ON SHADOWS OF INTERSECTING FAMILIES R. AHLSWEDE, H. AYDINIAN, L. H. KHACHATRIAN

Received December 11, 2001 Revised November 14, 2003

The shadow minimization problem for t-intersecting systems of finite sets is considered. Let \mathcal{A} be a family of k-subsets of N. The ℓ -shadow of \mathcal{A} is the set of all $(k-\ell)$ -subsets $\partial_{\ell}\mathcal{A}$ contained in the members of \mathcal{A} . Let \mathcal{A} be a t-intersecting family (any two members have at least t elements in common) with $|\mathcal{A}| = m$. Given k, t, m the problem is to minimize $|\partial_{\ell}\mathcal{A}|$ (over all choices of \mathcal{A}). In this paper we solve this problem when m is big enough.

1. Introduction and result

 \mathbb{N} denotes the set of positive integers and the set $\{1, \ldots, n\}$ is abbreviated as [n]. Given $n, k \in \mathbb{N}$ and $X \subset \mathbb{N}$ denote

$$2^{[n]} = \{F : F \subset [n]\}, \quad \binom{X}{k} = \{F \subset X : |F| = k\}.$$

A finite family $\mathcal{A} \subset {X \choose k}$ is called *t*-intersecting if $|A \cap B| \ge t$ for all $A, B \in \mathcal{A}$. In the sequel this definition is used for X = [n] resp. $X = \mathbb{N}$. I(n, k, t) resp. $I(\infty, k, t)$ denote the sets of all such families.

We use the notation $\|\mathcal{A}\| = \bigcup_{A \in \mathcal{A}} A|$.

The ℓ -shadow of $\mathcal{A} \subset {X \choose k}$ is defined by $\partial_{\ell} \mathcal{A} = \left\{ F \in {X \choose k-\ell} : \exists A \in \mathcal{A} : F \subset A \right\}$. When $\ell = 1$ we write $\partial \mathcal{A}$. Define the colex order for the elements $A, B \in {\mathbb{N} \choose k}$ as follows:

$$A < B \Leftrightarrow \max((A \smallsetminus B) \cup (B \smallsetminus A)) \in B.$$

Mathematics Subject Classification (2000): 05C35, 05C65, 05D05

For a family $\mathcal{F} \subset {\mathbb{N} \choose k}$ we denote by $L_m \mathcal{F}$ the set of the first *m* elements of \mathcal{F} $(m \leq |\mathcal{F}|)$ in colex order.

Let $\mathcal{A} \subset {\binom{[n]}{k}}$ (or $\mathcal{A} \subset {\binom{\mathbb{N}}{k}}$) with $|\mathcal{A}| = m$. How small can $|\partial_{\ell} \mathcal{A}|$ be?

The well known Kruskal–Katona Theorem (proved by Kruskal [8], by Katona [6] and by Lindström and Zetterström [9]) solves the (shadows minimization) problem for any parameters n, k, m, ℓ .

Theorem KK.

(1.1)
$$|\partial_{\ell}\mathcal{A}| \ge \left|\partial_{\ell}\left(L_m\binom{[n]}{k}\right)\right|.$$

Let now $\mathcal{A} \in I(n,k,t)$. What can we say about $|\partial_{\ell}\mathcal{A}|$? (Can we have a result like Theorem KK?) An important result of Katona [7] is the following

Theorem Ka. For integers $1 \le \ell \le t$ and $t \le k \le n$, $A \in I(n, k, t)$

(1.2)
$$|\partial_{\ell}\mathcal{A}| \ge |\mathcal{A}| \frac{\binom{2k-t}{k-\ell}}{\binom{2k-t}{k}}.$$

For extensions and analogues of this inequality see Frankl [4].

In the lemma below we characterize equality in (1.2). The inequality actually is not valid for $\ell > t$: for example for t=1, $\ell=2$, k=3 and $n \ge 7$ the 1-intersecting EKR family satisfies $\frac{|\partial_2(\mathcal{A})|}{|\mathcal{A}|} = \frac{n}{\binom{n-1}{2}} < \frac{\binom{2k-t}{k-\ell}}{\binom{2k-t}{k}} = \frac{1}{2}$.

Thus in general finding the exact lower bound for $|\partial_{\ell} \mathcal{A}|$ for any given parameters n, k, t, ℓ, m is an open (and seemingly difficult) problem.

