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Abstract

We consider A(n, k) = maxA{|A| : dim(A) ≤ k, A ⊂ {0, 1}n is an antichain}, where
the dimension is taken from the linear span of A in Rn, we conjecture the exact
value of A(n, k) and we prove this conjecture for all n and k ≤

⌊

n
2

⌋

+1 or k = n−1.

This is a contribution to the program of systematic investigation of extremal
problems under dimension constraints, which was recently presented by the authors.
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1 Introduction

For i, j ∈ N, i < j the set {i, i + 1, . . . , j} is denoted by [i, j] and [n] stands

for [1, n]. We also use the notation 2[n] =
{

F : F ⊂ [n]
}

, E(n) = {0, 1}n,
(

n

w

)

= {F ∈ 2[n] : |F | = w}, and E(n,w) = {xn ∈ E(n) : xn has w ones}.

In our paper [1] we solved a seemingly basic geometrical extremal problem. For
the set E(n,w) of vertices of weight w in the unit cube of Rn we determined

M(n, k, w) , max
{

|U ∩ E(n,w)| : U is a k–dimensional subspace of Rn
}

.

Theorem AAK.

(a) M(n, k, w) = M(n, k, n − w)
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(b) For w ≤ n
2

we have

M(n, k, w) =



















(

k

w

)

, if (i) 2w ≤ k
(

2(k−w)
k−w

)

22w−k, if (ii) k ≤ 2w < 2(k − 1)

2k−1, if (iii) k − 1 ≤ w

The key sets giving the values of M(n, k, w) in these three cases are

(i) S1 = E(k, w) × {0}n−k

(ii) S2 = E
(

2(k − w), k − w
)

× {10, 01}2w−k × {0}n−2w

(iii) S3 = {10, 01}k−1 × {1}w−k+1 × {0}n−k−w+1.

We note that this result is valid for any field of characteristic zero. However
the problem is open for the vector spaces over finite fields (except for some
partial cases stated in [1]).

This work can be viewed as the beginning of a very challenging program of
research in extremal combinatorial theory, which recently has been described
in [2]. (Already now it has led to new problems, new connections between
problems, new proof methods, good hope for applications.)

We reconsider the basic combinatorial structures such as antichains, intersect-
ing systems etc., in the light of what we call “dimension constraints”. Here
we adress antichains. F ⊂ 2[n] is called an antichain if F1 6⊂ F2 holds for all
F1, F2 ∈ F . Correspondingly F = {F1, . . . , Fs} is called a chain of size s if
F1 ⊂ · · · ⊂ Fs.

The corresponding notions are exdended to (0, 1)–vectors in a natural way.

We ask now for the maximal size A(n, k) , max
A

{|A| : dim(A) ≤ k, A ⊂ E(n)

is an antichain}.

It would be interesting to have also LYM–type inequalities (see e.g. [3]).

Conjecture:

A(n, k) = M

(

n, k,

⌊

n

2

⌋)

.

Here are our partial results.

Theorem.

(i) A(n, n − 1) = M
(

n, n − 1,
⌊

n
2

⌋)

=







2
(

n−2
n−2

2

)

, if 2 | n
(

n−1
n−1

2

)

, if 2 ∤ n.

(ii) For n ≥ 2k − 2
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A(n, k) = M
(

n, k,
⌊

n
2

⌋)

= 2k−1.

2 Proof of (i)

Let A be an antichain with dim(A) = n − 1, and let span(A) , U be defined
by

U =

{

(x1, . . . , xn) ∈ Rn :
n

∑

i=1

bixi = 0

}

,

for some real b1, . . . , bn.

Thus A is an antichain chosen from the set of (0, 1)–solutions to the equation

n
∑

i=1

bixi = 0. (2.1)

W.l.o.g. we may assume that b1, . . . , bℓ > 0 and bℓ+1, . . . , bn ≤ 0 for some
1 ≤ ℓ ≤ n − 1.

Partition [n] into two parts [n] = [1, ℓ] ∪ [ℓ + 1, n].

Think now about elements of A as elements of 2[n] avoiding a new notation
and represent each E ∈ A by a pair (E1, E2), where E1 = E ∩ [1, ℓ], E2 =
E ∩ [ℓ + 1, n].

