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Abstract. In this paper, we continue our investigation on “Extremal problems under dimension con-
straints” introduced [1]. The general problem we deal with in this paper can be formulated as follows.
Let U be an affine plane of dimension k in R

n. Given F ⊂ E(n) � {0,1}n ⊂ R
n determine or estimate

max
{|U∩E(n)| :U∩F =∅

}
.

Here we consider and solve the problem in the special case where U is a hyperplane in R
n and the

“forbidden set” F =E(n, k)�
{
xn ∈E(n) : xn has k ones

}
. The same problem is considered for the case,

where U is a hyperplane passing through the origin, which surprisingly turns out to be more difficult.
For this case we have only partial results.
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1. Introduction

Let N be the set of positive integers. For the set {i, i +1, . . . , j}(i, j ∈N) we use the
notation [i, j ] and for [1, j ] we simply write [j ]. For k, n∈N, k ≤n we set

2[n] ={
A :A⊂ [n]

}
,

(
[n]
k

)
={

A∈2[n] : |A|=k
}
.

For a subset A⊂ [n] its characteristic vector is defined by χ(A)= (x1, . . . , xn), where
xi = 1 if i ∈ A and xi = 0, if i /∈ A. The set of (0,1)-vectors in R

n is denoted by
E(n) = {0,1}n. Correspondingly for the vectors of weight k we use the notation
E(n, k)={

xn ∈E(n) :xn has k ones
}
. We are interested in the following geometrical

extremal problem.
Let U be a k–dimensional affine plane in R

n. Given a “forbidden set” F ⊂E(n)

determine or estimate max
{|U∩E(n)| :U∩F =∅

}
.
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In this paper, we consider the special case of this problem where U is a hyper-
plane and forbidden sets are the (0,1)-vectors of certain weight. We also consider
the problem when a hyperplane contains (0,1)-vectors of only even or odd weight.

For our purposes, we need some well-known notions and results from extremal
set theory. The reader can find all this for instance in the textbooks [6] and [7].

A family A={A1, . . . ,Am}⊂2[n] is called a chain of size m if A1 ⊂· · ·⊂Am. If
|Ai | = |Ai+1| − 1 for i = 1, . . . ,m − 1 and |A1| + |Am| = n then A is called a sym-
metric chain.

A family A⊂2[n] is called an antichain if A1 �⊂A2 holds for all A1,A2 ∈A.
A family A⊂2[n] is called intersecting if A1 ∩A2 �=∅ holds for all A1,A2 ∈A.
For integers 1 ≤ �≤ k ≤n and a family A⊂ ([n]

k

)
the �–shadow of A is defined

by ∂�A=
{
B ∈ ( [n]

k−�

)
:∃A∈A :B ⊂A

}
. The colex order for elements A,B ∈ ([n]

k

)
is

defined as follows: A≺B ⇔max
(
(A−B)∪ (B −A)

)∈B. We denote by L(k,m) the
initial m members of

([n]
k

)
in colex order.

Theorem S (Sperner). Let A⊂2[n] be an antichain, then |A|≤ (
n
 n
2 �

)
and the max-

imum is assumed only for A=
(

[n]

 n

2 �
)

or
(

[n]
� n

2 
)

.

Theorem BTK (de Bruijn–Tengbergen–Kruyswik). There exists a partition of 2[n]

into symmetric chains.

Theorem EKR (Erd ′′os–Ko–Rado). Let A⊂([n]
k

)
be an intersecting family and 2k≤

n, then |A|≤ (
n−1
k−1

)
.

Theorem KK (Kruskal–Katona). Let A ⊂ ([n]
k

)
with |A| = m, then |∂�A| ≥

|∂�L(k,m)|.

Representing a family A⊂ 2[n] as the set of its characteristic vectors χ(A) ⊂
E(n) we extend the notions of antichain, intersecting system and shadow to (0,1)-
vectors in a natural way.

2. Forbidden Weights in Hyperplanes

Let H be a hyperplane in R
n. Given integers 0≤w ≤n, n≥1 define

F(n,w)=max
{|H ∩E(n)| :H ∩E(n,w)=∅

}
.