We state now our result, which solves the problem when the ground set is \mathbb{N} and *m* is big enough. For integers $1 \le r \le s$, $k \ge r$ define

$$\mathcal{B}(k,s,r) = \left\{ B \in \binom{\mathbb{N}}{k} : |B \cap [s]| \ge r \right\}.$$

Theorem. Let $\mathcal{A} \in I(\infty, k, t)$.

(a) For $1 \le \ell \le t < k$ and $|\mathcal{A}| = m > m_1(k, t, \ell)$ (suitable) we have

$$|\partial_{\ell}\mathcal{A}| \ge |\partial_{\ell}L_m\mathcal{B}(k, 2k-2-t, k-1)|.$$

(b) For $1 \le t < \ell < k$ and $|\mathcal{A}| = m > m_2(k, t, \ell)$ (suitable) we have

$$|\partial_{\ell}\mathcal{A}| \ge |\partial_{\ell}L_m\mathcal{B}(k,t,t)|.$$

2. An auxiliary result

Lemma. Under the conditions of Theorem Ka equality in (1.2) holds iff $\mathcal{A} = \binom{[2k-t]}{k}$.

Proof. Actually for any $1 \le \ell, t \le k$ counting edges, which are defined by containment, in the bipartite graph $(\mathcal{A}, \partial_{\ell} \mathcal{A})$ in two ways one gets for $s = ||\mathcal{A}||$

(2.1)
$$|\partial_{\ell}(\mathcal{A})| \ge |\mathcal{A}| \frac{\binom{k}{\ell}}{\binom{s-k+\ell}{\ell}}.$$

Now in the

Case 1: $s \leq 2k - t$

we continue with

$$|\partial_{\ell}(\mathcal{A})| \geq |\mathcal{A}| \frac{\binom{k}{\ell}}{\binom{k-t+\ell}{\ell}} = |\mathcal{A}| \frac{\binom{2k-t}{k-\ell}}{\binom{2k-t}{k}}$$

with equality iff s = 2k - t.

(Notice that in this case the assumption $\ell \leq t$ is not used.)

Case 2: s > 2k - t.

Recall the well known shifting operation S_{ij} defined for any $F \in 2^{[n]}$ and for any family $\mathcal{F} \subset 2^{[n]}$. For integers $1 \leq i < j \leq n$

$$S_{ij}(F) = \begin{cases} ((F \smallsetminus \{j\}) \cup \{i\}), & \text{if } i \notin F, j \in F, ((F \smallsetminus \{j\}) \cup \{i\}) \notin \mathcal{F}; \\ F, & \text{otherwise.} \end{cases}$$
$$S_{ij}(\mathcal{F}) = \{S_{ij}(F) : F \in \mathcal{F}\}.$$

We say that \mathcal{F} is shifted, if $S_{ij}(\mathcal{F}) = \mathcal{F}$ for all $1 \leq i < j \leq n$. The following properties of $S_{ij}(\mathcal{F})$ are well known (see e.g. [2] or [3])

 $\begin{array}{l} P_{1} \cdot |S_{ij}(\mathcal{F})| \!=\! |\mathcal{F}|, \\ P_{2} \cdot \partial_{\ell} S_{ij}(\mathcal{F}) \!\subset\! S_{ij}(\partial_{\ell} \mathcal{F}) \text{ (hence } |\partial_{\ell} S_{ij}(\mathcal{F})| \!\leq\! |\partial_{\ell} \mathcal{F}|), \\ P_{3} \cdot \mathcal{F} \!\in\! I(n,k,t) \!\Rightarrow\! S_{ij}(\mathcal{F}) \!\in\! I(n,k,t). \end{array}$

We also need the following result due to Mörs [10] and Füredi and Griggs [5].

Theorem MFG. Let $\mathcal{F} \subset {\binom{[n]}{k}}$ have minimal ℓ -shadow, then its $(\ell+1)$ -shadow is minimal as well.

In particular the theorem implies that for an optimal family \mathcal{F} the shifting operation does not decrease $\|\mathcal{F}\|$. In particular if \mathcal{F} is a *t*-intersecting family with minimal ℓ -shadow and $|\mathcal{F}| \leq \binom{2k-t}{k}$ then $\|\mathcal{F}\| \leq 2k - t$.

