ON SHADOWS OF INTERSECTING FAMILIES

R. AHLSWEDE, H. AYDINIAN, L. H. KHACHATRIAN

Received December 11, 2001
Revised November 14, 2003

The shadow minimization problem for t-intersecting systems of finite sets is considered. Let \mathcal{A} be a family of k-subsets of \mathbb{N}. The ℓ-shadow of \mathcal{A} is the set of all $(k-\ell)$-subsets $\partial_{\ell} \mathcal{A}$ contained in the members of \mathcal{A}. Let \mathcal{A} be a t-intersecting family (any two members have at least t elements in common) with $|\mathcal{A}|=m$. Given k, t, m the problem is to minimize $\left|\partial_{\ell} \mathcal{A}\right|$ (over all choices of \mathcal{A}). In this paper we solve this problem when m is big enough.

1. Introduction and result

\mathbb{N} denotes the set of positive integers and the set $\{1, \ldots, n\}$ is abbreviated as $[n]$. Given $n, k \in \mathbb{N}$ and $X \subset \mathbb{N}$ denote

$$
2^{[n]}=\{F: F \subset[n]\}, \quad\binom{X}{k}=\{F \subset X:|F|=k\} .
$$

A finite family $\mathcal{A} \subset\binom{X}{k}$ is called t-intersecting if $|A \cap B| \geq t$ for all $A, B \in \mathcal{A}$. In the sequel this definition is used for $X=[n]$ resp. $X=\mathbb{N}$. $I(n, k, t)$ resp. $I(\infty, k, t)$ denote the sets of all such families.

We use the notation $\|\mathcal{A}\|=\left|\bigcup_{A \in \mathcal{A}} A\right|$.
The ℓ-shadow of $\mathcal{A} \subset\binom{X}{k}$ is defined by $\partial_{\ell} \mathcal{A}=\left\{F \in\binom{X}{k-\ell}: \exists A \in \mathcal{A}: F \subset A\right\}$. When $\ell=1$ we write $\partial \mathcal{A}$. Define the colex order for the elements $A, B \in\binom{\mathbb{N}}{k}$ as follows:

$$
A<B \Leftrightarrow \max ((A \backslash B) \cup(B \backslash A)) \in B
$$

Mathematics Subject Classification (2000): 05C35, 05C65, 05D05

For a family $\mathcal{F} \subset\binom{\mathbb{N}}{k}$ we denote by $L_{m} \mathcal{F}$ the set of the first m elements of $\mathcal{F}(m \leq|\mathcal{F}|)$ in colex order.

Let $\mathcal{A} \subset\binom{[n]}{k}\left(\right.$ or $\left.\mathcal{A} \subset\binom{\mathbb{N}}{k}\right)$ with $|\mathcal{A}|=m$. How small can $\left|\partial_{\ell} \mathcal{A}\right|$ be?
The well known Kruskal-Katona Theorem (proved by Kruskal [8], by Katona [6] and by Lindström and Zetterström [9]) solves the (shadows minimization) problem for any parameters n, k, m, ℓ.

Theorem KK.

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}\right| \geq\left|\partial_{\ell}\left(L_{m}\binom{[n]}{k}\right)\right| \tag{1.1}
\end{equation*}
$$

Let now $\mathcal{A} \in I(n, k, t)$. What can we say about $\left|\partial_{\ell} \mathcal{A}\right|$? (Can we have a result like Theorem KK?) An important result of Katona [7] is the following

Theorem Ka. For integers $1 \leq \ell \leq t$ and $t \leq k \leq n, \mathcal{A} \in I(n, k, t)$

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}\right| \geq|\mathcal{A}| \frac{\binom{2 k-t}{k-\ell}}{\binom{2 k-t}{k}} \tag{1.2}
\end{equation*}
$$

For extensions and analogues of this inequality see Frankl [4].
In the lemma below we characterize equality in (1.2). The inequality actually is not valid for $\ell>t$: for example for $t=1, \ell=2, k=3$ and $n \geq 7$ the 1-intersecting EKR family satisfies $\frac{\left|\partial_{2}(\mathcal{A})\right|}{|\mathcal{A}|}=\frac{n}{\binom{n-1}{2}}<\frac{\binom{2 k-t}{k-\ell}}{\binom{k-t}{k}}=\frac{1}{2}$.

Thus in general finding the exact lower bound for $\left|\partial_{\ell} \mathcal{A}\right|$ for any given parameters n, k, t, ℓ, m is an open (and seemingly difficult) problem.