The next result determines F(n,w) for all parameters.

Theorem 1.
(i) F(n,w)=F(n,n−w)
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(ii) F(n,w)=
{(2w+1

w+1

)
2n−2w−1, if n≥2w +1

(2w
w

)
, if n=2w.

The main auxiliary result we use to prove Theorem 1 is

Theorem 2. Given integers 0≤ t ≤w−1, n=2w− t , and a1, . . . , an ∈R� {0}, b∈R,
let X be the set of (0,1)-solutions of the equation

n∑

i=1

aixi =b (2.1)

such that
n∑

i=1
xi �=w, w −1, . . . ,w − t −1.

Then

|X|≤
(

n

w +1

)
, (2.2)

and equality holds if a1 =a2 =· · ·=an =1, b=w +1.

As a consequence of Theorem 2 we have,

Corollary 1. Given a1, . . . , a2w−t ∈ R � {0} let H be a hyperplane defined by the
equation

2w−t∑

i=1

aiyi =b,

so that H ∩E(2w − t,w − i)=∅, i =0, . . . , t +1.

Then

|H ∩E(2w − t)|≤
(

2w − t

w +1

)
.

Remark 1. Note the difference between the set X (in Theorem 2)

X =Z �
{
E(n,w)∪· · ·∪E(n,w − t −1)

}
and H ∩E(n),

where Z is the set of all (0,1)-solutions of (2.1). Clearly |X|≥ |H ∩E(n)|.

Proof of Theorem 1.
Let H be a hyperplane such that H ∩E(n,w)=∅ and |H ∩E(n)|=F(n,w).
To prove the part (i) we just note that for the hyperplane (1n −H)� {1n − v : v ∈

H }(1n � (1, . . . ,1)
)

we have

(1n −H)∩E(n,n−w)=∅, |(1n −H)∩E(n)|= |H ∩E(n)|.
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Let H be defined by

H =
{

(x1, . . . , xn)∈R
n :

n∑

i=1

aixi =b

}

, (2.3)

where ai �=0; i =1, . . . , � (�≤n) and a�+1 =· · ·=an =0.
Then

H ∩E(n)= (
H ∗ ∩E(�)

)×E(n−�),

where H ∗ ⊂R
� is defined by

H ∗ =
{

(x1, . . . , x�)∈R
� :

�∑

i=1

aixi =b

}

.

Hence

|H ∩E(n)|= |H ∗ ∩E(�)|2n−�.

Clearly taking �=2w+1 and b=w+1 with a1 =· · ·=a� =1 in (2.3) we guarantee
the lower bound |H ∩ E(n)| ≥ (2w+1

w+1

)
2n−2w−1 for the case n ≥ 2w + 1. To see that

F(2w,w)≥ (2w
w

)
we take a1 =−1, a2 =· · ·=a2w, b=w −1.

Next we show that this lower bound is also an upper bound.
Case n≥2w +1.
Claim: 2w +1≤�≤2w +2

Proof. To prove the claim we need the following simple fact (which can be proved
using Sperner’s Theorem).

Lemma 1. Let a1, . . . , a� ∈ R � {0}, b ∈ R. Then the number of (0,1)-solutions of the

equation
�∑

i=1
aixi =b is at most

( �⌊
�
2

⌋), (for a more general form of this statement see [2]).

If �=2w +2 or 2w +1, then by Lemma 1 we have

|H ∩E(n)|≤
(

2w +2
w +1

)
2n−2w−2

and equality can be achieved for the hyperplane (2.3) with a1 =· · ·=a� =1, a�+1 =
· · ·=an =0, b=⌈

�
2

⌉
.

