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Abstract

The aim of this paper is to systematically present an area of extremal problems

under dimension constraints. We state conjectures and solutions for many of these

problems. Proofs will be given in several papers, each devoted to a specific problem.
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1 Introduction

Often in life and in science we are going for extrema, maxima and min-
ima. Historically, the first extremal problems which attracted many physi-
cists/mathematicians were those in classical mechanics leading mainly from

the 17th to the 19th century to an advancement of analysis, in particular the
calculus of variation.

The 20th century saw the uprising of Extremal Set Theory (or perhaps more
generally Extremal Combinatorics), which primarily is concerned with finitely
many objects and developped new methods which are mostly not analytic.
Some are based on tools from algebra.

Even for problems not formulated in algebraic terms often in mathematics
auxiliary algebraic structures are introduced to help in the analysis. Well–
known examples are Algebraic Topology and Algebraic Coding Theory.

This leads to extremal problems involving algebraic structures, in particu-
lar for linear spaces. In addition to Extremal Set Theory and Combinatorial
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Number Theory — essentially another child of the 20th century — it makes
therefore sense to term the new area Extremal Algebraic Theory.

Here we extend this theory by imposing dimension constraints on familiar
set theoretic extremal problems.

We begin with some notation and definitions from extremal set theory.

Let [n] , {1, . . . , n}, 2[n] ,
{

A : A ⊆ [n]
}

, and
(

[n]
w

)

, {A ∈ 2[n] : |A| =

w}. We associate with each subset A its characteristic (0, 1)–vector in Rn.
The corresponding notation for sets of (0, 1)–vectors are: E(n) , {0, 1}n and

E(n,w) ,
{

xn ∈ E(n) : xn has w ones
}

. The set theoretical notions like

intersection, union, inclusion, antichain, etc. are extended to (0, 1)–vectors in
a natural way. The dimension of S ⊂ Rn is defined by dim(S) , dim span(S).

A generic extremal problem under dimension constraint is the fol-
lowing:

Let A ⊂ E(n) satisfy some set–theoretical properties (say inclusion–free,
pairwise non–empty intersections, etc.). In addition we require A to have
dim(A) = k (k ≤ n) and ask for the maximum (minimum) sized A with
the given properties.

A basic question which naturally arises in this spirit is:

How many (0, 1)–vectors can a k–dimensional subspace of Rn contain?
The same question arises for (0, 1)–vectors of given weight, that is, de-
termine
M(n, k, w) , max

{

|U ∩ E(n,w) : U is a k–dimensional subspace of Rn
}

.

The simple answer for the first question is 2k and it is given in Odlyzko [24].
The second problem was considered first (for k = n − 1) in Longstaff [19],
where also an interesting application of this problem was presented. However
M(n, k, w) was determined (in [24]; see also [22]) only for k = n− 1. Recently
we gave the complete solution in [1].

Theorem AAK. (i) M(n, k, w) = M(n, k, n − w).

(ii) M(n, k, w) =



















(

k
w

)

, if 2w < k
(

2(k−w)
k−w

)

22w−k, if k ≤ 2w ≤ 2(k − 1), 2w ≤ n

2k−1, if 2(k − 1) < 2w ≤ n.

In some cases it can be useful to consider a dual version of an extremal problem
under dimension constraint.
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Dual problem (in terms of rank)

Given M,n ∈ N let A be an M ×n (0, 1)–matrix having certain combinatorial
properties. We ask now for the minimum rank(A) taken over all M×n matrices
with those properties.

Thus the general problem can also be viewed as the problem of estimating the
rank of (0, 1)–matrices with certain combinatorial properties.

What are the motivations for studying the extremal problems under dimension
constraints? Certainly among these motivations are connections to established
areas. Let us mention some of them.

Combinatorial properties of (0, 1)–matrices, in particular, investigation of min-
imum and maximum values of certain combinatorial parameters like rank,
term rank, width, spectral radius, discrepancy, chromatic number etc.