We state now our result, which solves the problem when the ground set is \mathbb{N} and m is big enough. For integers $1 \leq r \leq s, k \geq r$ define

$$
\mathcal{B}(k, s, r)=\left\{B \in\binom{\mathbb{N}}{k}:|B \cap[s]| \geq r\right\}
$$

Theorem. Let $\mathcal{A} \in I(\infty, k, t)$.
(a) For $1 \leq \ell \leq t<k$ and $|\mathcal{A}|=m>m_{1}(k, t, \ell)$ (suitable) we have

$$
\left|\partial_{\ell} \mathcal{A}\right| \geq\left|\partial_{\ell} L_{m} \mathcal{B}(k, 2 k-2-t, k-1)\right|
$$

(b) For $1 \leq t<\ell<k$ and $|\mathcal{A}|=m>m_{2}(k, t, \ell)$ (suitable) we have

$$
\left|\partial_{\ell} \mathcal{A}\right| \geq\left|\partial_{\ell} L_{m} \mathcal{B}(k, t, t)\right|
$$

2. An auxiliary result

Lemma. Under the conditions of Theorem Ka equality in (1.2) holds iff $\mathcal{A}=\binom{[2 k-t]}{k}$.
Proof. Actually for any $1 \leq \ell, t \leq k$ counting edges, which are defined by containment, in the bipartite graph $\left(\mathcal{A}, \partial_{\ell} \mathcal{A}\right)$ in two ways one gets for $s=\|\mathcal{A}\|$

$$
\begin{equation*}
\left|\partial_{\ell}(\mathcal{A})\right| \geq|\mathcal{A}| \frac{\binom{k}{\ell}}{\binom{s-k+\ell}{\ell}} . \tag{2.1}
\end{equation*}
$$

Now in the
Case 1: $s \leq 2 k-t$
we continue with

$$
\left|\partial_{\ell}(\mathcal{A})\right| \geq|\mathcal{A}| \frac{\binom{k}{\ell}}{\binom{k-t+\ell}{\ell}}=|\mathcal{A}| \frac{\binom{2 k-t}{k-\ell}}{\binom{2 k-t}{k}}
$$

with equality iff $s=2 k-t$.
(Notice that in this case the assumption $\ell \leq t$ is not used.)
Case 2: $s>2 k-t$.
Recall the well known shifting operation $S_{i j}$ defined for any $F \in 2^{[n]}$ and for any family $\mathcal{F} \subset 2^{[n]}$. For integers $1 \leq i<j \leq n$

$$
\begin{aligned}
& S_{i j}(F)= \begin{cases}((F \backslash\{j\}) \cup\{i\}), & \text { if } i \notin F, j \in F,((F \backslash\{j\}) \cup\{i\}) \notin \mathcal{F} ; \\
F, & \text { otherwise. }\end{cases} \\
& S_{i j}(\mathcal{F})=\left\{S_{i j}(F): F \in \mathcal{F}\right\} .
\end{aligned}
$$

We say that \mathcal{F} is shifted, if $S_{i j}(\mathcal{F})=\mathcal{F}$ for all $1 \leq i<j \leq n$.
The following properties of $S_{i j}(\mathcal{F})$ are well known (see e.g. [2] or [3])
$P_{1} .\left|S_{i j}(\mathcal{F})\right|=|\mathcal{F}|$,
$P_{2} . \partial_{\ell} S_{i j}(\mathcal{F}) \subset S_{i j}\left(\partial_{\ell} \mathcal{F}\right)$ (hence $\left.\left|\partial_{\ell} S_{i j}(\mathcal{F})\right| \leq\left|\partial_{\ell} \mathcal{F}\right|\right)$,
$P_{3} . \mathcal{F} \in I(n, k, t) \Rightarrow S_{i j}(\mathcal{F}) \in I(n, k, t)$.
We also need the following result due to Mörs [10] and Füredi and Griggs [5].
Theorem MFG. Let $\mathcal{F} \subset\binom{[n]}{k}$ have minimal ℓ-shadow, then its $(\ell+1)$ shadow is minimal as well.

In particular the theorem implies that for an optimal family \mathcal{F} the shifting operation does not decrease $\|\mathcal{F}\|$. In particular if \mathcal{F} is a t-intersecting family with minimal ℓ-shadow and $|\mathcal{F}| \leq\binom{ 2 k-t}{k}$ then $\|\mathcal{F}\| \leq 2 k-t$.

Combining all these facts we conclude that w.l.o.g. we can assume that \mathcal{A} is shifted.

