On Bohman's conjecture related to a sum packing problem of Erdős

R. Ahlswede, H. Aydinian, and L.H. Khachatrian

Abstract

Motivated by a sum packing problem of Erdős [2] Bohman [1] discussed an extremal geometric problem which seems to have an independent interest. Let H be a hyperplane in \mathbb{R}^{n} such that $H \cap\{0, \pm 1\}^{n}=\left\{0^{n}\right\}$. The problem is to determine $$
f(n) \triangleq \max _{H}\left|H \cap\{0, \pm 1, \pm 2\}^{n}\right|
$$

Bohman [1] conjectured that $$
f(n)=1 / 2(1+\sqrt{2})^{n}+1 / 2(1-\sqrt{2})^{n} .
$$

We show that for some constants c_{1}, c_{2} we have $c_{1}(2,538)^{n}<f(n)<c_{2}(2,723)^{n}$ disproving the conjecture. We also consider a more general question of estimation of $|H \cap\{0, \pm 1, \ldots, \pm m\}|$, when $H \cap\{0, \pm 1, \ldots, \pm k\}=\left\{0^{n}\right\}, m>k>1$.

1 Introduction and Statement of the Result

Let H be a hyperplane in \mathbb{R}^{n} so that $H \cap\{0, \pm 1\}^{n}=\left\{0^{n}\right\}$. Let

$$
f(n)=\max _{H}\left|H \cap\{0, \pm 1, \pm 2\}^{n}\right| .
$$

The problem (of determination of $f(n)$) was raised by Bohman [1] in connection with a subset sum problem of Erdős [2].

A set S of positive integers $b_{1}<b_{2}<\cdots<b_{n}$ has distinct subset sums, if all sums of subsets are distinct. Erdős [2] has asked for the value of

$$
g(n) \triangleq \min \left\{a_{n}: S \text { has distinct subset sums, }|S|=n\right\}
$$

A long-standing conjecture of Erdős claims that $g(n) \geq c 2^{n}$ for some constant c.
In [1] Bohman explained the relationship between functions $f(n)$ and $g(n)$, and noticed that the studying of the function $f(n)$ might be helpful for further investigation of the problem of Erdős.

Suppose a hyperplane H defined by the equation

$$
\begin{equation*}
\sum_{i=0}^{n-1} a_{i} x_{i}=0 ; a_{0}, \ldots, a_{n-1} \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

satisfies $H \cap\{0, \pm 1\}^{n}=\left\{0^{n}\right\}$. This clearly means that $\left\{a_{0}, \ldots, a_{n-1}\right\}$ has distinct subsets sums. A simplest example of such a set with $a_{n-1} \leq 2^{n-1}$ is $\left\{1,2,2^{2}, \ldots, 2^{n-1}\right\}$. For more complicated examples see [1], [3].
For $f(n)$ Bohman [1] conjectured that

$$
f(n)=1 / 2(1+\sqrt{2})^{n}+1 / 2(1-\sqrt{2})^{n}
$$

showing that this number can be achieved, taking $a_{i}=2^{i}(i=0, \ldots, n-1)$ in (1.1).
Let us consider now the hyperplanes defined by equation

$$
\begin{equation*}
\sum_{i=0}^{n-1} 2^{i} \lambda_{i} x_{i}=0 \tag{1.2}
\end{equation*}
$$

where $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$ are odd integers.
One can easily see that the set $\left\{\lambda_{0}, 2 \lambda, \ldots, 2^{n-1} \lambda_{n-1}\right\}$ has distinct subset sums.
Let $f^{*}(n)$ denote the maximum possible number of solutions $x^{n} \in\{0, \pm 1, \pm 2\}^{n}$ of equation (1.2) over all choices of odd integers $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$.