Then it easily follows from (2.1) that any two elements (E1, E2) and (F1, F2)
of A have the following property:

(Q) If E1 and F1 form a chain then E2 and F2 form an antichain.

An element (E1, E2) ∈ A is called (i, j)–configuration if |E1| = i, |E2| = j.
Note that j 6= 0 otherwise the (0, 1)–vector corresponding to (E1, E2) (the
characteristic vector) does not satisfy (2.1). Denote by αij the number of (i, j)
configurations in A. Clearly

∑

(i,j)∈I

αij = |A|, (2.2)

where I ⊂ {0, 1, . . . , ℓ} × [n − ℓ] is the set of different kinds of configurations
in A.

Recall further the notion of maximal chains. A chain in 2[n] of size n + 1 is
called a maximal chain. Let P be the set of all ordered pairs (C1, C2) such that
C1 is a maximal chain in 2[ℓ] and C2 is a maximal chain in 2[ℓ+1,n]. Then we
have |P | = ℓ!(n − ℓ)!.
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Denote by f(i, j) the number of all pairs of maximal chains passing through a
given (i, j)–configuration (E1, E2) ∈ A. Clearly f(i, j) = |{(C1, C2) ∈ P : E1 ∈
C1, E2 ∈ C2}| = i!(ℓ − i)!j!(n − ℓ − j)!.

Notice that the property (Q) implies that for every pair (C1, C2) ∈ P there is
at most one pair (E1, E2) ∈ A with E1 ∈ C1, E2 ∈ C2. Therefore we have

∑

(i,j)∈I

f(i, j)αij ≤ |P |

or
∑

(i,j)∈I

i!(ℓ − i)!j! (n − ℓ − j)!αij ≤ ℓ!(n − ℓ)!.

Hence
∑

(i,j)∈I

αij
(

ℓ

i

)(

n−ℓ

j

) ≤ 1. (2.3)

Since
(

ℓ

i

)(

n−ℓ

j

)

≤
(

ℓ

⌊ ℓ

2
⌋

)(

n−ℓ

⌊n−ℓ

2
⌋

)

in view of (2.2) the inequality (2.3) implies

|A| ≤

(

ℓ
⌊

ℓ
2

⌋

)(

n − ℓ
⌊

n−ℓ
2

⌋

)

. (2.4)

Consequently

A(n, n − 1) ≤ max
1≤ℓ<n

(

ℓ
⌊

ℓ
2

⌋

)(

n − ℓ
⌊

n−ℓ
2

⌋

)

. (2.5)

It can be easily shown (see [1]) that

max
1≤ℓ<n

(

ℓ
⌊

ℓ
2

⌋

)(

n − ℓ
⌊

n−ℓ
2

⌋

)

= 2

(

n − 2
⌊

n−2
2

⌋

)

.

On the other hand in view of Theorem AAK

M

(

n, n − 1,
⌊

n

2

⌋)

= 2

(

n − 2
⌊

n−2
2

⌋

)

.

This means that A(n, n − 1) ≤ M
(

n, n − 1,
⌊

n
2

⌋)

.

The corresponding antichain A ⊂ E
(

n,
⌊

n
2

⌋)

, with dim(A) = n− 1, attaining
the bound is

A = E

(

n − 2,
⌊

n − 2

2

⌋)

× E(2, 1).

¤
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Remark: It is not hard to describe all optimal nonisomorphic antichains.
Suppose A is a maximal antichain defined by (2.1). Consider first

Case 2 | n.

Since
(

ℓ

⌊ ℓ

2
⌋

)(

n−ℓ

⌊n−ℓ

2
⌋

)

< 2
(

n−2

⌊n−2

2
⌋

)

for ℓ 6= 0, 2, n − 2 we conclude that ℓ = 2 (or

equivalently ℓ = n − 2). In view of (2.3) we have

|A|

2
(

n−2

⌊n−2

2
⌋

) =
∑

(i,j)∈I

αij

2
(

n−2

⌊n−2

2
⌋

) ≤
∑

(i,j)∈I

αij
(

2
i

)(

n−2
j

) ≤ 1. (2.6)

Observe now that A contains only
(

1, n−2
2

)

–configurations. This is clear since

otherwise we would have strict inequality in the second relation of (2.6), a con-
tradiction to the optimality of A. This means that the only optimal antichain,
up to permutations of coordinates, is

A = E(2, 1) × E

(

n − 2,
n − 2

2

)

.