Define now

$$
\mathcal{A}_{1}=\{A \in \mathcal{A}: s \in A\}, \mathcal{A}_{0}=\mathcal{A} \backslash \mathcal{A}_{1}, \quad \mathcal{A}_{1}^{\prime}=\left\{A \backslash\{s\}: A \in \mathcal{A}_{1}\right\} .
$$

Proposition 1. $\left|\partial_{\ell} \mathcal{A}\right|=\left|\partial_{\ell} \mathcal{A}_{0}\right|+\left|\partial_{\ell} \mathcal{A}_{1}^{\prime}\right|$.
Proof. Define

$$
\mathcal{B}_{1}=\left\{B \subset \partial_{\ell} \mathcal{A}_{1}: s \in B\right\}, \mathcal{B}_{0}=\partial_{\ell} \mathcal{A}_{1} \backslash \mathcal{B}_{1} .
$$

It is not hard to see that the shiftedness of \mathcal{A} implies that $\mathcal{B}_{0} \subset \partial_{\ell} \mathcal{A}_{0}$. Also it is clear that $\mathcal{B}_{1} \cap \partial_{\ell} \mathcal{A}_{0}=\varnothing$.
Proposition 2. For $s \geq 2 k-t+1 \quad \mathcal{A}_{1}^{\prime} \subset\binom{[s-1]}{k-1}$ is a t-intersecting family.
Proof. Suppose \mathcal{A}_{1}^{\prime} is $(t-1)$-intersecting, that is there are two elements $A, B \in \mathcal{A}_{1}$ with $|A \cap B|=t$. Then in view of the shiftedness we must have $|A \cup B|=s$. This is clear, because otherwise there exists $i \in[s] \backslash(A \cup B)$ such that $S_{i s}(A) \triangleq A^{\prime} \in \mathcal{A} \backslash\{A\}$, and hence $\left|A^{\prime} \cap B\right|=t-1$ a contradiction. Note however that for $s \geq 2 k-t+1$ the conditions $|A \cup B|=s$ and $|A \cap B| \geq t$ are contradictory.

We are prepared now to complete the proof of the lemma.
We proceed by induction on $s \geq 2 k-t$. The induction beginning $s=2 k-t$ is already done by Case 1 .

For the induction $s \rightarrow s+1$ we first show that for $s \geq 2 k-t+1$

$$
\begin{equation*}
\mathcal{A}_{0} \neq\binom{[2 k-t]}{k} . \tag{2.2}
\end{equation*}
$$

For this we distinguish two subcases of case 2 .
Subcase $\boldsymbol{s}=\mathbf{2 k} \boldsymbol{k} \boldsymbol{t}+\mathbf{1}$: Observe that $\left|\mathcal{A}_{0}\right|<\binom{2 k-t}{k}$, because otherwise by the t-intersecting property of $\mathcal{A} \quad \mathcal{A}_{1}$ would be empty in contradiction to $s=2 k-t+1$.

Subcase $s \geq \mathbf{2 k} \boldsymbol{- t + 2}$: Here by shiftedness $\left\|\mathcal{A}_{0}\right\| \geq 2 k-t+1$ and again (2.2) holds.

For $\|\mathcal{A}\|=s+1$ we have $\left\|\mathcal{A}_{0}\right\|=s$ and the induction hypothesis yields

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}_{0}\right|>\left|\mathcal{A}_{0}\right| \frac{\binom{2 k-t}{k-\ell}}{\binom{2 k-t}{k}} . \tag{2.3}
\end{equation*}
$$

Further in view of Proposition 2 and (1.2) and the fact $\left|\mathcal{A}_{1}^{\prime}\right|=\left|\mathcal{A}_{1}\right|$ we have

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}_{1}^{\prime}\right| \geq\left|\mathcal{A}_{1}^{\prime}\right| \frac{\binom{2 k-2-t}{k-1-\ell}}{\binom{k-2-t}{k-1}}=\left|\mathcal{A}_{1}\right| \frac{\binom{2 k-2-t}{k-1-\ell}}{\binom{2 k-2-t}{k-1}} . \tag{2.4}
\end{equation*}
$$

Finally by Proposition $1,(2.2),(2.3)$ and the inequality $\frac{\binom{2 k-2-t}{k-1-t}}{\binom{(k-2-t}{k-1}} \geq \frac{\binom{2 k-t}{k-1}}{\binom{k-t}{k}}$ (for $t \geq \ell$) we get

$$
\left|\partial_{\ell} \mathcal{A}\right|>\left(\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{0}\right|\right) \frac{\left(\begin{array}{c}
\binom{2 k-t}{k-\ell}
\end{array}\right.}{\binom{k-t}{k}}=|\mathcal{A}| \frac{\left(\begin{array}{c}
\binom{2 k-t}{k-\ell} \tag{2.5}
\end{array}\right.}{\binom{k-t}{k}},
$$

concluding the proof.

3. Proof of the theorem in case (a): $1 \leq \ell \leq t<k$

Given $m>\binom{2 k-t}{k}$ consider the family $\mathcal{A}^{*} \triangleq L_{m} \mathcal{B}(k, 2 k-2-t, k-1)$.
Observe that \mathcal{A}^{*} is t-intersecting.
Let us write $m=\left|\mathcal{A}^{*}\right|$ in the form

$$
\begin{equation*}
m=\binom{2 k-2-t}{k}+n\binom{2 k-2-t}{k-1}+r, \tag{3.1}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $0 \leq r<\binom{2 k-2-t}{k-1}$.
Note then that $\mathcal{A}^{*} \backslash(\underset{k}{[2 k-2-t]})$ can be partitioned into $n+1$ (or n, if $r=0)$ classes, where each class consists of sets containing a fixed element $j \in[2 k-1-t, 2 k-1-t+n]$ (or $[2 k-1-t, 2 k-1-t+(n-1)]$, if $r=0)$.