Theorem 1. For some constants $c^{\prime}, c^{\prime \prime}$

$$
c^{\prime}(2,538)^{n}<f^{*}(n)<c^{\prime \prime}(2,547)^{n}
$$

Clearly this means that $f(n)>c_{1}(2,538)^{n}$ and the conjecture of Bohman fails.
Our next goal is to give an upper bound for $f(n)$. A simple upper bound is

$$
\begin{equation*}
f(n) \leq 3^{n} . \tag{1.3}
\end{equation*}
$$

Indeed, let X be the set of solutions $x^{n} \in\{0, \pm 1, \pm 2\}^{n}$ of equation (1.1). Then observe that for any $u^{n}, v^{n} \in\{0,1\}^{n}, u^{n} \neq v^{n}$, we have $\left(X+u^{n}\right) \cap\left(X+v^{n}\right)=\varnothing$. This implies that $\left|X+\{0,1\}^{n}\right|=|X|\left|\{0,1\}^{n}\right|=|X| 2^{n}$. On the other hand $\left\{X+\{0,1\}^{n}\right\} \subset\{0, \pm 1, \pm 2,3\}^{n}$. Hence $|X| 2^{n} \leq 6^{n}$ and thus (1.3). The next result improves bound (1.3).
Theorem 2. For some constant c

$$
f(n)<c(2,723)^{n} .
$$

Conjecture 1. For some constant c

$$
f(n) \sim c \beta^{n}
$$

where β is the biggest real root of the equation $z^{8}-8 z^{6}+10 z^{4}+1=0(\beta=2,5386 \ldots)$. The construction attaining this number is given in section 2 .

We also consider a more general problem. Let $Q \subset \mathbb{Z}$ be finite and $F=\{0, \pm 1, \ldots, \pm k\}$, then

$$
f(n, Q, F) \triangleq \max \left\{\left|H \cap Q^{n}\right|: H \text { is a hyperplane and } H \cap F^{n}=\left\{0^{n}\right\}\right\} .
$$

In some cases we succeed to give the exact answer.

Theorem 3.

(i) Let $Q=\{0, \pm 1, \ldots, \pm m\}, F=\{0, \pm 1, \cdots \pm k\}$ and $k+1 \mid 2 m+1$. Then

$$
f(n, Q, F)=\left(\frac{2 m+1}{k+1}\right)^{n-1}
$$

(ii) Let $Q=\{0, \pm 1, \ldots, \pm(m-1), m\}, F=\{0, \pm 1, \ldots, \pm k\}$ and $k+1 \mid 2 m$. Then

$$
f(n, Q, F)=\left(\frac{2 m}{k+1}\right)^{n-1}
$$

An interesting case is

$$
Q=\{0, \pm 1, \ldots, \pm(k+1)\}, F=\{0, \pm 1, \ldots, \pm k\}, k \geq 1
$$

Note that for $k=1$ we have Bohman's problem. It can be shown that

$$
(1+\sqrt{2})^{n} \leq f(n, Q, F) \leq 3^{n} .
$$

The upper bound is derived exactly as we did above for $k=1$. For the lower bound consider the equation

$$
\begin{equation*}
x_{0}+(k+1) x_{1}+\cdots+(k+1)^{n-1} x_{n-1}=0 \tag{1.4}
\end{equation*}
$$

Let $X \subset Q^{n}$ denote the set of solutions of (1.4). Clearly $X \cap F^{n}=\left\{0^{n}\right\}$. On the other hand one can show that $|X|=1 / 2(1+\sqrt{2})^{n}+1 / 2(1-\sqrt{2})^{n}$ (like for $k=1$). We believe that Bohman's conjecture is true for $k \geq 2$, that is
Conjecture 2. For $Q=\{0, \pm 1, \ldots, \pm(k+1)\}, F=\{0, \pm 1, \ldots, \pm k\}$ and $k \geq 2$ (or a weaker condition: for $k>k_{0}$) one has

$$
f(n, Q, F)=1 / 2(1+\sqrt{2})^{n}+1 / 2(1-\sqrt{2})^{n}
$$

2 Proof of Theorem 1

We start with an auxiliary statement. Let $f_{\lambda}^{*}(n)$ denote the maximum number of solutions $x^{n}=\left(x_{0}, \ldots, x_{n-1}\right) \in\{0, \pm 1, \pm 2\}^{n}$ of the equation

$$
\begin{equation*}
\sum_{i=0}^{n-1} 2^{i} \lambda_{i} x_{i}=\lambda \tag{2.1}
\end{equation*}
$$

over all choices of odd integers $\lambda_{0}, \ldots, \lambda_{n-1}$ and given integer λ. Remember that $f_{0}^{*}(n)=$ $f^{*}(n)$.

