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Abstract

Motivated by a sum packing problem of Erdős [2] Bohman [1] discussed an extremal
geometric problem which seems to have an independent interest. Let H be a hyperplane
in Rn such that H ∩ {0,±1}n = {0n}. The problem is to determine

f(n) , max
H

|H ∩ {0,±1,±2}n|.

Bohman [1] conjectured that

f(n) = 1/2(1 +
√

2)n + 1/2(1 −
√

2)n.

We show that for some constants c1, c2 we have c1(2, 538)n < f(n) < c2(2, 723)n —
disproving the conjecture. We also consider a more general question of estimation of
|H ∩ {0,±1, . . . ,±m}|, when H ∩ {0,±1, . . . ,±k} = {0n}, m > k > 1.

Footnote: 1991 Math. Subject Classification Primary 11 P 99 Secondary 05–D05

1



1 Introduction and Statement of the Result

Let H be a hyperplane in Rn so that H ∩ {0,±1}n = {0n}. Let

f(n) = max
H

|H ∩ {0,±1,±2}n|.

The problem (of determination of f(n)) was raised by Bohman [1] in connection with a
subset sum problem of Erdős [2].

A set S of positive integers b1 < b2 < · · · < bn has distinct subset sums, if all sums of subsets
are distinct. Erdős [2] has asked for the value of

g(n) , min{an : S has distinct subset sums, |S| = n}.

A long–standing conjecture of Erdős claims that g(n) ≥ c2n for some constant c.

In [1] Bohman explained the relationship between functions f(n) and g(n), and noticed that
the studying of the function f(n) might be helpful for further investigation of the problem
of Erdős.

Suppose a hyperplane H defined by the equation

n−1
∑

i=0

aixi = 0; a0, . . . , an−1 ∈ N (1.1)

satisfies H ∩ {0,±1}n = {0n}. This clearly means that {a0, . . . , an−1} has distinct subsets
sums. A simplest example of such a set with an−1 ≤ 2n−1 is {1, 2, 22, . . . , 2n−1}. For more
complicated examples see [1], [3].

For f(n) Bohman [1] conjectured that

f(n) = 1/2(1 +
√

2)n + 1/2(1 −
√

2)n,

showing that this number can be achieved, taking ai = 2i (i = 0, . . . , n − 1) in (1.1).

Let us consider now the hyperplanes defined by equation

n−1
∑

i=0

2iλixi = 0, (1.2)

where λ0, λ1, . . . , λn−1 are odd integers.

One can easily see that the set {λ0, 2λ, . . . , 2n−1λn−1} has distinct subset sums.

Let f ∗(n) denote the maximum possible number of solutions xn ∈ {0,±1,±2}n of equation
(1.2) over all choices of odd integers λ0, λ1, . . . , λn−1.

Theorem 1. For some constants c′, c′′

c′(2, 538)n < f∗(n) < c′′(2, 547)n.
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Clearly this means that f(n) > c1(2, 538)n and the conjecture of Bohman fails.

Our next goal is to give an upper bound for f(n). A simple upper bound is

f(n) ≤ 3n. (1.3)

Indeed, let X be the set of solutions xn ∈ {0,±1,±2}n of equation (1.1). Then observe that
for any un, vn ∈ {0, 1}n, un 6= vn, we have (X + un) ∩ (X + vn) = ∅. This implies that
|X + {0, 1}n| = |X||{0, 1}n| = |X|2n. On the other hand

{

X + {0, 1}n
}

⊂ {0,±1,±2, 3}n.
Hence |X|2n ≤ 6n and thus (1.3). The next result improves bound (1.3).

Theorem 2. For some constant c

f(n) < c(2, 723)n.

Conjecture 1. For some constant c

f(n) ∼ cβn,

where β is the biggest real root of the equation z8 − 8z6 + 10z4 + 1 = 0 (β = 2, 5386 . . . ).
The construction attaining this number is given in section 2.