Apparently Ryser was the first who started extensive investigations of combi-
natorial properties of (0, 1)–matrices. For complete information on the prob-
lems and results in this subject see Brualdi and Ryser [8] (and also [9]).

With this connection let us mention an open problem, which was raised by
Brualdi [9].

Let Nm,n(r, ℓ) be an m×n (0, 1)–matrix having r ones in each row and ℓ ones
in each column.

Problem. Determine or estimate the minimum possible rank of an Nm,n(r, ℓ)
matrix.

For some partial results on this problem see [9], [10].

Note that if we remove the restriction on columns (or rows) then Theorem
AAK gives the exact answer.

Dimension or rank arguments

Linear algebraic methods play an important role in extremal set theory. These
have often been used to obtain very elegant, sometimes the only, proofs of
many significant results (for interested readers we recommend the excellent
forthcoming book by Babai and Frankl [7]). Among these methods and tools
the dimension or rank arguments sometimes play a crucial role. The essence of
dimension arguments is to associate with every member of a set system a vector
from a properly chosen vector space and then to estimate the dimension of
the spanned subspace, or the rank of a matrix associated with the set system.

The rank of an incidence matrix is an important parameter in many inci-
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dence structures like designs.

Communication complexity

In Yao’s two–party communication complexity model [21] the rank of a com-
munication (0, 1)–matrix seems to play an important role. The relationship
between deterministic communication complexity and matrix rank is one of
the main research problems in this area (see [11], [23], [21]).

Estimation of (0, 1)–solutions of certain type of linear equations

This question arises in several practical problems, for instance in problems of
some database security models (see Griggs [18]).

Now we present our new Problems, Conjectures and Results.

2 The Antichain Problem

F ⊂ 2[n] is called an antichain if F1 6⊂ F2 holds for all F1, F2 ∈ F . One of the
oldest results in extremal set theory is due to Sperner [26].

Theorem S. Let F ⊂ 2[n] be an antichain, then

|F| ≤
(

n
⌊

n
2

⌋

)

.

The maximum is assumed only for
(

[n]
⌊n

2
⌋

)

,
(

[n]
⌈n

2
⌉

)

.

A result which implies the inequality in Theorem S is the well–known LYM–
inequality [13], [15].

Theorem LYM. Let F ⊂ 2[n] be an antichain, then

∑

F∈F

1
(

n
|F |

) ≤ 1.

The antichain problem under dimension constraint is to determine

A(n, k) , max
{

|F| : F ⊂ E(n), dim(F) ≤ k, F is an antichain
}

.

Conjecture 2.1. A(n, k) = M
(

n, k,
⌊

n
2

⌋)

.
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The next theorem of [2] partially establishes the conjecture.

Theorem 2.1.

(i) For n ≥ 2k − 2

A(n, k) = M
(

n, k,
⌊

n
2

⌋)

= 2k−1.

(ii) A(n, n − 1) = M
(

n, n − 1,
⌊

n
2

⌋)

=







2
(

n−2
n−2

2

)

, if 2 | n
(

n−1
n−1

2

)

, if 2 ∤ n.

3 Intersection Problems

We are given 1 ≤ t ≤ w ≤ n, 1 ≤ k ≤ n. A family A ⊂ 2[n] is called
intersecting (resp. t–intersecting) if A1 ∩ A2 6= ∅ (resp. |A1 ∩ A2| ≥ t) holds
for all A1, A2 ∈ A.

The restricted case

Intersection properties of set systems have been widely studied by many au-
thors. The first result in this subject due to Erdős, Ko and Rado [14] was
discovered by them in the late thirties, however, it was published more than
20 years later.

Theorem EKR.

(i) Let F ⊂
(

[n]
w

)

be an intersecting family and 2w ≤ n, then

|F| ≤
(

n − 1

w − 1

)

.

(ii) Let F ⊂
(

[n]
w

)

be t–intersecting, w > t ≥ 1, n ≥ n0(w, t), then

|F| ≤
(

n − t

w − t

)

.

For sharpenings of the EKR Theorem see [12], [16], [27]. The complete solution
of the problem is given in [6]. Define now

Jt(n, k, w) , max
{

|A| : A ⊂ E(n,w),A is t–intersecting, dim(A) = k
}

.