Lemma 1.

$$
f^{*}(n) \geq \frac{1}{25} f_{\lambda}^{*}(n)
$$

Proof: Suppose we have an optimal equation (2.1). That is for the solutions of (2.1) $X \subset\{0, \pm 1, \pm 2\}^{n}$ one has $|X|=f_{\lambda}^{*}(n)$.
For an integer μ consider the equation

$$
(2 \mu+1) y+2 z+4 \lambda_{0} x_{0}+\cdots+2^{n+1} \lambda_{n-1} x_{n-1}=0
$$

Then taking $y=-2, z=1$ we come to equation $\sum_{i=0}^{n-1} 2^{i} \lambda_{i} x_{i}=\mu$, which implies that $f^{*}(n+$ $2) \geq \max _{\mu} f_{\mu}(n)$. On the other hand clearly

$$
\max _{\mu} f_{\mu}(n) \geq \frac{1}{25} f_{\lambda}^{*}(n+2)
$$

Consider an equation

$$
\begin{equation*}
x_{0}+2 x_{1}+\cdots+2^{n-1} x_{n-1}=\lambda \tag{2.2}
\end{equation*}
$$

Let $X(\lambda)$ be the set of all solutions (from $\{0, \pm 1, \pm 2\}^{n}$) of (2.2). With the help of this lemma we can get a lower bound using an average argument. There are 5^{n} vectors $\left(x_{0}, \ldots, x_{n-1}\right) \in$
$\{0, \pm 1, \pm 2\}^{n}$. On the other hand there are $4\left(2^{n}-1\right)+1$ possible values for λ for which equation (2.2) has solutions. Hence there exists a λ such that

$$
|X(\lambda)| \geq \frac{5^{n}}{4\left(2^{n}-1\right)+1}
$$

This together with Lemma 1 implies that $f(n) \geq c(2,5)^{n}$ for some constant c, which actually disproves the conjecture of Bohman. However we can improve this bound constructively.

Lower bound.

As above let $X(\lambda)=H \cap\{0, \pm 1, \pm 2\}^{n}$, where H is the hyperplane defined by (2.2).
Let also $h_{\lambda}(n)$ denote the number of solutions of (2.2), that is $h_{\lambda}(n)=|X(\lambda)|$.
Suppose that $\lambda=2 s$, where s is an integer. Then observe that

$$
\begin{equation*}
h_{2 s}(n)=h_{s-1}(n-1)+h_{s}(n-1)+h_{s+1}(n-1) . \tag{2.3}
\end{equation*}
$$

Correspondingly, if $\lambda=2 s+1$, then

$$
\begin{equation*}
h_{2 s+1}(n)=h_{s}(n-1)+h_{s+1}(n-1) . \tag{2.4}
\end{equation*}
$$

For a positive integer n define

$$
S_{n}= \begin{cases}2^{n-1}+2^{n-3}+\cdots+2^{3}+2, & \text { if } 2 \mid n \tag{2.5}\\ 2^{n-1}+2^{n-3}+\cdots+2^{2}+1, & \text { if } 2 \nmid n\end{cases}
$$

Claim: For $2 \mid n$ and some constant c

$$
\begin{equation*}
h_{S_{n}}(n)>c(2,538)^{n} \tag{2.6}
\end{equation*}
$$

Proof: In view of (2.3) we have

$$
\begin{equation*}
h_{S_{n}}(n)=h_{S_{n-1}-1}(n-1)+h_{S_{n-1}}(n-1)+h_{S_{n-1}+1}(n-1) . \tag{2.7}
\end{equation*}
$$

Correspondingly

$$
\begin{align*}
h_{S_{n-1}-1}(n-1) & =h_{S_{n-2}-1}(n-2)+h_{S_{n-2}}(n-2)+h_{S_{n-2}+1}(n-2), \\
h_{S_{n-1}}(n-1) & =h_{S_{n-2}}(n-2)+h_{S_{n-2}+1}(n-2), \\
h_{S_{n-1}+1}(n-1) & =h_{S_{n-2}}(n-2)+h_{S_{n-2}+1}(n-2)+h_{S_{n-2}+2}(n-2) . \tag{2.8}
\end{align*}
$$

It is easy to see that $h_{S_{n}}(n)$ can be represented by linear combinations of the functions $h_{S_{n-i}-1}(n-i), h_{S_{n-i}}(n-i), h_{S_{n-i}+1}(n-i), h_{S_{n-i}+2}(n-i)$.