Correspondingly in (2.1) we have b1 = b2 = n−2
2

, b3 = · · · = bn = −1.

Case 2 ∤ n.

Since 2
(

n−2
n−3

2

)

=
(

n−1
n−1

2

)

we have two possibilities for ℓ : ℓ = 1 or ℓ = 2.

Suppose ℓ = 2. Using the same arguments as before we conclude that A can
have only two types of configurations:

(

1, n−3
2

)

or
(

1, n−1
2

)

. Hence in this case
we have the following optimal nonisomorphic antichains:

A = E(2, 1) × E

(

n − 2,
n − 3

2

)

,A = E(2, 1) × E

(

n − 2,
n − 1

2

)

,

A =
(

{1, 0} × E

(

n − 2,
n − 3

2

))

∪
(

{0, 1} × E

(

n − 2,
n − 1

2

))

.

The corresponding values for b1, . . . , bn are

b1 = b2 = n−3
2

, b3 = · · · = bn = −1; b1 = b2 = n−1
2

, b3 = · · · = bn = −1;

b1 = n−3
2

, b2 = n−2
2

, b3 = · · · = bn = −1.

Let now ℓ = 1. Then A consists of
(

0, n−1
2

)

or
(

1, n−1
2

)

configurations.
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If A consists of only one type of configurations we have

A = {0} × E

(

n − 1,
n − 1

2

)

, or A = {1} × E

(

n − 1,
n − 1

2

)

.

Correspondingly we have b1 = 1, b2 = · · · = bn = 0, or b1 = n−1
2

, b2 = · · · =
bn = −1.

Finally if A contains both types of configurations one can easily observe that

A =
(

{00} × E

(

n − 2,
n − 1

2

))

∪
(

{11} × E

(

n − 2,
n − 1

2
− 1

))

with b1 = 1, b2 = −1, b3 = · · · = bn = 0.

3 Proof of (ii)

In view of Theorem AAK we have

A(n, k) ≥ M

(

n, k,

⌊

n

2

⌋)

= 2k−1.

Thus it remains to show that A(n, k) ≤ 2k−1. Let span(A) , U (a k–
dimensional subspace of Rn) be the row space of a k × n matrix G.

In the sequel we essentially use an auxiliary result from [1].

Let M be a k × n matrix of the following form shown in Figure 1.
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0

Fig. 1
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Each shade of size ℓi ≥ 1 (i = 1, . . . , k),
k
∑

i=1
ℓi = n, depicts ℓi positive entries

of the i–th row, and above the steps M has only zero entries.

We say that a k × n matrix is in the positive step form if it has the form of
the matrix M (in Fig. 1) up to the permutations of the columns.

A nonzero vector of Rn is called positive (nonnegative) if all its coordinates
are positive (nonnegative).

Lemma [1]. A k×n matrix T can be transformed into a positive step form by
elementary row operations if and only if the row space of T contains a positive
vector.

Let v be the sum of all vectors of A. W.l.o.g. let v = (a1, . . . , am, 0, . . . , 0),
where a1, . . . , am > 0 and k ≤ m ≤ n. In view of Lemma [1] there exists a
generator matrix G = [M | O] of the subspace U , where M is a k ×m matrix
in the positive step form, and O is the k × (n − m) zero matrix.

In particular by elementary row operations and permutations of the columns
G can be reduced to the following form

G′ = [Ik | B | O]

where Ik is the k × k identity matrix and the k × m submatrix [B] is in the
positive step form. Let g be the first row of G′.

Let B be the set of those (0, 1)–vectors of U that are generated without g,
that is all vectors of B have zero in the first coordinate. Note that if b ∈ B
and (b + g) ∈ E(n) then b and b + g form a chain.

This is clear because g is a nonnegative vector. Hence for any b ∈ B either b

or b + g is not in A. This completes the proof since |B| ≤ 2k−1.

¤

In this case there are many non–isomorphic maximum antichains. For example
A = E(2, 1)k−1 × v, for any v ∈ E(n − 2k + 2).
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