For the intersection problem with dimension constraints we believe the follow-
ing
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Conjecture 3.1. For w ≤ n
2

J1(n, k, w) = M(n − 1, k, w − 1).

Clearly, for w > n
2

one has

J1(n, k, w) = M(n, k, w).

The next theorem confirms the conjecture for the case w > k
2
.

Theorem 3.2 [3]. For w ≤ n
2

J1(n, k, w) = M(n−1, k, w−1) =







2k−1, if k ≤ w ≤ n
2

22k−2w−2
(

2k−2w+2
k−w+1

)

, if k < 2w ≤ 2(k − 1).

The main auxiliary result which we used to prove this theorem is a LYM–
type inequality for equations. Given a1, . . . , an, λ ∈ R+ let X ⊂ E(n) be the
(0, 1)–solutions of the equation

n
∑

i=1

aixi = λ. (3.1)

Clearly X corresponds to some antichain (whereas the opposite is not true).
For a vector v ∈ E(n) let ‖v‖ denote the number of 1’s in v.

Lemma 3.3 [3]. Assume in (3.1) ai 6= aj for some i, j ∈ [n], and
∑n

i=1 ai 6= λ.
Then

∑

x∈X

1
(

n
‖x‖

) ≤ n − 1

n
.

As an important consequence (for our purposes) we get the following

Theorem 3.4 [3]. Let f(n) be the maximum possible number of solutions of
the equation (3.1) among all choices of a1, . . . , an, λ ∈ R+ with a1 6= a2. Then

f(n) =







2
(

n−1
n−3

2

)

, if 2 ∤ n, n ≥ 3
(

n
n−2

2

)

, if 2 | n.

In general the determination of Jt(n, k, w) seems to be a difficult problem.
However for big k’s we have the following
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Theorem 3.5 [3]. For 1 ≤ t ≤ w and k > k0(w, t)

Jt(n, k, w) =







(

k
w−t

)

, if k ≤ n − t
(

n−t
w−t

)

, if k > n − t.

The unrestricted case

The following well–known result is due to Katona [19].

Theorem Ka. If A ⊂ 2[n] is t–intersecting, 1 ≤ t ≤ n, then

|A| ≤






|K(n, t)|, if 2 | (n + t)

2|K(n − 1, t)|, if 2 ∤ (n + t),

where K(n, t) =
{

A ∈ 2[n] : |A| ≥ n+t
2

}

if 2 | (n + t).

Now with dimension constraint the problem is to determine

Jt(n, k) , max
{

|A| : A ⊂ E(n),A is t–intersecting, dim(A) = k
}

.

Conjecture 3.6. For t > n − k + 1

Jt(n, k) =







|K(k − 1, t − (n − k + 1))| + |K(k − 1, t + (n − k + 1))|, if 2 | (n + t)

2|K(k − 2, t − (n − k + 1))| + 2|K(k − 2, t + (n − k + 1))|, if 2 ∤ (n + t).

Surprisingly this problem can be reduced to a weighted version of a t–intersection
problem for set systems, formulated in a natural way.

Reformulation of the problem

Given n, k ∈ N we assign to each element i ∈ [k] a weight wi ∈ N such that
wi + · · · + wk = n. For any F ∈ 2[k] define the weight of F

w(F ) =
∑

i∈F

wi.

We say that a weighted set system A ⊂ 2[k] is t–weight intersecting if w(A1 ∩
A2) ≥ t for any A1, A2 ∈ A. Define the function

f(n, k, t) = max
k
∑

i=1

wi=n

{

|A| : A ⊂ 2[k]A is t–weight intersecting
}

.
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Lemma 3.7 [3].
Jt(n, k) = f(n, k, t).