We can observe now that

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}^{*}\right|=\binom{2 k-2-t}{k-\ell}+n\binom{2 k-2-t}{k-1-\ell}+\partial_{\ell}(r), \tag{3.2}
\end{equation*}
$$

where $\partial_{\ell}(r) \triangleq\left|\partial_{\ell}\left(L_{r}\binom{[2 k-2-t]}{k-1}\right)\right|$.
Now we show first that the ratio $\left|\partial_{\ell} \mathcal{A}^{*}\right|\left|\mathcal{A}^{*}\right|^{-1}$ can be approximated like in (1.2) of Katona's Theorem from above but also from below by passing from k to $k-1$. By elementary calculations of binomial coefficients we get Claim 1 below. The lower bound is not needed in this paper, but perhaps useful elsewhere.

In the second part of this proof of (a) we show that for any family $\mathcal{A} \not \subset$ $\mathcal{B}(k, 2 k-2-t, k-1),|\mathcal{A}|=m$, we can establish a lower bound for $\left|\partial_{\ell} \mathcal{A}\right|$ which exceeds the upper bound in Claim 1 for m large. This contradiction will complete the proof of (a).

Claim 1.

$$
\begin{equation*}
m \frac{\binom{2 k-2-t}{k-1-\ell}}{\binom{2 k-2-t}{k-1}}+1 \leq\left|\partial_{\ell} \mathcal{A}^{*}\right| \leq m \frac{\binom{2 k-2-t}{k-1-\ell}}{\binom{2 k-2-t}{k-1}}+\alpha \tag{3.3}
\end{equation*}
$$

for some $1 \leq \alpha<\binom{2 k-1-t}{k-\ell}$.
Proof. Let us abbreviate $\frac{\binom{2 k-2-t}{k-1-\ell}}{\binom{2 k-2-t}{k-1}}$ by λ. We want to see how much $\left|\partial_{\ell} \mathcal{A}^{*}\right|$ deviates from $m \lambda$.

The following identity can be easily verified using (3.1) and (3.2).

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}^{*}\right|=m \lambda+\binom{2 k-2-t}{k-\ell}-\binom{2 k-2-t}{k} \lambda+\partial_{\ell}(r)-r \lambda \tag{3.4}
\end{equation*}
$$

Since $\partial_{\ell}(r)<\binom{2 k-2-t}{k-\ell-1}$ in view of (3.4) we have the desired upperbound

$$
\left|\partial_{\ell} \mathcal{A}^{*}\right|<m \lambda+\binom{2 k-2-t}{k-\ell}+\binom{2 k-2-t}{k-\ell-1}=m \lambda+\binom{2 k-1-t}{k-\ell}
$$

(which can be improved, but is good enough for our purposes).
Furthermore by (1.2) we have $\partial_{\ell}(r) \geq r \lambda$. Also one can check that

$$
\binom{2 k-2-t}{k-\ell}-\binom{2 k-2-t}{k} \lambda=\frac{\ell}{k}\binom{2 k-1-t}{k-\ell} \geq 1 .
$$

Hence by (3.4) we get our lower bound

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}_{\ell}^{*}\right| \geq m \lambda+1 \tag{3.5}
\end{equation*}
$$

Note that the constant 1 cannot be improved in general. For example for $k=t+1, \ell=1$ and $r=0$ we have equality in (3.5).

Suppose now $\mathcal{A} \in I(\infty, k, t)$ is an optimal family (has minimal ℓ-shadow) with $|\mathcal{A}|=m>\binom{2 k-t}{k}$ and $\|\mathcal{A}\|=u$. Suppose also again that \mathcal{A} is shifted.