Assuming �≥2w +3 and using Lemma 1 we get

|H ∩E(n)|≤
(

�
⌊

�
2

⌋
)

2n−� <

(
2w +2
w +1

)
2n−2w−2 ≤F(n,w),

a contradiction to the optimality of H .
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Suppose now that � < 2w + 1. Since H ∩ E(n) = (
H ∗ ∩ E(�)

) × E(n − �) and
H ∩E(n,w)=∅, we should have H ∗ ∩ [

E(�,w)∪ · · · ∪E(�,w − s)
]=∅, where s =

min{w,n−�}.
For convenience we set �=2w − t , where t ≥0. Let us show that

|H ∗ ∩E(2w − t)|≤
(

2w − t

w +1

)
. (2.4)

Note that it suffices to show (2.4) for n= 2w + 1. This is clear because for n>

2w+1 we get new forbidden weights in H ∗ besides those arising for n=2w+1. In
this case the forbidden weights in H ∗ are w,w−1, . . . ,w− t −1. Now (2.4) follows
in view of Corollary 1. Consequently

|H ∩E(n)|≤
(

2w − t

w +1

)
2n−2w+t <

(
2w +1
w +1

)
2n−2w−1.

This completes the proof of the claim and consequently of the case n≥2w +1.

Case n=2w. If �=n then we are done by Lemma 1, therefore let 1≤�≤n−1.
In this case we note that

|H ∩E(n)|≤2F(2w −1,w)=2F(2w −1,w −1).

This gives the desired result since we already proved that

F(2w −1,w −1)=
(

2w −1
w −1

)
. �

An auxiliary result for Theorem 2.
Let the ground set [2w− t ] be partitioned into [1, k]∪ [k +1,2w− t ], 0<k <2w− t .

Let A1 ⊂A2 ⊂· · ·⊂Am and B1 ⊂B2 ⊂· · ·⊂Br be any symmetric chains in [1, k]
and [k +1,2w − t ], resp. By definition of a symmetric chain

|A1| = k −m+1
2

, . . . , |Am|= k +m−1
2

,

|B1| = 2w − t −k − r +1
2

, . . . , |Br |= 2w − t −k + r −1
2

.

(2.5)

Consider the “product” of these chains, defined as S ={Ai ∪Bj : i =1, . . . ,m; j =
1, . . . , r}.

Let now S′ ⊂S be a subset with the properties

(a) For any (Ai ∪Bj )∈S′

|Ai ∪Bj | �=w,w −1, . . . ,w − t −1

(b) For any (Ai ∪Bj ), (Ai1 ∪Bj1)∈S′

Ai ⊆Ai1 ⇒Bj �⊃Bj1 .
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Define also Sw+1 ={Ai ∪Bj ∈S : |Ai ∪Bj |=w +1}.
Then we have the following

Lemma 2.

|S′|≤ |Sw+1|. (2.6)

Proof. W.l.o.g. we may assume that m ≥ r. It follows from the definitions of S′
and Sw+1 that |S′| ≤ r and |Sw+1| ≤ r. We can also assume that s � |Sw+1| ≤ r − 1
for otherwise (2.6) trivially holds.

Next consider two cases:
Case (i): s >0. For i =1, . . . ,m; j =1, . . . , r by (2.5) we have

2w − t −m− r +2
2

≤|Ai ∪Bj |≤ 2w − t +m+ r −2
2

. (2.7)

In view of assumption s ≤r −1 with m≥r there exists a minimal integer 1≤�≤r

such that |Am|+|B�|=w+1. Then clearly we also have |Am−i+1|+|B�+i−1|=w+1;
i =1, . . . , s and �+ s −1= r. This implies that |Am|+ |Br |= 2w−t+m+r−2

2 =w+ s, or
equivalently t = m + r − 2s − 2. Consequently by (2.7) we get w + s − m − r + 2 ≤
|Ai ∪Bj |≤w + s and condition (a) gives

|Ai ∪Bj | �=w,w −1, . . . ,w −m− r +2s +1. (2.8)

Hence if (Ai ∪Bj )∈S′ then |Ai ∪Bj | ∈ I1 ∪ I2, where I1 = [w −m− r + s + 2,w −
m− r +2s], I2 = [w +1,w + s].

Partition now S′ into two sets S′ =S′
1 ∪S′

2 so that S′
1 ={

(Ai ∪Bj )∈S′ : |Ai ∪Bj |∈
I1

}
and S′

2 =S′
�S′

1.
Note that condition (b) in particular says that S′ is a chain with the restriction

∣∣|Ai ∪Bj |− |Ai1 ∪Bj1 |
∣∣≥2

for any two distinct members Ai ∪Bj and Ai1 ∪Bj1 of S′. Since |I1|= s −1, |I2|=
s we conclude that |S′

1| ≤
⌈

s−1
2

⌉
, |S′

2| ≤
⌈

s
2

⌉
, and whence |S′| ≤

⌈
s−1

2

⌉
+ ⌈

s
2

⌉ = s,
thus proving the lemma for case (i).