We can explain now the sense of Conjecture 3 in terms of the function f(n, k, t).
The conjecture says that for a t–weight intersecting family A ⊂ 2[k] we attain
the maximum if w1 = n − k + 1, w2 = · · · = wk = 1, and

A =







K(k, t)w ,
{

A ∈ 2[k] : w(A) ≥ n+t
2

}

, if 2 | (n + t)

K(k, t + 1)w ∪
{

A ∈ 2[k−1] : w(A) = n+t−1
2

}

if 2 ∤ (n + t).

Several results, partially proving the conjecture, were obtained in [3].

In particular we have the following

Theorem 3.8 [3].

(i) For t ≤ n − k + 1
Jt(n, k) = 2k−1.

(ii) For n ≥ 3
2
k − 1, t = n − k + 2

Jt(n, k) = 2k−2.

(iii) The conjecture holds for the cases
(a) t ≥ 2(n − k) − 1
(b) k ≤ n ≤ k + 3
(c) n ≥ k

√
2k/2.

4 Diametric Problem

Let us also mention the diametric problem for (0, 1)–sequences of length n.

The Hamming distance between two vectors (a1, . . . , an), (b1, . . . , bn) ∈ E(n)
is defined by dH(a, b) = |{i ∈ [n] : ai 6= bi}|.

The diameter of a set A ⊂ E(n) is defined by diam(A) , max
a,b∈A

dH(a, b).

Kleitman [20] proved the following

Theorem Kl. For a family A ⊂ E(n) with diam(A) = δ < n one has

|A| ≤



















δ/2
∑

i=0

(

n
i

)

, if 2 | δ

2
(δ−1)/2

∑

i=0

(

n−1
i

)

, if 2 ∤ δ.
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It was shown in [5] that the intersection and diametric problems are equivalent,
that is Theorem Ka and Theorem Kl can be reduced to each other.

Let us define now

Dk(n, d) =
{

|A| : A ⊂ E(n), diam(A) = d, dim(A) ≤ k < n}.

Clearly if k = n we have no dimension constraint, so Kleitman’s Theorem
gives the answer. The following simple observation shows that in all cases the
diametric problem under dimension constraint reduces to Theorem Kl.

Theorem 4.1 [3].

Dk(n, d) = Dk(k, d).

Thus the intersection and diametric problems under dimension constraint are
not equivalent!

5 Forbidden weights in subspaces of Rn

The general problem is as follows.

Given a “forbidden” set F ⊂ E(n), let U be a k–dimensional affine subspace
in Rn such that U ∩ F = ∅.

Problem 1. (the unrestricted case)

Determine or estimate max
U

|U ∩ E(n)|.

Problem 2. (the restricted case)

Determine or estimate max
U

|U ∩ E(n,m)|.

In particular we consider the problem, when the forbidden set is E(n,w) for
some 1 ≤ w ≤ n.

Then define

F (n, k, w) , max
U

{

|U ∩ E(n) : U ∩ E(n,w)| = ∅
}

.
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The next result gives the complete answer for the case when U is a hyperplane.
In this case (k = n − 1) we just write F (n,w).

Theorem 5.1 [4].

(i) F (n,w) = F (n, n − w).

(ii) F (n,w) =







(

2w+1
w+1

)

2n−2w−1, if w < n
2

(

2w
w

)

, if w = n
2
.

Consider also the following problem.

Let S be a hyperplane passing through the origin and define

FS(n,w) , max
S

{

|S ∩ E(n)| : S ∩ E(n,w) = ∅
}

.

Surprisingly this problem turns out to be more difficult. For this case we have
only some partial results [4].

(i) For n = 2w, 2w ± 1, 2w ± 2 and 2 ∤ w

FS(n,w) =

(

n

⌊n
2
⌋

)

(ii) FS(n, n) = 2n−1 (trivial)

(iii) FS(n, 1) =
(

n
⌊n

2
⌋

)

(iv) FS(n, 3) =
(

n
⌊n

2
⌋

)

, n ≥ 4

(v) FS(n, n − 1) =







2n−2, if n ≥ 9 or n = 3, 5, 7
(

n
⌊n

2
⌋

)

, if n = 2, 4, 6, 8.

For large n’s we have

Theorem 5.2 [4].