We also consider a more general problem. Let Q ⊂ Z be finite and F = {0,±1, . . . ,±k},
then

f(n,Q, F ) , max
{

|H ∩ Qn| : H is a hyperplane and H ∩ F n = {0n}
}

.

In some cases we succeed to give the exact answer.

Theorem 3.

(i) Let Q = {0,±1, . . . ,±m}, F = {0,±1, · · · ± k} and k + 1|2m + 1. Then

f(n,Q, F ) =

(

2m + 1

k + 1

)n−1

.

(ii) Let Q = {0,±1, . . . ,±(m − 1),m}, F = {0,±1, . . . ,±k} and k + 1|2m. Then

f(n,Q, F ) =

(

2m

k + 1

)n−1

.

An interesting case is

Q = {0,±1, . . . ,±(k + 1)}, F = {0,±1, . . . ,±k}, k ≥ 1.

Note that for k = 1 we have Bohman’s problem. It can be shown that

(1 +
√

2)n ≤ f(n,Q, F ) ≤ 3n.
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The upper bound is derived exactly as we did above for k = 1. For the lower bound consider
the equation

x0 + (k + 1)x1 + · · · + (k + 1)n−1xn−1 = 0. (1.4)

Let X ⊂ Qn denote the set of solutions of (1.4). Clearly X ∩F n = {0n}. On the other hand
one can show that |X| = 1/2(1 +

√
2)n + 1/2(1 −

√
2)n (like for k = 1). We believe that

Bohman’s conjecture is true for k ≥ 2, that is

Conjecture 2. For Q = {0,±1, . . . ,±(k+1)}, F = {0,±1, . . . ,±k} and k ≥ 2 (or a weaker
condition: for k > k0) one has

f(n,Q, F ) = 1/2(1 +
√

2)n + 1/2(1 −
√

2)n.

2 Proof of Theorem 1

We start with an auxiliary statement. Let f ∗

λ(n) denote the maximum number of solutions
xn = (x0, . . . , xn−1) ∈ {0,±1,±2}n of the equation

n−1
∑

i=0

2iλixi = λ (2.1)

over all choices of odd integers λ0, . . . , λn−1 and given integer λ. Remember that f ∗

0 (n) =
f ∗(n).

Lemma 1.

f ∗(n) ≥ 1

25
f ∗

λ(n).

Proof: Suppose we have an optimal equation (2.1). That is for the solutions of (2.1)
X ⊂ {0,±1,±2}n one has |X| = f ∗

λ(n).

For an integer µ consider the equation

(2µ + 1)y + 2z + 4λ0x0 + · · · + 2n+1λn−1xn−1 = 0.

Then taking y = −2, z = 1 we come to equation
n−1
∑

i=0

2iλixi = µ, which implies that f ∗(n +

2) ≥ max
µ

fµ(n). On the other hand clearly

max
µ

fµ(n) ≥ 1

25
f ∗

λ(n + 2).

¤

Consider an equation
x0 + 2x1 + · · · + 2n−1xn−1 = λ. (2.2)

Let X(λ) be the set of all solutions (from {0,±1,±2}n) of (2.2). With the help of this lemma
we can get a lower bound using an average argument. There are 5n vectors (x0, . . . , xn−1) ∈
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{0,±1,±2}n. On the other hand there are 4(2n − 1) + 1 possible values for λ for which
equation (2.2) has solutions. Hence there exists a λ such that

|X(λ)| ≥ 5n

4(2n − 1) + 1
.

This together with Lemma 1 implies that f(n) ≥ c(2, 5)n for some constant c, which actually
disproves the conjecture of Bohman. However we can improve this bound constructively.

Lower bound.

As above let X(λ) = H ∩ {0,±1,±2}n, where H is the hyperplane defined by (2.2).

