norm ‖am
i ‖ ≥ 1 and B is an

open ball of unit diameter.
The Littlewood–Offord problem (originally stated for complex numbers

i.e. for dimension two) was solved by Erdős [3] for dimension one, by Ka-
tona [9] and independently by Kleitman [10] for dimension two and finally
by Kleitman [11] for any dimension.

It was proved that the number of subset sums inside of any unit ball is
bounded by

( n
�n

2 �
)
.

The further generalization of this result for an open ball of diameter d>1
is due to Frankl and Füredi [5].

Let us now return to our main problem. Clearly one can formulate it as
follows.

For am
1 , . . . ,a

m
n , bm∈R

m \{0m} with rank{am
1 , . . . ,a

m
n }= r determine the

maximum possible number of solutions of the equation
n∑

i=1

am
i εi = bm, εi ∈ {0, 1},

n∑
i=1

εi = w.(6.3)

Consider also the same problem without the restriction
n∑

i=1
εi =w (we will

see below that this problem is easier than the first one).
Thus our problem can be viewed as a modified version of higher dimen-

sional Erdős–Moser problem.
Denote by N(n,m,r) the maximum number of solutions of equation

n∑
i=1

am
i εi = bm, εi ∈ {0, 1}(6.4)
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over all choices of am
1 , . . . ,a

m
n ∈R

m\{0m} of rank r and all bm∈R
m.

Theorem 2.

N(n,m, r) =




2n−r, if 2r ≥ n

2r−1

(
n− 2(r − 1)⌊

n−2(r−1)
2

⌋ ), if 2r < n.

Proof. Let bm =(b1, . . . , bm) and denote A=



am

1
...
am

n


.

We can rewrite the equation (6.4) in the matrix form

AT (ε1, . . . , εn)T = (b1, . . . , bm)T .(6.5)

Clearly we can reduce (6.5) to the equivalent form

B(ε1, . . . , εn)T = (c1, . . . , cr)T ,

where B is an r×n matrix of rank r having a step form with “steps” of size

�i≥1,
r∑

i=1
�i =n.

Let now αij ; i=1, . . . ,r; j∈Ii⊆ [�i−1 +1, . . . , �i] be the negative entries of
i-th “step”.

Let us also denote
∑

j∈Ii

αij =si.

Consider now the following transformation B→B′. Change the sign of

the entries of all columns hj ; j = 1, . . . ,n; of B for which j ∈
r⋃

i=1
Ii = I.

Correspondingly (ε1, . . . ,εn) transform to (ε′i, . . . ,ε
′
n), where ε′j = 1− εj , if

j∈I.
One can easily see now that we have another system of equations

B′(ε′1, . . . , ε
′
n)T = (c1 − s1, . . . , cr − sr)T ,(6.6)

which has as many solutions from {0,1}n as (6.5).
Note further that the set of “0,1-solutions” of (6.6) has the property (P)

(switching to the language of sets) without the restriction on the size of sets.
This implies

N(n,m, r) ≤ max
r∑

i=1

�i=n

�i≥1

r∏
i=1

(
�i⌊
�i
2

⌋),
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and together with Lemma 4 gives the upper bound for N(n,m,r). It is not
difficult to see that this bound is attainable. This completes the proof.

7. Generalization to multisets

Define S(q1, . . . ,qn) to be the set of all n-tuples of integers an =(a1, . . . ,an)
such that 0 ≤ ai ≤ qi − 1, i = 1, . . . ,n. We say that an ≤ bn iff ai ≤ bi for
all i. This poset is called chains product, or the lattice of all divisors of
pq1
1 , . . . ,p

qn
n (p1, . . . ,pn are distinct primes) ordered by divisibility (see [1,2]).

If q1 =q2= · · ·=qn =q we use the notation Sq(n).
A subset A ⊂ S(q1, . . . ,qn) is called an antichain if any an, bn ∈ A are

“incomparable” in the ordering given above.
Define the elements of level i (or elements of rank i) in poset S(q1, . . . ,qn)

Li =


an ∈ S(q1, . . . , qn) :

n∑
j=1

aj = i


 .

Clearly Li is an antichain for any i∈N.
|Li| � W i

n is called Whitney number of poset S(q1, . . . ,qn). It is known
(see [1,2]) that S(q1, . . . ,qn) has the Sperner property, that is for any an-
tichain A⊂S(q1, . . . ,qn)

|A| ≤ max
i

W i
n.

Moreover the LYM inequality holds for S(q1, . . . ,qn), that is

∑
i=0

αi

W i
n

≤ 1,

where αi = |{an∈A :an∈Li}|.

Consider now the following problems.

1. Given um,vm
1 , . . . ,v

m
n ∈R

m\{0m} with rank{vm
1 , . . . ,vm

n }=m≤n.
Determine the maximum possible number of solutions of the equation

n∑
i=1

vm
i xi = um,(7.1)

where xn =(x1, . . . ,xn)∈Sq(n).
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2. The same problem with the additional condition

n∑
i=1

xi = w,

that is xn =(x1, . . . ,xn)∈Lw.

The second problem can be also reformulated as follows.