(i) Let 2 | w, then for any r ∈ N and n > n0(r, w)

FS(n,w) <

(

n

⌊n
2
⌋ − r

)

.

(ii) Let 2 ∤ w, then for n > n0(w)

FS(n,w) =

(

n

⌊n
2
⌋

)

.

The simplest unsolved cases are FS(n, 2) and FS(n, n−2). Note that FS(n,w) 6=
FS(n, n − w) unlike for F (n,w).
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Conjecture 5.3. Let n = 3ℓ + r, 0 ≤ r ≤ 2, then

FS(n, 2) = 2
ℓ

∑

i=0

(

ℓ

i

)(

2ℓ + r − 1

2i

)

.

The corresponding (n − 1)–dimensional subspace is defined by

S =







(x1, . . . , xn) ∈ Rn : 2
ℓ

∑

i=r

xi −
n−ℓ−1
∑

j=ℓ+1

xj = 0







.

Conjecture 5.4. FS(n, n − 2) = 11 · 2n−6, n ≥ 6.

The corresponding subspace is defined by

S =
{

(x1, . . . , xn) ∈ Rn : 2x1 − x2 − x3 − x4 − x5 − x6 = 0
}

.

Conjecture 5.5. For 2 ∤ w, w ≤ n
2

FS(n,w) =

(

n

⌊n
2
⌋

)

.

Define also the “restricted” case of the same problem as follows.

FS(n,w,m) , max
{

|B| : B ⊂ E(n,m), span(B) ∩ E(n,w) = ∅
}

.

For this case we have the following

Theorem 5.6 [4]. Let n = tm + r, 0 ≤ r < m.

(i) For m ∤ w, m < w, and n > n0(w,m)

FS(n,w,m) = t

(

n − t

m − 1

)

.

(ii) For w = sm and n > n0(w,m)

FS(n,w,m) = (s − 1)

(

n − s + 1

m − 1

)

.

(iii) For m > w

FS(n,w,m) = t

(

n − t

m − 1

)

.
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The corresponding set B ⊂ E(n,m) attaining this bound is

B =







(b1, . . . , bn) ∈ E(n,m) :
t

∑

i=1

bi = 1,
n

∑

j=t+1

bj = m − 1







, for cases (i) and (iii)

and

B =







(b1, . . . , bn) ∈ E(n,m) :
s−1
∑

i=1

bi = 1,
n

∑

j=s

bj = m − 1







for case (ii).

6 Further Problems

Let us state some further open problems of the same flavour which seem to
be interesting.

The following two problems are related to a generalization of the function
M(n, k, w).

M(n, k, W )–function

Let W = {w1, . . . , ws} ⊂ [n] and let E(n,W ) , E(n,w1) ∪ · · · ∪ E(n,ws).

Define M(n, k,W ) = max
{

|A| : A ⊂ E(n,W ), dim(A) = k
}

.

Higher order incidence matrices

For integers 1 ≤ ℓ < m < n define the higher order incidence matrix H(m, ℓ)

of size
(

n
m

)

×
(

n
ℓ

)

. The rows of H(m, ℓ) are labelled by E ∈
(

[k]
m

)

and the

columns by F ∈
(

[n]
ℓ

)

, and the entry h(E,F ) is defined by

h(E,F ) =







1, if F ⊂ E

0, if F 6⊂ E.

The problem is as follows. Given 1 ≤ k ≤
(

n
ℓ

)

determine or estimate the

maximum number of rows of H(m, ℓ) such that these rows form a submatrix
M with rank(M) = k.

This problem in its dual form was stated in Frankl and Tokushige [17].

Note that Theorem AAK gives the answer in the case ℓ = 1.

L–systems under dimension constraints

The following generalized intersection problem was raised by Sos [25].
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Given L = {ℓ1, . . . , ℓs} ⊂ [n] a family A ⊂ 2[n] is called an L–system, if
|A1 ∩ A2| ∈ L holds for all distinct A1, A2 ∈ A.

The question is: how large can |A| be?

The same question can be asked for a uniform family A ⊂
(

[n]
w

)

.