In view of (2.7) and (2.8) we can write

$$
\begin{align*}
h_{s_{n}}(n)= & h_{S_{n-1}+1}(n-1)+h_{S_{n-1}}(n-1)+h_{S_{n-1}}(n-1) \\
= & h_{S_{n-2}-1}(n-2)+3 h_{S_{n-2}}(n-2)+3 h_{S_{n-2}+1}(n-2)+h_{S_{n-2}+2}(n-2) \\
= & 4 h_{S_{n-3}-1}(n-3)+8 h_{S_{n-3}}(n-3)+7 h_{S_{n-3}+1}(n-3)+h_{S_{n-3}+2}(n-3) \\
= & 4 h_{S_{n-4}-1}(n-4)+19 h_{S_{n-4}}(n-4)+20 h_{S_{n-4}+1}(n-4)+8 h_{S_{n-4}+2}(n-4) \\
& \quad \ldots \\
= & a_{i} h_{S_{n-i}-1}(n-i)+b_{i} h_{S_{n-i}}(n-i)+c_{i} h_{S_{n-i}+1}(n-i)+d_{i} h_{S_{n-i}+2}(n-i) \\
& \quad \ldots \tag{2.9}\\
= & a_{n-1} h_{S_{1}-1}(1)+b_{n-1} h_{S_{1}}(1)+c_{n-1} h_{S_{1}+1}(1)+d_{n-1} h_{S_{1}+2}(1) \\
= & a_{n-1}+b_{n-1}+c_{n-1}+d_{n-1} .
\end{align*}
$$

From (2.7), (2.8) and (2.9) we obtain the following recurrences for the coefficients $a_{i}, b_{i}, c_{i}, d_{i}$ in (2.9)

$$
\begin{align*}
& a_{2 i}=a_{2 i-1} \\
& b_{2 i}=a_{2 i-1}+b_{2 i-1}+c_{2 i-1}, \\
& c_{2 i}=a_{2 i-1}+b_{2 i-1}+c_{2 i-1}+d_{2 i-1}, \\
& d_{2 i}=c_{2 i-1}+d_{2 i-1}, \tag{2.10}\\
& \\
& a_{2 i+1}=a_{2 i}+b_{2 i}, \\
& b_{2 i+1}=a_{2 i}+b_{2 i}+c_{2 i}+d_{2 i}, \\
& c_{2 i+1}=b_{2 i}+c_{2 i}+d_{2 i}, \tag{2.11}\\
& d_{2 i+1}=d_{2 i}(i=1,2, \ldots)
\end{align*}
$$

Here are the first ten values of $a_{i}, b_{i}, c_{i}, d_{i}$.

$a_{i}:$	1	1	4	4	23	23	144	144	921	921
$b_{i}:$	1	3	8	19	51	121	328	777	2113	5003
$c_{i}:$	1	3	7	20	47	129	305	832	1969	5363
$d_{i}:$	0	1	1	8	8	55	55	360	360	2329

From (2.10) and (2.11) we obtain by elementary algebraic transformations the following recurrences:

$$
t_{i+8}=8 t_{i+6}-10 t_{i+4}-t_{i} \text { for } t_{i} \in\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}, i=1,2, \ldots .
$$

In particular we have

$$
\begin{equation*}
c_{2 i+8}=8 c_{2 i+6}-10 c_{2 i+4}-c_{2 i} \tag{2.12}
\end{equation*}
$$

with initial values $c_{2}=3, c_{4}=20, c_{6}=129, c_{8}=832$.
The characteristic equation of (2.12)

$$
\begin{equation*}
z^{8}-8 z^{6}+10 z^{4}+1=0 \tag{2.13}
\end{equation*}
$$

has the biggest real root $\beta=2,5386 \ldots$.
Thus $c_{2 i}$ can be estimated from below by $c_{2 i} \geq c \beta^{2 i}>c(2.538)^{2 i}$, for some constant c definable from the initial values of $c_{2 i}$.
Further in view of (2.9) and (2.10) for $n=2 k$ we have

$$
h_{S_{n}}(n)=a_{2 k-1}+b_{2 k-1}+c_{2 k-1}+d_{2 k-1}=c_{n},
$$

which implies that $h_{S_{n}}(n)>c(2,538)^{n}$.