Let also hλ(n) denote the number of solutions of (2.2), that is hλ(n) = |X(λ)|.
Suppose that λ = 2s, where s is an integer. Then observe that

h2s(n) = hs−1(n − 1) + hs(n − 1) + hs+1(n − 1). (2.3)

Correspondingly, if λ = 2s + 1, then

h2s+1(n) = hs(n − 1) + hs+1(n − 1). (2.4)

For a positive integer n define

Sn =

{

2n−1 + 2n−3 + · · · + 23 + 2, if 2 | n

2n−1 + 2n−3 + · · · + 22 + 1, if 2 ∤ n.
(2.5)

Claim: For 2 | n and some constant c

hSn
(n) > c(2, 538)n. (2.6)

Proof: In view of (2.3) we have

hSn
(n) = hSn−1−1(n − 1) + hSn−1

(n − 1) + hSn−1+1(n − 1). (2.7)

Correspondingly

hSn−1−1(n − 1) = hSn−2−1(n − 2) + hSn−2
(n − 2) + hSn−2+1(n − 2),

hSn−1
(n − 1) = hSn−2

(n − 2) + hSn−2+1(n − 2),

hSn−1+1(n − 1) = hSn−2
(n − 2) + hSn−2+1(n − 2) + hSn−2+2(n − 2). (2.8)

It is easy to see that hSn
(n) can be represented by linear combinations of the functions

hSn−i−1(n − i), hSn−i
(n − i), hSn−i+1(n − i), hSn−i+2(n − i).
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In view of (2.7) and (2.8) we can write

hsn
(n) = hSn−1+1(n − 1) + hSn−1

(n − 1) + hSn−1
(n − 1)

= hSn−2−1(n − 2) + 3hSn−2
(n − 2) + 3hSn−2+1(n − 2) + hSn−2+2(n − 2)

= 4hSn−3−1(n − 3) + 8hSn−3
(n − 3) + 7hSn−3+1(n − 3) + hSn−3+2(n − 3)

= 4hSn−4−1(n − 4) + 19hSn−4
(n − 4) + 20hSn−4+1(n − 4) + 8hSn−4+2(n − 4)

. . .

= aihSn−i−1(n − i) + bihSn−i
(n − i) + cihSn−i+1(n − i) + dihSn−i+2(n − i)

. . .

= an−1hS1−1(1) + bn−1hS1
(1) + cn−1hS1+1(1) + dn−1hS1+2(1)

= an−1 + bn−1 + cn−1 + dn−1. (2.9)

From (2.7), (2.8) and (2.9) we obtain the following recurrences for the coefficients ai, bi, ci, di

in (2.9)

a2i = a2i−1,

b2i = a2i−1 + b2i−1 + c2i−1,

c2i = a2i−1 + b2i−1 + c2i−1 + d2i−1,

d2i = c2i−1 + d2i−1, (2.10)

a2i+1 = a2i + b2i,

b2i+1 = a2i + b2i + c2i + d2i,

c2i+1 = b2i + c2i + d2i,

d2i+1 = d2i (i = 1, 2, . . . ). (2.11)

Here are the first ten values of ai, bi, ci, di.

ai: 1 1 4 4 23 23 144 144 921 921
bi: 1 3 8 19 51 121 328 777 2113 5003
ci: 1 3 7 20 47 129 305 832 1969 5363
di: 0 1 1 8 8 55 55 360 360 2329

From (2.10) and (2.11) we obtain by elementary algebraic transformations the following
recurrences:

ti+8 = 8ti+6 − 10ti+4 − ti for ti ∈ {ai, bi, ci, di}, i = 1, 2, . . . .

In particular we have
c2i+8 = 8c2i+6 − 10c2i+4 − c2i (2.12)

with initial values c2 = 3, c4 = 20, c6 = 129, c8 = 832.

The characteristic equation of (2.12)

z8 − 8z6 + 10z4 + 1 = 0 (2.13)
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has the biggest real root β = 2, 5386 . . . .

Thus c2i can be estimated from below by c2i ≥ cβ2i > c(2.538)2i, for some constant c definable
from the initial values of c2i.

Further in view of (2.9) and (2.10) for n = 2k we have

hSn
(n) = a2k−1 + b2k−1 + c2k−1 + d2k−1 = cn,

which implies that hSn
(n) > c(2, 538)n.