Let us partition \mathcal{A} into $s+1$ disjoint classes $\mathcal{A}=\bigcup_{i=1}^{s+1} \mathcal{A}_{i}, s \triangleq u-(2 k-t)$, defined by

$$
\begin{aligned}
\mathcal{A}_{1} & =\{A \in \mathcal{A}: u \in A\} \\
\mathcal{A}_{2} & =\left\{A \in \mathcal{A} \backslash \mathcal{A}_{1}: u-1 \in A\right\} \\
& \vdots \\
\mathcal{A}_{s} & =\left\{A \in \mathcal{A} \backslash\left(\mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{s-1}\right): u-s+1 \in A\right\} \\
\mathcal{A}_{s+1} & =\mathcal{A} \backslash\left(\mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{s}\right) .
\end{aligned}
$$

Note that $\mathcal{A}_{s+1} \subset\binom{[2 k-t]}{k}$.
Define also

$$
\mathcal{A}_{i}^{\prime}=\left\{A \backslash\{u-i+1\}: A \in \mathcal{A}_{i}\right\}, i=1, \ldots, s .
$$

Since \mathcal{A} is shifted, from Proposition 1 we infer that

$$
\begin{equation*}
\left|\partial_{\ell} \mathcal{A}\right|=\left|\partial_{\ell} \mathcal{A}_{s+1}\right|+\left|\partial_{\ell} \mathcal{A}_{s}^{\prime}\right|+\cdots+\left|\partial_{\ell} \mathcal{A}_{1}^{\prime}\right| \tag{3.6}
\end{equation*}
$$

We distinguish now between two cases.

By Proposition 2 each class $\mathcal{A}_{i}^{\prime}, i=1, \ldots, s$, is t-intersecting. Note also that $\left|\mathcal{A}_{i}^{\prime}\right|=\left|\mathcal{A}_{i}\right|$. Therefore by the Lemma we have

$$
\left|\partial_{\ell} \mathcal{A}_{i}^{\prime}\right| \geq\left|\mathcal{A}_{i}\right| \frac{\binom{2(k-1)-t}{k-1-\ell}}{\binom{2(k-1)-t}{k-1}}+1, \quad i=1, \ldots, s
$$

This with (3.6) implies

$$
\begin{aligned}
\left|\partial_{\ell} \mathcal{A}\right| & \geq\left|\partial_{\ell} \mathcal{A}_{s+1}\right|+\lambda\left(\left|\mathcal{A}_{1}\right|+\cdots+\left|\mathcal{A}_{s}\right|\right)+s=\left|\partial_{\ell} \mathcal{A}_{s+1}\right|+\lambda|\mathcal{A}|-\lambda\left|\mathcal{A}_{s+1}\right|+s \\
& >\lambda|\mathcal{A}|+s-\lambda\left|\mathcal{A}_{s+1}\right|
\end{aligned}
$$

Since $\left|\mathcal{A}_{s+1}\right|<\binom{2 k-t}{k}$ we have $\beta=\beta(k, t, \ell) \triangleq \lambda\left|\mathcal{A}_{s+1}\right|<\lambda\binom{2 k-t}{k}$ and a fortiori $\left|\partial_{\ell} \mathcal{A}\right|>m \frac{\binom{2 k-2-t}{k-1-\ell}}{\binom{2 k-2-t}{k-1}}+s-\beta$, where $\beta<\binom{2 k-t}{k} \frac{\binom{2 k-2-t}{k-1-\ell}}{\binom{k-2-t}{k-1}}$.

If now m is big enough, such that $s \geq \beta+\binom{2 k-t-1}{k-\ell}$, then in view of (3.3) we get $\left|\partial_{\ell} \mathcal{A}\right|>\left|\partial_{\ell} \mathcal{A}^{*}\right|$, a contradiction with the optimality of \mathcal{A}.
Case 2: There exists a family $\mathcal{A}_{i}, i \in\{1, \ldots, s\}$ such that

$$
\begin{equation*}
\mathcal{A}_{i}^{\prime}=\binom{[2 k-2-t]}{k-1} \tag{3.7}
\end{equation*}
$$

Claim 2.

$$
\mathcal{A} \subset \mathcal{B}(k, 2 k-2-t, k-1)
$$

Proof. By definition each member of \mathcal{A}_{i} contains the element $u-i+1$ and $u-i+1 \geq 2 k-t+1$, since $i \leq s=u-2 k+t$. Also in view of (3.7) \mathcal{A}_{i} contains the set $B_{1} \triangleq\{k-t, \ldots, 2 k-2-t, u-i+1\}$. Moreover by the shiftedness (and the fact that $u-i-1>2 k-2-t) \mathcal{A}$ contains also $B_{2} \triangleq\{k-t, \ldots, 2 k-2-t, u-i\}$ and $B_{3} \triangleq\{k-t, \ldots, 2 k-2-t, u-i-1\}$.

Suppose now $F \in \mathcal{A}$ and $F \notin \mathcal{B}(k, 2 k-2-t, k-1)$, that is $|F \cap[2 k-2-t]| \leq$ $k-2$. In view of the shiftedness we can take $F=\left\{1, \ldots, k^{\prime}\right\} \cup E$, where $\left\{1, \ldots, k^{\prime}\right\}=F \cap[2 k-2-t], k^{\prime} \leq k-2$.