Thus we have proved that $f_{S_{n}}^{*}(n)>(2,538)^{n}$. This with Lemma 1 completes the proof of the lower bound.

Upper bound.

Consider the equation

$$
\begin{equation*}
\lambda_{0} x_{0}+2 \lambda_{1} x_{1}+\cdots+2^{n-1} \lambda_{n-1} x_{n-1}=\lambda . \tag{2.14}
\end{equation*}
$$

We distinguish the three cases
$(\alpha) \lambda \equiv 2(\bmod 4):$ then denote by $h_{\alpha}(n)$ the maximum possible number of solutions (from $\{0, \pm 1, \pm 2\}^{n}$ of equation (2.14)),
$(\beta) \lambda \equiv 0(\bmod 4):$ the corresponding notation for this case is $h_{\beta}(n)$,
$(\gamma) \lambda \equiv 1$ or $3(\bmod 4)$: the corresponding notation for this case is $h_{\gamma}(n)$.
Then one can easily observe that the following reccurrence relations hold

$$
\begin{align*}
& h_{\alpha}(n) \leq h_{\alpha}(n-1)+h_{\beta}(n-1)+h_{\gamma}(n-1), \\
& h_{\beta}(n) \leq \max \left\{h_{\alpha}(n-1), h_{\beta}(n-1)\right\}+2 h_{\gamma}(n-1), \tag{2.15}\\
& h_{\gamma}(n) \leq \max \left\{h_{\alpha}(n-1), h_{\beta}(n-1)\right\}+h_{\gamma}(n-1) .
\end{align*}
$$

We have also that $h_{\alpha}(1)=h_{\beta}(1)=h_{\gamma}(1)=1$.
Introduce now function $g_{\alpha}(n), g_{\beta}(n)$, and $g_{\gamma}(n)$ so that $g_{\alpha}(1)=g_{\beta}(1)=g_{\gamma}(1)=1$ and

$$
\begin{aligned}
g_{\alpha}(n) & =g_{\alpha}(n-1)+g_{\beta}(n-1)+g_{\gamma}(n-1), \\
g_{\beta}(n) & =\max \left\{g_{\alpha}(n-1), g_{\beta}(n-1)\right\},+2 g_{\gamma}(n-1), \\
g_{\gamma}(n) & =\max \left\{g_{\alpha}(n-1), g_{\beta}(n-1)\right\}+g_{\gamma}(n-1) .
\end{aligned}
$$

Clearly we have that $g_{\alpha}(n) \geq h_{\alpha}(n), g_{\beta}(n) \geq h_{\beta}(n), g_{\gamma}(n) \geq h_{\gamma}(n)$.
Observe also that for $n \geq 3$ we have $g_{\alpha}(n)>g_{\beta}(n)>g_{\gamma}(n)$.

Hence finally we come to the reccurrences

$$
\begin{align*}
g_{\alpha}(n) & =g_{\alpha}(n-1)+g_{\beta}(n-1)+g_{\gamma}(n-1), \\
g_{\beta}(n) & =g_{\alpha}(n-1)+2 g_{\gamma}(n-1), \tag{2.16}\\
g_{\gamma}(n) & =g_{\alpha}(n-1)+g_{\gamma}(n-1) .
\end{align*}
$$

From (2.16) we obtain the following reccurence

$$
\begin{equation*}
g_{\alpha}(n)=2 g_{\alpha}(n-1)+g_{\alpha}(n-2)+g_{\alpha}(n-3) \tag{2.17}
\end{equation*}
$$

with initial values $g_{\alpha}(1)=1, g_{\alpha}(2)=3, g_{\alpha}(3)=8$.
Now to estimate the function $f^{*}(n)$ it remains to solve reccurrence (2.17), since $f^{*}(n) \leq$ $g_{\alpha}(n)$. The latter gives the estimation

$$
g_{\alpha}(n) \leq c^{\prime \prime}(2,547)^{n}
$$

for some constant $c^{\prime \prime}$ definable from the initial values. This completes the proof of Theorem 1.

3 Proof of Theorem 2

Suppose that $\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{N}$ has distinct subset sums. Let X denote the set of all solutions $x^{n} \in\{0, \pm 1, \pm 2\}^{n}$ of the equation $\sum_{i=1}^{n} a_{i} x_{i}=\lambda$.