Combining all these facts we conclude that w.l.o.g. we can assume that \mathcal{A} is shifted.

Define now

 $\mathcal{A}_1 = \{A \in \mathcal{A} : s \in A\}, \mathcal{A}_0 = \mathcal{A} \smallsetminus \mathcal{A}_1, \quad \mathcal{A}'_1 = \{A \smallsetminus \{s\} : A \in \mathcal{A}_1\}.$

Proposition 1. $|\partial_{\ell}\mathcal{A}| = |\partial_{\ell}\mathcal{A}_0| + |\partial_{\ell}\mathcal{A}'_1|.$

Proof. Define

$$\mathcal{B}_1 = \{ B \subset \partial_\ell \mathcal{A}_1 : s \in B \}, \ \mathcal{B}_0 = \partial_\ell \mathcal{A}_1 \smallsetminus \mathcal{B}_1.$$

It is not hard to see that the shiftedness of \mathcal{A} implies that $\mathcal{B}_0 \subset \partial_\ell \mathcal{A}_0$. Also it is clear that $\mathcal{B}_1 \cap \partial_\ell \mathcal{A}_0 = \emptyset$.

Proposition 2. For $s \ge 2k - t + 1$ $\mathcal{A}'_1 \subset \binom{[s-1]}{k-1}$ is a *t*-intersecting family.

Proof. Suppose \mathcal{A}'_1 is (t-1)-intersecting, that is there are two elements $A, B \in \mathcal{A}_1$ with $|A \cap B| = t$. Then in view of the shiftedness we must have $|A \cup B| = s$. This is clear, because otherwise there exists $i \in [s] \setminus (A \cup B)$ such that $S_{is}(A) \triangleq A' \in \mathcal{A} \setminus \{A\}$, and hence $|A' \cap B| = t-1$ a contradiction. Note however that for $s \geq 2k - t + 1$ the conditions $|A \cup B| = s$ and $|A \cap B| \geq t$ are contradictory.

We are prepared now to complete the proof of the lemma.

We proceed by induction on $s \ge 2k-t$. The induction beginning s = 2k-t is already done by Case 1.

For the induction $s \rightarrow s+1$ we first show that for $s \ge 2k-t+1$

(2.2)
$$\mathcal{A}_0 \neq \binom{[2k-t]}{k}.$$

For this we distinguish two subcases of case 2.

Subcase s = 2k - t + 1: Observe that $|\mathcal{A}_0| < \binom{2k-t}{k}$, because otherwise by the *t*-intersecting property of $\mathcal{A} = \mathcal{A}_1$ would be empty in contradiction to s = 2k - t + 1.

Subcase $s \ge 2k - t + 2$: Here by shiftedness $||\mathcal{A}_0|| \ge 2k - t + 1$ and again (2.2) holds.

For $\|\mathcal{A}\| = s + 1$ we have $\|\mathcal{A}_0\| = s$ and the induction hypothesis yields

(2.3)
$$|\partial_{\ell}\mathcal{A}_{0}| > |\mathcal{A}_{0}| \frac{\binom{2k-t}{k-\ell}}{\binom{2k-t}{k}}$$

558

Further in view of Proposition 2 and (1.2) and the fact $|\mathcal{A}'_1| = |\mathcal{A}_1|$ we have

(2.4)
$$|\partial_{\ell}\mathcal{A}'_{1}| \ge |\mathcal{A}'_{1}| \frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{k-1}} = |\mathcal{A}_{1}| \frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{k-1}}.$$

Finally by Proposition 1, (2.2), (2.3) and the inequality $\frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{2k-2-t}} \ge \frac{\binom{2k-t}{k-\ell}}{\binom{2k-2-t}{2k-t}}$ (for $t \ge \ell$) we get

(2.5)
$$|\partial_{\ell}\mathcal{A}| > (|\mathcal{A}_{1}| + |\mathcal{A}_{0}|) \frac{\binom{2k-t}{k-\ell}}{\binom{2k-t}{k}} = |\mathcal{A}| \frac{\binom{2k-t}{k-\ell}}{\binom{2k-t}{k}},$$

concluding the proof.

3. Proof of the theorem in case (a): $1 \le \ell \le t < k$

Given $m > \binom{2k-t}{k}$ consider the family $\mathcal{A}^* \triangleq L_m \mathcal{B}(k, 2k-2-t, k-1).$ Observe that \mathcal{A}^* is *t*-intersecting.