If $k^{\prime}<k-2$, then observe that $\left|F \cap B_{1}\right|<t$, a contradiction. Let now $k^{\prime}=k-2$. Then clearly $\left|\left\{1, \ldots, k^{\prime}\right\} \cap B_{j}\right|=t-1(j=1,2,3)$. Hence (to provide t-intersection with $\left.B_{1}, B_{2}, B_{3}\right) F$ must contain the elements $u-i+1, u-i$ and $u-i-1$, a contradiction with $|F|=k$.

To complete the proof of case (a) we use a special case of the result in [1]. Theorem AAK. For $s, r, k \in \mathbb{N}, 1 \leq r \leq s, \ell \leq k$ let $\mathcal{F} \subset \mathcal{B}(k, s, r)$ with $|\mathcal{F}|=m$. Then

$$
\left|\partial_{\ell} \mathcal{F}\right| \geq\left|\partial_{\ell} L_{m} \mathcal{B}(k, s, r)\right|
$$

4. Proof of the theorem in case (b): $1 \leq t<\ell<k$

Claim. It is sufficient to consider the case $\ell=t+1$.
Proof. Let's explain first that (for $\ell \geq t$)

$$
\partial_{\ell} L_{m} \mathcal{B}(k, t, t)=L_{M^{*}}\binom{\mathbb{N}}{k-\ell},
$$

where $M^{*} \triangleq\left|\partial_{\ell} L_{m} \mathcal{B}(k, t, t)\right|$.
By definition of $\mathcal{B}_{m}(k, t, t)$

$$
L_{m} \mathcal{B}(k, t, t)=\left\{[t] \cup E: E \in L_{m}\binom{\mathbb{N} \backslash[t]}{k-t}\right\} .
$$

Since $\ell \geq t$ the largest element F of $\partial_{\ell} L_{m} \mathcal{B}(k, t, t)$ (in colex order) satisfies $F \in \partial_{\ell-t} L_{m}\binom{\mathbb{N} \backslash[t]}{k-t}$. Therefore for every $(k-\ell)$-set $F^{\prime}<F$ there exists $B \in$ $L_{m} \mathcal{B}(k, t, t)$ such that $F^{\prime} \subset B$ and the identity follows.

Suppose now we have proved the theorem for some $\ell \geq t+1$. That is for any family $\mathcal{A} \in I(\infty, k, t)$ with $|\mathcal{A}|=m\left(m>m_{2}(k, t, \ell)\right)$ we have

$$
M \triangleq\left|\partial_{\ell} \mathcal{A}\right| \geq\left|\partial_{\ell} L_{m} \mathcal{B}(k, t, t)\right|=M^{*} .
$$

Then using Theorem KK we can write

$$
\left|\partial_{\ell+1} \mathcal{A}\right|=\left|\partial\left(\partial_{\ell} \mathcal{A}\right)\right| \geq\left|\partial L_{M}\binom{\mathbb{N}}{k-\ell}\right| \geq\left|\partial L_{M^{*}}\binom{\mathbb{N}}{k-\ell}\right|=\left|\partial_{\ell+1} L_{m} \mathcal{B}(k, t, t)\right|
$$

Let now $\ell=t+1$ and let $\mathcal{A} \in I(\infty, k, t)$ be an optimal, shifted family with $|\mathcal{A}|=m$.

Define next (in new notation)

$$
\mathcal{A}_{1}=\{A \in \mathcal{A}: 1 \in A\}, \quad \mathcal{A}_{1}^{\prime}=\left\{A \backslash\{1\}: A \in \mathcal{A}_{1}\right\}, \quad \mathcal{A}_{0}=\mathcal{A} \backslash \mathcal{A}_{1},
$$

and denote $\left|\mathcal{A}_{0}\right|=m_{0},\left|\mathcal{A}_{1}\right|=m_{1}=m-m_{0}$.
We consider two cases.

Case 1: $\mathcal{A}_{0}=\varnothing$
Clearly we have

$$
\left|\partial_{t+1} \mathcal{A}\right|=\left|\partial_{t} \mathcal{A}_{1}^{\prime}\right|+\left|\partial_{t+1} \mathcal{A}_{1}^{\prime}\right| .
$$

Since $\mathcal{A}_{1}^{\prime} \in I(\infty, k-1, t-1)$ we can use induction on t (the case $t=1$ can be easily derived). That is we have

$$
\begin{aligned}
\left|\partial_{t+1} \mathcal{A}\right| & \geq\left|\partial_{t} L_{m} \mathcal{B}(k-1, t-1, t-1)\right|+\left|\partial_{t+1} L_{m} \mathcal{B}(k-1, t-1, t-1)\right| \\
& =\left|\partial_{t+1} L_{m} \mathcal{B}(k, t, t)\right| .
\end{aligned}
$$

Case 2: $\mathcal{A}_{0} \neq \varnothing$.
Let us note first that \mathcal{A}_{0} is $(t+1)$-intersecting. This easily follows from the shiftedness of \mathcal{A}.