Consider two mappings φ_{0} and φ_{1} from $\{0, \pm 1, \pm 2\}$ to $\{0, \pm 1\}$
$\varphi_{0}(-2)=\varphi_{1}(-2)=-1, \varphi_{0}(2)=\varphi_{1}(2)=1, \varphi_{0}(\pm 1)=\varphi_{1}(\pm 1)=0$, and $\varphi_{0}(0)=-1$, $\varphi_{1}(0)=1$.

Next for $x^{n} \in X$ define

$$
\varphi\left(x^{n}\right)=\left\{\left(\varphi_{\varepsilon_{1}}\left(x_{1}\right), \ldots, \varphi_{\varepsilon_{n}}\left(x_{n}\right)\right): \varepsilon_{i} \in\{0,1\}, i=1, \ldots, n\right\} .
$$

Claim 1. For $x^{n}, y^{n} \in X, x^{n} \neq y^{n}$

$$
\varphi\left(x^{n}\right) \cap \varphi\left(y^{n}\right)=\varnothing .
$$

Proof: Suppose the opposite. Then it is not hard to verify that $x^{n}-y^{n} \in\{0, \pm 2\}^{n} \backslash\left\{0^{n}\right\}$, a contradiction.

Let us define

$$
\alpha\left(x^{n}\right)=\text { the number of zero coordinates in } x^{n} .
$$

Claim 2. For any $x^{n} \in X$

$$
\left|\varphi\left(x^{n}\right)\right|=2^{\alpha\left(x^{n}\right)} .
$$

Proof: This immediately follows from the definition of $\varphi\left(x^{n}\right)$.

Combining Claims 1 and 2 we conclude that

$$
\begin{equation*}
\sum_{x^{n} \in X} 2^{\alpha\left(x^{n}\right)} \leq 3^{n} \tag{3.1}
\end{equation*}
$$

Now consider the mapping $\Psi: X \rightarrow\{0, \pm 1\}^{n}$, defined by $\Psi\left(x^{n}\right)=\left(\Psi_{0}\left(x_{1}\right), \ldots, \Psi_{0}\left(x_{n}\right)\right)$, where

$$
\Psi_{0}\left(x_{i}\right)= \begin{cases}-1, & \text { if } x_{i}=-2,-1 \\ 1, & \text { if } x_{i}=2,1 \\ 0, & \text { if } x_{i}=0 ; i=1, \ldots, n\end{cases}
$$

Claim 3. For $x^{n}, z^{n} \in X, x^{n} \neq z^{n}$ holds $\Psi\left(x^{n}\right) \neq \Psi\left(z^{n}\right)$.
Proof: Assuming the opposite we will get $x^{n}-z^{n} \in\{0, \pm 1\}^{n} \backslash\left\{0^{n}\right\}$, a contradiction.

Note (and this is important for us) that Ψ leaves the zero coordinates fixed. This with (3.1) implies that

$$
\sum_{y^{n} \in \Psi(X)} 2^{\alpha\left(y^{n}\right)} \leq 3^{n} .
$$

Since $|X|=|\Psi(X)|$ we can bound $|X|$ by the maximum cardinality of a set $Y \subset\{0, \pm 1\}^{n}$ satisfying

$$
\begin{equation*}
\sum_{y^{n} \in Y} 2^{\alpha\left(y^{n}\right)} \leq 3^{n} \tag{3.2}
\end{equation*}
$$

Define

$$
Y_{i}=\left\{y^{n} \in Y: \alpha\left(y^{n}\right)=i\right\}, i=0,1, \ldots, n .
$$

Note that $\left|Y_{i}\right| \leq 2^{n-i}\binom{n}{i}$.
Now (3.2) can be rewritten in the form

$$
\begin{equation*}
\sum_{i=0}^{n}\left|Y_{i}\right| 2^{i} \leq 3^{n} \tag{3.3}
\end{equation*}
$$

Observe that to maximize $|Y|=\sum_{i=0}^{n}\left|Y_{i}\right|$ we have to take $\left|Y_{i}\right|= \begin{cases}\binom{n}{i} 2^{n-i}, & \text { if } i \leq \ell(n) \\ 0, & \text { if } i>\ell(n)\end{cases}$ where $\ell(n)$ is the maximal index for which one has

$$
\sum_{i=0}^{\ell(n)} 2^{n-i}\binom{n}{i} 2^{i} \leq 3^{n}
$$

This gives (using standard technique) that $\ell(n) \geq\lfloor 0,1402 n\rfloor$. Correspondingly we get an estimation for $|Y|$ and consequently for $|X|$:

$$
|X| \leq|Y|<c \frac{3^{n}}{2^{0,14 n}}<c(2,723)^{n}
$$

for some constant c.