How many vectors xn ∈ Sq(n) with
n∑

i=1
xi =w can a k-dimensional sub-

space V n
k ⊂R

n contain?
Define

Mq(n, k,w) � max
V n

k

|Sq(n) ∩ V n
k |.

Theorem 1*.

Mq(n, k,w) = max
ni≥1,

n−k+1∑
i=1

ni=n

n−k+1∑
i=1

wi=w

n−k+1∏
i=1

Wwi
ni
.

To prove this theorem we need the analogue of Lemma 3 for Sq(n).

Assume [n] is partitioned by intervals, that is, [n] = I1
.
∪ . . .

.
∪ Is with

|Ii|=ni≥1; i=1, . . . ,s. For any j=1, . . . ,s define Nj =

∣∣∣∣∣
j⋃

i=1
Ii

∣∣∣∣∣.
We say that A⊂Sq(n) has property (P*) if for any an =(a1, . . . ,an), bn =

(b1, . . . , bn)∈A and any j=1, . . . ,s

(a1, . . . , aNj ) = (b1, . . . , bNj )

implies that (a1, . . . ,aNj ) and (b1, . . . , bNj ) are incomparable.

Lemma 3*. Let A⊂Lw (Lw⊂Sq(n) is defined above) has property (P*).
Then

|A| ≤ max
s∑

i=1

wi=w

s∏
i=1

Wwi
ni
.

The proof can easily be given using the same approach as for Lemma 3.
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The proof of Theorem 1* is similar to the proof of Theorem 1. Again we
can reduce the system of n−k+1 equations to the positive step form (because
we have the all–one vector in the matrix of coefficients). It is also easy to
see that the set of solutions from Sq(n) has property (P*) (in Lemma 3*).
This with Lemma 3* gives the proof of Theorem 1*.

Corollary. If q≥w then

Mq(n, k,w) =

(
k + w − 1

w

)
.

Proof. It is known that for q≥ i

W i
n =

(
n+ i− 1

i

)
.

Using this fact and the inequality(
n1 + w1 − 1

w1

)(
n2 + w2 − 1

w2

)
≤
(
n1 + n2 + w1 + w2 − 2

w1 + w2

)

we can determine the maximum in Theorem 1*.

Denote now by Nq(n,m) the maximum number of solutions (from Sq(n))
of equation (6.1) over all choices of um,vm

1 , . . . ,v
m
n ∈ R

m \ {0m}, where
rank{vm

1 , . . . ,v
m
n }=m.

Theorem 2*.

Nq(n,m) = max
m∑

i=1

ni=n

ni≥1

m∏
i=1

W

⌊
(q−1)ni

2

⌋
ni .

Proof. Consider a system of m equations in a step form which is equivalent
to vector equation (7.1). The only thing we need here is to reduce this system
of equations to a positive step form. We use the same transformation as in
the proof of Theorem 2. Namely let a1x1+· · ·+a�x� =b (�≤n−m+1) be the first
equation in our system having a step form. W.l.o.g. let a1, . . . ,at<0 (t≤ �)

with
t∑

i=1
ai = s. Change now the sign of all coefficients of our system in the

columns i=1, . . . , t. Correspondingly transform (x1, . . . ,xn) into (x′1, . . . ,x
′
n),

where x′i =q−1−xi for i=1, . . . , t and x′j =xj for j= t+1, . . . ,n.
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Now we have
n∑

i=1

a′ix
′
i =

t∑
i=1

−ai(q − 1− xi) +
n∑

j=t+1

ajxj = b−
t∑

i=1

ai(q − 1) = b− s(q − 1).

Clearly using this transformation for all “steps” we reduce our system
to a positive step form. Moreover this system of equations has as many
solutions in Sq(n) as the original one.

Since the set of solutions X from Sq(n) has property (P*) we have

|X| ≤ max
m∑

i=1

ni=n

ni≥1

m∏
i=1

W

⌊
(q−1)ni

2

⌋
ni .

This completes the proof.

Remark 1. It is not difficult to extend the same result to S(q1, . . . ,qn).

8. An open problem

It seems to be interesting to consider our main problem for the vector space
GF (2)n. Namely we ask for the maximum possible number m(n,k,w) of vec-
tors of weight w contained in a k-dimensional subspace of GF (2)n. Is there a
relation between m(n,k,w) and M(n,k,w)? The approach used above most
likely does not work here. However one can observe that

m(n, k,w) ≥ M(n, k,w).

Note that m(n,k,w) depends on the parity of w. For example one can
easily see that for odd w we have m(n,k,w)≤ 2k−1. In particular if k <w
and n≥w+k−1 we have

m(n, k,w) = 2k−1.

On the other hand for suitable even w we can have

m(n, k,w) = 2k − 1.

It can be shown that this bound can be achieved iff w= t2k−1, n≥ t(2k−1),
t∈N. In this case we just take t copies of the simplex code (of length 2k−1)
well known in coding theory (see e.g. [13]).

Note also that here we do not have the symmetry we had for M(n,k,w).
That is, in general m(n,k,w) =m(n,k,n−w). However if w is odd and n is
even we have m(n,k,w)=m(n,k,n−w).
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