Hence by (1.2) we have

$$
\begin{equation*}
\left|\partial_{t+1} \mathcal{A}_{0}\right| \geq\left|\mathcal{A}_{0}\right| \tag{4.1}
\end{equation*}
$$

Also in view of the shiftedness $\{2, \ldots, k+1\} \in \mathcal{A}_{0} \neq \varnothing$.
This implies that

$$
\mathcal{A}_{1}^{\prime} \subset \mathcal{F} \triangleq\left\{F \in\binom{\mathbb{N} \backslash\{1\}}{k-1}:|F \cap\{2, \ldots, k+1\}| \geq t\right\} .
$$

We apply now Theorem AAK to \mathcal{A}_{1}^{\prime} identifying \mathcal{F} with $\mathcal{B}(k-1, k, t)$. We get then

$$
\begin{equation*}
\left|\partial_{t+1} \mathcal{A}_{1}^{\prime}\right| \geq\left|\partial_{t+1} L_{m_{1}} \mathcal{B}(k-1, k, t)\right|, \quad\left|\partial_{t} \mathcal{A}_{1}^{\prime}\right| \geq\left|\partial_{t} L_{m_{1}} \mathcal{B}(k-1, k, t)\right| . \tag{4.2}
\end{equation*}
$$

Obviously we also have

$$
\begin{equation*}
\sum_{i=0}^{k-t-1}\binom{k}{t+i}\binom{x-k}{k-1-t-i}<\left|\mathcal{A}_{1}^{\prime}\right|=m_{1} \leq \sum_{i=0}^{k-t-1}\binom{k}{t+i}\binom{x-k+1}{k-1-t-i}, \tag{4.3}
\end{equation*}
$$

where $x=\left\|L_{m_{1}} \mathcal{B}(k-1, k, t)\right\|-1$.
Therefore for a positive constant $c_{1}=c_{1}(k, t)$

$$
\begin{equation*}
m_{1} \sim c_{1} x^{k-1-t} . \tag{4.4}
\end{equation*}
$$

On the other hand

$$
\left|\partial_{t+1} \mathcal{A}_{1}\right|=\left|\partial_{t+1} \mathcal{A}_{1}^{\prime}\right|+\left|\partial_{t} \mathcal{A}_{1}^{\prime}\right| .
$$

This with (4.2) and (4.3) gives for another positive constant $c_{2}=c_{2}(k, t)$ the estimation

$$
\begin{equation*}
\left|\partial_{t+1} \mathcal{A}_{1}\right| \geq\left|\partial_{t} \mathcal{A}_{1}^{\prime}\right| \geq\binom{ x}{k-t-1} \geq c_{2} m_{1} \tag{4.5}
\end{equation*}
$$

Assuming now, for a contradiction, that $\left|\partial_{t+1} \mathcal{A}\right| \leq\left|\partial_{t+1} L_{m} \mathcal{B}(k, t, t)\right|$ we observe that for any $\varepsilon>0$, if $m \geq m(\varepsilon, t, k)$, suitable, we have

$$
\frac{\left|\partial_{t+1} \mathcal{A}\right|}{|\mathcal{A}|}=\frac{\left|\partial_{t+1} \mathcal{A}\right|}{m} \leq \frac{\left|\partial_{t+1} L_{m} \mathcal{B}(k, t, t)\right|}{m}<\varepsilon
$$

This with (4.1) implies for $m>m(\varepsilon, t, k)$ also

$$
\begin{equation*}
\varepsilon>\frac{\left|\partial_{t+1} \mathcal{A}\right|}{|\mathcal{A}|} \geq \frac{\left|\partial_{t+1} \mathcal{A}_{0}\right|}{|\mathcal{A}|} \geq \frac{\left|\mathcal{A}_{0}\right|}{|\mathcal{A}|}=\frac{m_{0}}{m}=1-\frac{m_{1}}{m} \tag{4.6}
\end{equation*}
$$

Together with (4.5) we get

$$
\varepsilon>\frac{\left|\partial_{t+1} \mathcal{A}\right|}{|\mathcal{A}|} \geq \frac{\left|\partial_{t+1} \mathcal{A}_{1}\right|}{|\mathcal{A}|} \geq \frac{c_{2} m_{1}}{m} \text { or } \frac{m_{1}}{m} \leq \frac{\varepsilon}{c_{2}}
$$

On the other hand (4.6) implies that $\frac{m_{1}}{m}>1-\varepsilon$ and thus $\varepsilon>(1-\varepsilon) c_{2}$. This contradiction completes the proof of (b).