Let us write $m = |\mathcal{A}^*|$ in the form

(3.1)
$$m = \binom{2k-2-t}{k} + n\binom{2k-2-t}{k-1} + r_{k}$$

where $n \in \mathbb{N}$ and $0 \leq r < \binom{2k-2-t}{k-1}$. Note then that $\mathcal{A}^* \smallsetminus \binom{[2k-2-t]}{k}$ can be partitioned into n+1 (or n, if r = 0) classes, where each class consists of sets containing a fixed element $j \in [2k-1-t, 2k-1-t+n]$ (or [2k-1-t, 2k-1-t+(n-1)], if r=0). We can observe now that

(3.2)
$$|\partial_{\ell}\mathcal{A}^*| = \binom{2k-2-t}{k-\ell} + n\binom{2k-2-t}{k-1-\ell} + \partial_{\ell}(r),$$

where $\partial_{\ell}(r) \triangleq \left| \partial_{\ell} \left(L_r \binom{[2k-2-t]}{k-1} \right) \right|.$

Now we show first that the ratio $|\partial_{\ell} \mathcal{A}^*| |\mathcal{A}^*|^{-1}$ can be approximated like in (1.2) of Katona's Theorem from above but also from below by passing from k to k-1. By elementary calculations of binomial coefficients we get Claim 1 below. The lower bound is not needed in this paper, but perhaps useful elsewhere.

In the second part of this proof of (a) we show that for any family $\mathcal{A} \not\subset$ $\mathcal{B}(k, 2k-2-t, k-1), |\mathcal{A}| = m$, we can establish a lower bound for $|\partial_{\ell}\mathcal{A}|$ which exceeds the upper bound in Claim 1 for m large. This contradiction will complete the proof of (a).

Claim 1.

(3.3)
$$m\frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{k-1}} + 1 \le |\partial_{\ell}\mathcal{A}^*| \le m\frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{k-1}} + \alpha,$$

for some $1 \leq \alpha < \binom{2k-1-t}{k-\ell}$.

Proof. Let us abbreviate $\frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{k-1}}$ by λ . We want to see how much $|\partial_{\ell}\mathcal{A}^*|$ deviates from $m\lambda$.

The following identity can be easily verified using (3.1) and (3.2).

(3.4)
$$|\partial_{\ell}\mathcal{A}^*| = m\lambda + \binom{2k-2-t}{k-\ell} - \binom{2k-2-t}{k}\lambda + \partial_{\ell}(r) - r\lambda.$$

Since $\partial_{\ell}(r) < \binom{2k-2-t}{k-\ell-1}$ in view of (3.4) we have the desired upperbound

$$|\partial_{\ell}\mathcal{A}^*| < m\lambda + \binom{2k-2-t}{k-\ell} + \binom{2k-2-t}{k-\ell-1} = m\lambda + \binom{2k-1-t}{k-\ell},$$

(which can be improved, but is good enough for our purposes).

Furthermore by (1.2) we have $\partial_{\ell}(r) \ge r\lambda$. Also one can check that

$$\binom{2k-2-t}{k-\ell} - \binom{2k-2-t}{k}\lambda = \frac{\ell}{k}\binom{2k-1-t}{k-\ell} \ge 1$$

Hence by (3.4) we get our lower bound

$$(3.5) \qquad \qquad |\partial_{\ell} \mathcal{A}_{\ell}^*| \ge m\lambda + 1.$$

Note that the constant 1 cannot be improved in general. For example for $k=t+1, \ \ell=1$ and r=0 we have equality in (3.5).

Suppose now $\mathcal{A} \in I(\infty, k, t)$ is an optimal family (has minimal ℓ -shadow) with $|\mathcal{A}| = m > \binom{2k-t}{k}$ and $||\mathcal{A}|| = u$. Suppose also again that \mathcal{A} is shifted.