There are many significant results in this direction (see for a good survey
Frankl [15]).

The problem of L–systems under dimension constraints (the restricted and
unrestricted cases) is formulated as for the case L = {t, . . . , n} (t–intersecting
systems).

Shadow minimization problems

The ℓ–shadow of A ⊂
(

[n]
w

)

, 1 ≤ ℓ < k, is defined by ∂ℓA =
{

F ∈
(

[n]
w−ℓ

)

: ∃A ∈ A : F ⊂ A
}

.

Define also the colex order for the elements A,B ∈
(

[n]
w

)

as follows: A < B ⇔
max

(

(A r B)∪ (B r A)
)

∈ B. We denote by Lm(n,w) the initial m members

of
(

[n]
w

)

in the colex order. The well–known Kruskal–Katona Theorem tells us

how to minimize the ℓ–shadow of a family with given size [13], [15].

Theorem KK. Let A ⊂
(

[n]
w

)

with |A| = m, then |∂ℓA| ≥ |∂ℓLm(n,w)|.

The same problem can be considered with dimension constraint. That is, let
A ⊂ E(n,w) with dim(A) = k and |A| = m ≤ M(n, k, w), let ∂ℓA be the
ℓ–shadow of A (defined in an obvious way), how small can |∂ℓA| be?

In the same way one can formulate

Isoperimetric problems under dimension constraint

For the formulations of isoperimetric type problems and results in this direc-
tion see Engel [13].

It seems also interesting to consider the problems discussed above for vec-
tor spaces over finite fields, in particular for GF (2)n. Let us mention one of
them: What is the analogue of M(n, k, w) in GF (2)n? Formally, determine or
estimate

m(n, k, w) ,
{

|U ∩ E(u,w) : U is a k–dimensional subspace of GF (2)n
}

.

This problem could be important from a coding theoretical viewpoint. We also
found it interesting to consider the following type of problems.

Packing and covering problems
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Let A1, . . . ,Am ⊂ E(n) (resp. E(n,w)) and dim(Ai) = k; i = 1, . . . ,m. Then
the system A1, . . . ,Am is called a covering of E(n) (resp. E(n,w)) if

m
⋃

i=1

Ai = E(n)

(

resp.
m
⋃

i=1

Ai = E(n,w)

)

.

The covering problem is to minimize m.

Let A1, . . . ,Am ⊂ E(n) (resp. E(n,w)) such that dim(Ai) = k and Ai (i =
1, . . . ,m) are maximal sets, that is |Ai| = 2k (resp. |Ai| = M(n, k, w)). Then
the system A1, . . . ,Am is called a packing of E(n) (resp. E(n,w)) if for i 6= j
holds Ai ∩ Aj = {0n} (resp. Ai ∩ Aj = ∅).

The packing problem is to maximize m.

In particular we ask: Are there perfect packings (or tilings) of E(n) or E(n,w),
i.e. packings which are simultaneously coverings?
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1, 209–214, 1966.
[21 ] E. Kushilevitz and N. Nisan, Communication complexity, Cambridge

Univ. Pr., 1997.
[22 ] W.E. Longstaff, Combinatorial solution of certain systems of linear equa-

tions involving (0, 1)–matrices, J. Austral. Math. Soc. 23 (Series A), 266–
274, 1977.

[23 ] N. Nisan and A. Wigderson, On rank vs. comunication complexity,
Comb. 15(4), 557–665, 1995.

[24 ] A.M. Odlyzko, On the ranks of some (0, 1)–matrices with constant row
sums, J. Austral. Math. Soc. 31 (Series A), 193–201, 1981.

[25 ] V.T. Sós, Remarks on the connection of graphs, finite geometry and
block designs, Colloq. Inter. Sulle Theorie Comb. (Rome 1973), Tomo II,
Accad. Naz. Lincei, Rome, 223–233, 1976.

[26 ] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math.
Z. 27, 544–548, 1928.

[27 ] R.M. Wilson, The exact bound on the Erdős–Ko–Rado Theorem, Com-
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