5. Remarks

1. We give a numerical version for case (a) of our theorem. Note first that any integer $m>\binom{2 k-t}{k}$ can be uniquely represented in the form (3.1). Also we can uniquely represent r in the $(k-1)$-cascade form (see [2] or [3])

$$
r=\binom{a_{k-1}}{k-1}+\cdots+\binom{a_{s}}{s}
$$

where $a_{k-1}>a_{k-2}>\cdots>a_{s} \geq s \geq 1$.
Then in view of our theorem and Theorem KK we have the following: For $1 \leq \ell \leq t<k$ and $m>m_{1}(k, t, \ell)$ holds

$$
\left|\partial_{\ell} \mathcal{A}\right| \geq\binom{ 2 k-2-t}{k-\ell}+n\binom{2 k-2-t}{k-\ell-1}+\binom{a_{k-1}}{k-1-\ell}+\cdots+\binom{a_{s}}{s-\ell}
$$

Note that for applications one can use also the lower estimate in (3.3) (for $m>m_{1}(k, t, \ell)$).
2. As an improvement of the theorem it would be interesting to find minimal values of $m_{1}(k, \ell, t)$ and $m_{2}(k, \ell, t)$ for which the result holds. In fact for the case (a) the proof gives also an upper bound for $m_{1}(k, \ell, t)$. However this estimation seems to be rough.
More generally one should decide whether t-intersecting $\mathcal{B}(k, s, r)$ sets are extremal.
On the other hand note that our theorem is not valid for all $m>\binom{2 k-t}{k}$. Here are examples for cases (a) and (b).
(a) $1 \leq \ell<t$.

Let $k>3, t=\ell=1, m=\binom{2 k-1}{k}+1$. Then we can write

$$
m=\binom{2 k-3}{k}+3\binom{2 k-3}{k-1}+1
$$

Hence

$$
\begin{aligned}
\Delta_{1} \triangleq\left|\partial\left(L_{m} \mathcal{B}(k, 2 k-3, k-1)\right)\right| & =\binom{2 k-3}{k-1}+3\binom{2 k-3}{k-2}+k-1 \\
& =4\binom{2 k-3}{k-1}+k-1
\end{aligned}
$$

Define now the following intersecting family

$$
\begin{aligned}
\mathcal{F}=\left(\binom{[2 k-1]}{k} \backslash\{k, \ldots, 2 k-1\}\right) \cup & \{1, \ldots, k-1,2 k\} \cup \\
& \{1, \ldots, k-1,2 k+1\} .
\end{aligned}
$$

Clearly $|\mathcal{F}|=\binom{2 k-1}{k}+1$ and $|\partial \mathcal{F}|=\binom{2 k-1}{k-1}+2(k-2)=3\binom{2 k-3}{k-1}+\binom{2 k-3}{k-3}+$ $2(k-2)$.
Thus $|\partial \mathcal{F}|<\Delta_{1}$.
(b) $1 \leq t<\ell$.

For the same m, k and $t=1$, let now $\ell=2$. Then

$$
\Delta_{2} \triangleq\left|\partial_{2}\left(L_{m} \mathcal{B}(k, 1,1)\right)\right|=\binom{2 k}{k-2}+\binom{k-1}{2}
$$

while

$$
\left|\partial_{2} \mathcal{F}\right|=\binom{2 k-1}{k-2}+2\binom{k-1}{2}<\Delta_{2}
$$

References

[1] R. Ahlswede, H. Aydinian and L. H. Khachatrian: More about shifting techniques, European J. Combin. 24(5) (2003), 551-556.
[2] K. Engel: Sperner Theory, Cambridge University Press, 1997.
[3] P. Frankl: The shifting technique in extremal set theory, in: Surveys in Combinatorics, Lond. Math. Soc. Lect. Note Ser., 123, 81-110, 1987.
[4] P. Frankl: Shadows and shifting, Graphs and Combinatorics 7 (1991), 23-29.
[5] Z. Füredi and J. R. Griggs: Families of finite sets with minimum shadows, Combinatorica 6(4) (1986), 355-363.
[6] G. O. H. Katona: A theorem of finite sets, in: Proceedings of Tihany Conference, 1966; 187-207, Budapest 1968.
[7] G. O. H. Katona: Intersection theorems for systems of finite sets, Acta Math. Hungar. 15 (1964), 329-337.
[8] J. Kruskal: The number of simplices in a complex, in: Mathematical Optimization Techniques, 251-278, Berkeley-Los Angeles, Uni. of California Press, 1963.
[9] B. A. Lindström and M. O. Zetterström: A combinatorial problem in the K-adic number systems, Proc. Amer. Math. Soc. 18 (1967), 166-170.
[10] M. Mörs: A generalization of a theorem of Kruskal, Graphs and Combinatorics 1 (1985), 167-183.

R. Ahlswede, H. Aydinian, L. H. Khachatrian

Department of Mathematics

University of Bielefeld
Box 100131
D-33501 Bielefeld
Germany
hollmann@Mathematik.uni-Bielefeld.de