Let us partition \mathcal{A} into s+1 disjoint classes $\mathcal{A} = \bigcup_{i=1}^{s+1} \mathcal{A}_i, s \triangleq u - (2k-t)$, defined by

$$\mathcal{A}_{1} = \{A \in \mathcal{A} : u \in A\},\$$

$$\mathcal{A}_{2} = \{A \in \mathcal{A} \smallsetminus \mathcal{A}_{1} : u - 1 \in A\},\$$

$$\vdots$$

$$\mathcal{A}_{s} = \{A \in \mathcal{A} \smallsetminus (\mathcal{A}_{1} \cup \dots \cup \mathcal{A}_{s-1}) : u - s + 1 \in A\},\$$

$$\mathcal{A}_{s+1} = \mathcal{A} \smallsetminus (\mathcal{A}_{1} \cup \dots \cup \mathcal{A}_{s}).$$

560

Note that $\mathcal{A}_{s+1} \subset {\binom{[2k-t]}{k}}$. Define also

$$\mathcal{A}'_i = \{A \smallsetminus \{u - i + 1\} : A \in \mathcal{A}_i\}, \ i = 1, \dots, s.$$

Since \mathcal{A} is shifted, from Proposition 1 we infer that

(3.6)
$$|\partial_{\ell}\mathcal{A}| = |\partial_{\ell}\mathcal{A}_{s+1}| + |\partial_{\ell}\mathcal{A}'_{s}| + \dots + |\partial_{\ell}\mathcal{A}'_{1}|.$$

We distinguish now between two cases.

Case 1: $\mathcal{A}'_i \neq \binom{[2(k-1)-t]}{k-1}, i=1,...,s.$

By Proposition 2 each class \mathcal{A}'_i , i = 1, ..., s, is *t*-intersecting. Note also that $|\mathcal{A}'_i| = |\mathcal{A}_i|$. Therefore by the Lemma we have

$$|\partial_{\ell}\mathcal{A}'_i| \ge |\mathcal{A}_i| \frac{\binom{2(k-1)-t}{k-1-\ell}}{\binom{2(k-1)-t}{k-1}} + 1, \ i = 1, \dots, s.$$

This with (3.6) implies

$$\begin{aligned} |\partial_{\ell}\mathcal{A}| &\geq |\partial_{\ell}\mathcal{A}_{s+1}| + \lambda (|\mathcal{A}_{1}| + \dots + |\mathcal{A}_{s}|) + s = |\partial_{\ell}\mathcal{A}_{s+1}| + \lambda |\mathcal{A}| - \lambda |\mathcal{A}_{s+1}| + s \\ &> \lambda |\mathcal{A}| + s - \lambda |\mathcal{A}_{s+1}|. \end{aligned}$$

Since $|\mathcal{A}_{s+1}| < \binom{2k-t}{k}$ we have $\beta = \beta(k,t,\ell) \triangleq \lambda |\mathcal{A}_{s+1}| < \lambda \binom{2k-t}{k}$ and a fortiori $|\partial_{\ell}\mathcal{A}| > m \frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{k-1}} + s - \beta$, where $\beta < \binom{2k-t}{k} \frac{\binom{2k-2-t}{k-1-\ell}}{\binom{2k-2-t}{k-1}}$.

If now *m* is big enough, such that $s \ge \beta + \binom{2k-t-1}{k-\ell}$, then in view of (3.3) we get $|\partial_{\ell} \mathcal{A}| > |\partial_{\ell} \mathcal{A}^*|$, a contradiction with the optimality of \mathcal{A} .

Case 2: There exists a family A_i , $i \in \{1, ..., s\}$ such that

(3.7)
$$\mathcal{A}'_i = \binom{[2k-2-t]}{k-1}.$$

Claim 2.

$$\mathcal{A} \subset \mathcal{B}(k, 2k-2-t, k-1).$$

Proof. By definition each member of \mathcal{A}_i contains the element u-i+1 and $u-i+1 \ge 2k-t+1$, since $i \le s = u-2k+t$. Also in view of (3.7) \mathcal{A}_i contains the set $B_1 \triangleq \{k-t, \ldots, 2k-2-t, u-i+1\}$. Moreover by the shiftedness (and the fact that u-i-1 > 2k-2-t) \mathcal{A} contains also $B_2 \triangleq \{k-t, \ldots, 2k-2-t, u-i\}$ and $B_3 \triangleq \{k-t, \ldots, 2k-2-t, u-i-1\}$.

Suppose now $F \in \mathcal{A}$ and $F \notin \mathcal{B}(k, 2k-2-t, k-1)$, that is $|F \cap [2k-2-t]| \leq k-2$. In view of the shiftedness we can take $F = \{1, \ldots, k'\} \cup E$, where $\{1, \ldots, k'\} = F \cap [2k-2-t], k' \leq k-2$.