4 Proof of Theorem 3

Let $Q=\{0, \pm 1, \ldots, \pm m\}, F=\{0, \pm 1, \ldots, \pm k\}$ with $\alpha=(2 m+1) /(k+1)$.
(a) First we will show that $f(n, Q, F) \leq \alpha^{n-1}$. Let H be defined by an equation

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i}=0 \tag{4.1}
\end{equation*}
$$

Let also $H \cap F^{n}=\left\{0^{n}\right\}$ and $H \cap Q^{n}=X$ with $|X|=f(n, Q, F)$.
Define $Q_{j}=\{a \in Q: a \equiv j(\bmod \alpha)\}, j=0,1, \ldots, \alpha-1$.
Then consider the mapping $\varphi: X \rightarrow \mathbb{Z}_{\alpha}^{n}$, defined by the following transformation of coordinates.
$\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(\varphi_{0}\left(x_{1}\right), \ldots, \varphi_{0}\left(x_{n}\right)\right)$, where $\varphi_{0}\left(x_{i}\right)=j,(i=1, \ldots, n)$ if $x_{i} \in Q_{j} ;$ $j \in\{0, \ldots, \alpha-1\}$. Observe that φ is an injection. Hence $|X|=|\varphi(X)|$.
Note now that

$$
\operatorname{dim}(\operatorname{span} \varphi(X)) \leq \operatorname{dim}(\operatorname{span}(X))=n-1
$$

This implies that

$$
\begin{equation*}
|X|=|\varphi(X)| \leq \alpha^{n-1} . \tag{4.2}
\end{equation*}
$$

(b) Next we will show that bound (4.2) can be achieved by taking the hyperplane H defined by

$$
\begin{equation*}
x_{0}+(k+1) x_{1}+\cdots+(k+1)^{n-1} x_{n-1}=0 . \tag{4.3}
\end{equation*}
$$

In fact $H \cap F^{n}=\left\{0^{n}\right\}$. Moreover we claim that for any $-m \leq \lambda \leq m$ the equation

$$
\begin{equation*}
\sum_{i=0}^{n-1} x_{i}(k+1)^{i}=\lambda \tag{4.4}
\end{equation*}
$$

has exactly α^{n-1} solutions $x^{n} \in Q^{n}$. This can be shown using induction on n. The case $n=1$ is trivial.

Induction step from $\boldsymbol{n}-\mathbf{1}$ to \boldsymbol{n} : Clearly $x_{0} \in\{a:-m \leq a \leq m, a \equiv \lambda \bmod (k+$ $1)\}$. Thus x_{0} can take α many values $x_{0} \in[-m, m]$. For each x_{0} we come to an equation

$$
x_{1}+(k+1) x_{2}+\cdots+(k+1)^{n-2} x_{n-1}=\frac{\lambda-x_{0}}{k+1}
$$

with $\left|\frac{\lambda-x_{0}}{k+1}\right| \leq \frac{2 m}{k+1} \leq m$. Hence we get the result by induction hypothesis. This completes the proof of Theorem 3 in the case (i). The case (ii) can be proved similarly.

References

[1] T. Bohman, A sum packing problem of Erdős and the Conway-Guy sequence, Proceedings of the Amer. Math. Soc., Vol. 124, No. 12, 3627-3636, 1996.
[2] P. Erdős, Problems and results from additive number theory, Colloq. Théorie des Nombres, Bruxelles, 1955, Liege\& Paris, 1956.
[3] J.H. Conway and R.K. Guy, Sets of natural numbers with distinct sums, Notices Amer. Math. Soc. 15, p. 345, 1968.

Acknowledgement

The authors are indebted to the referee for his comments and suggestions which have substantially helped to improve the style of the paper.