¤

Thus we have proved that f ∗

Sn
(n) > (2, 538)n. This with Lemma 1 completes the proof of

the lower bound.

Upper bound.

Consider the equation

λ0x0 + 2λ1x1 + · · · + 2n−1λn−1xn−1 = λ. (2.14)

We distinguish the three cases

(α) λ ≡ 2( mod 4): then denote by hα(n) the maximum possible number of solutions
(from {0,±1,±2}n of equation (2.14)),

(β) λ ≡ 0( mod 4): the corresponding notation for this case is hβ(n),

(γ) λ ≡ 1 or 3( mod 4): the corresponding notation for this case is hγ(n).

Then one can easily observe that the following reccurrence relations hold

hα(n) ≤ hα(n − 1) + hβ(n − 1) + hγ(n − 1),

hβ(n) ≤ max
{

hα(n − 1), hβ(n − 1)
}

+ 2hγ(n − 1), (2.15)

hγ(n) ≤ max
{

hα(n − 1), hβ(n − 1)
}

+ hγ(n − 1).

We have also that hα(1) = hβ(1) = hγ(1) = 1.

Introduce now function gα(n), gβ(n), and gγ(n) so that gα(1) = gβ(1) = gγ(1) = 1 and

gα(n) = gα(n − 1) + gβ(n − 1) + gγ(n − 1),

gβ(n) = max
{

gα(n − 1), gβ(n − 1)
}

, +2gγ(n − 1),

gγ(n) = max
{

gα(n − 1), gβ(n − 1)
}

+ gγ(n − 1).

Clearly we have that gα(n) ≥ hα(n), gβ(n) ≥ hβ(n), gγ(n) ≥ hγ(n).

Observe also that for n ≥ 3 we have gα(n) > gβ(n) > gγ(n).
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Hence finally we come to the reccurrences

gα(n) = gα(n − 1) + gβ(n − 1) + gγ(n − 1),

gβ(n) = gα(n − 1) + 2gγ(n − 1), (2.16)

gγ(n) = gα(n − 1) + gγ(n − 1).

From (2.16) we obtain the following reccurence

gα(n) = 2gα(n − 1) + gα(n − 2) + gα(n − 3) (2.17)

with initial values gα(1) = 1, gα(2) = 3, gα(3) = 8.

Now to estimate the function f ∗(n) it remains to solve reccurrence (2.17), since f ∗(n) ≤
gα(n). The latter gives the estimation

gα(n) ≤ c′′(2, 547)n

for some constant c′′ definable from the initial values. This completes the proof of Theorem 1.

¤

3 Proof of Theorem 2

Suppose that {a1, . . . , an} ⊂ N has distinct subset sums. Let X denote the set of all solutions

xn ∈ {0,±1,±2}n of the equation
n
∑

i=1

aixi = λ.

Consider two mappings ϕ0 and ϕ1 from {0,±1,±2} to {0,±1}
ϕ0(−2) = ϕ1(−2) = −1, ϕ0(2) = ϕ1(2) = 1, ϕ0(±1) = ϕ1(±1) = 0, and ϕ0(0) = −1,
ϕ1(0) = 1.

Next for xn ∈ X define

ϕ(xn) =
{

(ϕε1
(x1), . . . , ϕεn

(xn)) : εi ∈ {0, 1}, i = 1, . . . , n
}

.

Claim 1. For xn, yn ∈ X, xn 6= yn

ϕ(xn) ∩ ϕ(yn) = ∅.

Proof: Suppose the opposite. Then it is not hard to verify that xn − yn ∈ {0,±2}n r {0n},
a contradiction.

¤

Let us define
α(xn) = the number of zero coordinates in xn.

Claim 2. For any xn ∈ X
|ϕ(xn)| = 2α(xn).
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Proof: This immediately follows from the definition of ϕ(xn).

¤

Combining Claims 1 and 2 we conclude that

∑

xn∈X

2α(xn) ≤ 3n. (3.1)

Now consider the mapping Ψ : X → {0,±1}n, defined by Ψ(xn) =
(

Ψ0(x1), . . . , Ψ0(xn)
)

,
where

Ψ0(xi) =











−1, if xi = −2,−1

1, if xi = 2, 1

0, if xi = 0; i = 1, . . . , n.