If k' < k-2, then observe that $|F \cap B_1| < t$, a contradiction. Let now k'=k-2. Then clearly $|\{1,\ldots,k'\} \cap B_j|=t-1$ (j=1,2,3). Hence (to provide *t*-intersection with B_1, B_2, B_3) F must contain the elements u-i+1, u-i and u-i-1, a contradiction with |F|=k.

To complete the proof of case (a) we use a special case of the result in [1]. **Theorem AAK.** For $s, r, k \in \mathbb{N}$, $1 \leq r \leq s, \ell \leq k$ let $\mathcal{F} \subset \mathcal{B}(k, s, r)$ with $|\mathcal{F}| = m$. Then

$$\partial_{\ell} \mathcal{F}| \ge |\partial_{\ell} L_m \mathcal{B}(k, s, r)|.$$

4. Proof of the theorem in case (b): $1 \le t < \ell < k$

Claim. It is sufficient to consider the case $\ell = t+1$. **Proof.** Let's explain first that (for $\ell \ge t$)

$$\partial_{\ell} L_m \mathcal{B}(k,t,t) = L_{M^*} \binom{\mathbb{N}}{k-\ell},$$

where $M^* \triangleq |\partial_\ell L_m \mathcal{B}(k, t, t)|$.

By definition of $\mathcal{B}_m(k,t,t)$

$$L_m \mathcal{B}(k,t,t) = \left\{ [t] \cup E : E \in L_m \binom{\mathbb{N} \smallsetminus [t]}{k-t} \right\}.$$

Since $\ell \geq t$ the largest element F of $\partial_{\ell} L_m \mathcal{B}(k,t,t)$ (in colex order) satisfies $F \in \partial_{\ell-t} L_m \binom{\mathbb{N} \setminus [t]}{k-t}$. Therefore for every $(k-\ell)$ -set F' < F there exists $B \in L_m \mathcal{B}(k,t,t)$ such that $F' \subset B$ and the identity follows.

Suppose now we have proved the theorem for some $\ell \ge t+1$. That is for any family $\mathcal{A} \in I(\infty, k, t)$ with $|\mathcal{A}| = m$ $(m > m_2(k, t, \ell))$ we have

$$M \triangleq |\partial_{\ell} \mathcal{A}| \ge |\partial_{\ell} L_m \mathcal{B}(k, t, t)| = M^*.$$

Then using Theorem KK we can write

$$|\partial_{\ell+1}\mathcal{A}| = |\partial(\partial_{\ell}\mathcal{A})| \ge \left|\partial L_M\binom{\mathbb{N}}{k-\ell}\right| \ge \left|\partial L_{M^*}\binom{\mathbb{N}}{k-\ell}\right| = |\partial_{\ell+1}L_m\mathcal{B}(k,t,t)|.$$

Let now $\ell = t+1$ and let $\mathcal{A} \in I(\infty, k, t)$ be an optimal, shifted family with $|\mathcal{A}| = m$.

Define next (in new notation)

$$\mathcal{A}_1 = \{A \in \mathcal{A} : 1 \in A\}, \quad \mathcal{A}'_1 = \{A \smallsetminus \{1\} : A \in \mathcal{A}_1\}, \quad \mathcal{A}_0 = \mathcal{A} \smallsetminus \mathcal{A}_1,$$
and denote $|\mathcal{A}_0| = m_0, |\mathcal{A}_1| = m_1 = m - m_0.$

We consider two cases.

Case 1: $\mathcal{A}_0 = \emptyset$

Clearly we have

$$|\partial_{t+1}\mathcal{A}| = |\partial_t\mathcal{A}'_1| + |\partial_{t+1}\mathcal{A}'_1|.$$

Since $\mathcal{A}'_1 \in I(\infty, k-1, t-1)$ we can use induction on t (the case t=1 can be easily derived). That is we have

$$\begin{aligned} |\partial_{t+1}\mathcal{A}| &\geq |\partial_t L_m \mathcal{B}(k-1,t-1,t-1)| + |\partial_{t+1} L_m \mathcal{B}(k-1,t-1,t-1)| \\ &= |\partial_{t+1} L_m \mathcal{B}(k,t,t)|. \end{aligned}$$

Case 2: $\mathcal{A}_0 \neq \emptyset$.

Let us note first that \mathcal{A}_0 is (t+1)-intersecting. This easily follows from the shiftedness of \mathcal{A} .

Hence by (1.2) we have

$$(4.1) |\partial_{t+1}\mathcal{A}_0| \ge |\mathcal{A}_0|.$$

Also in view of the shiftedness $\{2, \ldots, k+1\} \in \mathcal{A}_0 \neq \emptyset$. This implies that

$$\mathcal{A}_1' \subset \mathcal{F} \triangleq \left\{ F \in \binom{\mathbb{N} \smallsetminus \{1\}}{k-1} : |F \cap \{2, \dots, k+1\}| \ge t \right\}.$$

We apply now Theorem AAK to \mathcal{A}'_1 identifying \mathcal{F} with $\mathcal{B}(k-1,k,t)$. We get then

$$(4.2) \quad |\partial_{t+1}\mathcal{A}'_1| \ge |\partial_{t+1}L_{m_1}\mathcal{B}(k-1,k,t)|, \quad |\partial_t\mathcal{A}'_1| \ge |\partial_tL_{m_1}\mathcal{B}(k-1,k,t)|.$$

Obviously we also have

(4.3)
$$\sum_{i=0}^{k-t-1} \binom{k}{t+i} \binom{x-k}{k-1-t-i} < |\mathcal{A}'_1| = m_1 \le \sum_{i=0}^{k-t-1} \binom{k}{t+i} \binom{x-k+1}{k-1-t-i},$$

where $x = ||L_{m_1}\mathcal{B}(k-1,k,t)|| - 1$.

Therefore for a positive constant $c_1 = c_1(k, t)$

(4.4)
$$m_1 \sim c_1 x^{k-1-t}.$$

On the other hand

$$|\partial_{t+1}\mathcal{A}_1| = |\partial_{t+1}\mathcal{A}_1'| + |\partial_t\mathcal{A}_1'|.$$

This with (4.2) and (4.3) gives for another positive constant $c_2 = c_2(k,t)$ the estimation

(4.5)
$$|\partial_{t+1}\mathcal{A}_1| \ge |\partial_t\mathcal{A}_1'| \ge \binom{x}{k-t-1} \ge c_2m_1.$$

Assuming now, for a contradiction, that $|\partial_{t+1}\mathcal{A}| \leq |\partial_{t+1}L_m\mathcal{B}(k,t,t)|$ we observe that for any $\varepsilon > 0$, if $m \geq m(\varepsilon,t,k)$, suitable, we have

$$\frac{|\partial_{t+1}\mathcal{A}|}{|\mathcal{A}|} = \frac{|\partial_{t+1}\mathcal{A}|}{m} \le \frac{|\partial_{t+1}L_m\mathcal{B}(k,t,t)|}{m} < \varepsilon.$$

This with (4.1) implies for $m > m(\varepsilon, t, k)$ also

(4.6)
$$\varepsilon > \frac{|\partial_{t+1}\mathcal{A}|}{|\mathcal{A}|} \ge \frac{|\partial_{t+1}\mathcal{A}_0|}{|\mathcal{A}|} \ge \frac{|\mathcal{A}_0|}{|\mathcal{A}|} = \frac{m_0}{m} = 1 - \frac{m_1}{m}$$

Together with (4.5) we get

$$\varepsilon > \frac{|\partial_{t+1}\mathcal{A}|}{|\mathcal{A}|} \ge \frac{|\partial_{t+1}\mathcal{A}_1|}{|\mathcal{A}|} \ge \frac{c_2m_1}{m} \text{ or } \frac{m_1}{m} \le \frac{\varepsilon}{c_2}$$

On the other hand (4.6) implies that $\frac{m_1}{m} > 1 - \varepsilon$ and thus $\varepsilon > (1 - \varepsilon)c_2$. This contradiction completes the proof of (b).

5. Remarks

1. We give a numerical version for case (a) of our theorem. Note first that any integer $m > \binom{2k-t}{k}$ can be uniquely represented in the form (3.1). Also we can uniquely represent r in the (k-1)-cascade form (see [2] or [3])

$$r = \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s},$$

where $a_{k-1} > a_{k-2} > \cdots > a_s \ge s \ge 1$.