Claim 3. For xn, zn ∈ X, xn 6= zn holds Ψ(xn) 6= Ψ(zn).

Proof: Assuming the opposite we will get xn − zn ∈ {0,±1}n r {0n}, a contradiction.

¤

Note (and this is important for us) that Ψ leaves the zero coordinates fixed. This with (3.1)
implies that

∑

yn∈Ψ(X)

2α(yn) ≤ 3n.

Since |X| = |Ψ(X)| we can bound |X| by the maximum cardinality of a set Y ⊂ {0,±1}n

satisfying
∑

yn∈Y

2α(yn) ≤ 3n. (3.2)

Define
Yi =

{

yn ∈ Y : α(yn) = i
}

, i = 0, 1, . . . , n.

Note that |Yi| ≤ 2n−i
(

n

i

)

.

Now (3.2) can be rewritten in the form

n
∑

i=0

|Yi|2i ≤ 3n. (3.3)

Observe that to maximize |Y | =
n
∑

i=0

|Yi| we have to take |Yi| =

{

(

n

i

)

2n−i, if i ≤ ℓ(n)

0, if i > ℓ(n)

where ℓ(n) is the maximal index for which one has

ℓ(n)
∑

i=0

2n−i

(

n

i

)

2i ≤ 3n.
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This gives (using standard technique) that ℓ(n) ≥ ⌊0, 1402 n⌋. Correspondingly we get an
estimation for |Y | and consequently for |X|:

|X| ≤ |Y | < c
3n

20,14n
< c(2, 723)n

for some constant c.

¤

4 Proof of Theorem 3

Let Q = {0,±1, . . . ,±m}, F = {0,±1, . . . ,±k} with α = (2m + 1)/(k + 1).

(a) First we will show that f(n,Q, F ) ≤ αn−1. Let H be defined by an equation

n
∑

i=1

aixi = 0. (4.1)

Let also H ∩ F n = {0n} and H ∩ Qn = X with |X| = f(n,Q, F ).

Define Qj =
{

a ∈ Q : a ≡ j( mod α)
}

, j = 0, 1, . . . , α − 1.

Then consider the mapping ϕ : X → Zn
α, defined by the following transformation of

coordinates.

ϕ(x1, . . . , xn) =
(

ϕ0(x1), . . . , ϕ0(xn)
)

, where ϕ0(xi) = j, (i = 1, . . . , n) if xi ∈ Qj;
j ∈ {0, . . . , α − 1}. Observe that ϕ is an injection. Hence |X| = |ϕ(X)|.
Note now that

dim
(

spanϕ(X)
)

≤ dim
(

span(X)
)

= n − 1.

This implies that
|X| = |ϕ(X)| ≤ αn−1. (4.2)

¤

(b) Next we will show that bound (4.2) can be achieved by taking the hyperplane H defined
by

x0 + (k + 1)x1 + · · · + (k + 1)n−1xn−1 = 0. (4.3)

In fact H ∩ F n = {0n}. Moreover we claim that for any −m ≤ λ ≤ m the equation

n−1
∑

i=0

xi(k + 1)i = λ (4.4)

has exactly αn−1 solutions xn ∈ Qn. This can be shown using induction on n.

The case n = 1 is trivial.
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Induction step from n − 1 to n: Clearly x0 ∈
{

a : −m ≤ a ≤ m, a ≡ λ mod (k +
1)

}

. Thus x0 can take α many values x0 ∈ [−m,m]. For each x0 we come to an
equation

x1 + (k + 1)x2 + · · · + (k + 1)n−2xn−1 =
λ − x0

k + 1

with
∣

∣

λ−x0

k+1

∣

∣ ≤ 2m
k+1

≤ m. Hence we get the result by induction hypothesis. This
completes the proof of Theorem 3 in the case (i). The case (ii) can be proved similarly.

¤
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