Then in view of our theorem and Theorem KK we have the following: For $1 \le \ell \le t < k$ and $m > m_1(k, t, \ell)$ holds

$$|\partial_{\ell}\mathcal{A}| \ge \binom{2k-2-t}{k-\ell} + n\binom{2k-2-t}{k-\ell-1} + \binom{a_{k-1}}{k-1-\ell} + \dots + \binom{a_s}{s-\ell}.$$

Note that for applications one can use also the lower estimate in (3.3) (for $m > m_1(k, t, \ell)$).

2. As an improvement of the theorem it would be interesting to find minimal values of $m_1(k, \ell, t)$ and $m_2(k, \ell, t)$ for which the result holds. In fact for the case (a) the proof gives also an upper bound for $m_1(k, \ell, t)$. However this estimation seems to be rough.

More generally one should decide whether t-intersecting $\mathcal{B}(k,s,r)$ sets are extremal.

On the other hand note that our theorem is not valid for all $m > \binom{2k-t}{k}$. Here are examples for cases (a) and (b).

(a) $1 \le \ell < t$. Let $k > 3, t = \ell = 1, m = \binom{2k-1}{k} + 1$. Then we can write

$$m = {\binom{2k-3}{k}} + 3{\binom{2k-3}{k-1}} + 1.$$

Hence

$$\Delta_1 \triangleq |\partial (L_m \mathcal{B}(k, 2k-3, k-1))| = \binom{2k-3}{k-1} + 3\binom{2k-3}{k-2} + k-1$$
$$= 4\binom{2k-3}{k-1} + k-1.$$

Define now the following intersecting family

$$\mathcal{F} = \left(\binom{[2k-1]}{k} \setminus \{k, \dots, 2k-1\} \right) \cup \{1, \dots, k-1, 2k\} \cup \{1, \dots, k-1, 2k+1\}.$$

Clearly $|\mathcal{F}| = \binom{2k-1}{k} + 1$ and $|\partial \mathcal{F}| = \binom{2k-1}{k-1} + 2(k-2) = 3\binom{2k-3}{k-1} + \binom{2k-3}{k-3} + 2(k-2)$. Thus $|\partial \mathcal{F}| < \Delta_1$.

(b) $1 \le t < \ell$. For the same m, k and t=1, let now $\ell=2$. Then

$$\Delta_2 \triangleq \left| \partial_2 (L_m \mathcal{B}(k, 1, 1)) \right| = \binom{2k}{k-2} + \binom{k-1}{2},$$

while

$$|\partial_2 \mathcal{F}| = \binom{2k-1}{k-2} + 2\binom{k-1}{2} < \Delta_2.$$

References

- R. AHLSWEDE, H. AYDINIAN and L. H. KHACHATRIAN: More about shifting techniques, *European J. Combin.* 24(5) (2003), 551–556.
- [2] K. ENGEL: Sperner Theory, Cambridge University Press, 1997.
- [3] P. FRANKL: The shifting technique in extremal set theory, in: Surveys in Combinatorics, Lond. Math. Soc. Lect. Note Ser., 123, 81–110, 1987.
- [4] P. FRANKL: Shadows and shifting, Graphs and Combinatorics 7 (1991), 23–29.
- [5] Z. FÜREDI and J. R. GRIGGS: Families of finite sets with minimum shadows, Combinatorica 6(4) (1986), 355–363.
- [6] G. O. H. KATONA: A theorem of finite sets, in: Proceedings of Tihany Conference, 1966; 187–207, Budapest 1968.
- [7] G. O. H. KATONA: Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964), 329–337.
- [8] J. KRUSKAL: The number of simplices in a complex, in: Mathematical Optimization Techniques, 251–278, Berkeley–Los Angeles, Uni. of California Press, 1963.
- [9] B. A. LINDSTRÖM and M. O. ZETTERSTRÖM: A combinatorial problem in the K-adic number systems, Proc. Amer. Math. Soc. 18 (1967), 166–170.
- [10] M. MÖRS: A generalization of a theorem of Kruskal, Graphs and Combinatorics 1 (1985), 167–183.

R. Ahlswede, H. Aydinian, L. H. Khachatrian

Department of Mathematics University of Bielefeld Box 100131 D-33501 Bielefeld Germany hollmann@Mathematik.uni-Bielefeld.de