Case (ii): s =0. By (2.7) we have 2w−t+m+r−2
2 ≤w or equivalently t ≥m+ r −2,

which with (2.7) gives w − t ≤Ai ∪Bj ≤w.
Hence S′ =∅ by condition (a).

Proof of Theorem 2. W.l.o.g. we may rewrite equation (2.1) in the form

k∑

i=1

aixi −
2w−t∑

j=k+1

ajxj =b (2.9)

where ai >0, i =1, . . . ,2w − t and 1≤k ≤2w − t .
Let now u, v ∈X be two distinct solutions of equation (2.1). Let also (A1 ∪B1),

(A2 ∪ B2) ⊂ [1,2w − t ] be the sets corresponding to u and v resp. (i.e. u and v are
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the incident vectors of these sets), where A1, A2 ⊂ [1, k], B1,B2 ⊂ [k +1,2w− t ]. It is
clear that (A1 ∪B1) and (A2 ∪B2) satisfy both conditions (a) and (b) in Lemma 2.

Consider now symmetric chain decompositions of 2[k] and 2[k+1,2w−t ].
For every pair of symmetric chains C1 ⊂ 2[k], C2 ⊂ 2[k+1,2w−t ] consider their

“product” defined in the proof of Lemma 2. To conclude the proof we note that
Lemma 2 implies that the number of (0,1)-solutions |X| to equation (2.1) does not
exceed the number of (0,1)-vectors of weight w +1.

Remark 2. Note that Theorem 2 is not true if one allows vectors of weight w −
t −1 as solutions of (2.1). This can be shown by taking the hyperplane defined by
the equation

(t +1)x1 −
2w−t∑

i=2

xi =−w + t +1. (2.10)

Indeed the (0,1)-solutions of (2.10) are X= ({1}×E(2w− t −1,w)
)∪ ({0}×E(2w−

t −1,w − t −1)
)
, i.e. X contains only vectors of weights w +1 and w − t −1. Fur-

thermore

|X|=
(

2w − t −1
w

)
+

(
2w − t −1
w − t −1

)
=2

(
2w − t −1

w

)
>

(
2w − t

w +1

)
.

3. Forbidden Weights in Subspaces

Let V be a proper subspace of R
n. Define

FS(n,w)=max
{|V ∩E(n)| :V ∩E(n,w)=∅

}
.

We note that there is an essential difference between the functions F(n,w) and
FS(n,w).

Clearly F(n,w) ≥ FS(n,w). However small examples show that F(n,w) can be
much bigger and optimal sets for these two problems have different structures. Note
also that in general FS(n,w) �= FS(n,n − w) in contrast to F(n,w)=F(n,n−w).
For instance (by Theorem 1) we have F(5,1)=F(5,4)=12, while (by the theorems
below) we have FS(5,1)=5 and FS(5,4)=8.

For FS(n,w) we have only partial results.

Remark 3. Note that the “restricted case” of this problem was considered in [3].
Namely the problem of determination of

FS(n,w,m)�max
{|V ∩E(n,m)| :V ∩E(n,w)=∅

}
.

This problem was solved in [3] for all parameters 1≤m,w ≤n and n>n0(m,n).
In the following we essentially use the following result
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Lemma 3 [4]. Let a1, . . . , an ∈R� {0}, b∈R and |ai | �= |aj | for some i, j ∈ [1, n].
Let X be the (0,1)-solutions of the equation

n∑

i=1

aixi =b.

Then

|X|≤





2
(n−1

n−3
2

)
, if 2 � n

( n
n−2

2

)
, if 2 |n.

(3.1)

The next observation is rather simple.

Theorem 3.
(i) FS(n,n)=2n−1,

(ii) FS(n,1)= (
n
 n
2 �

)
,

(iii) FS(n,3)= (
n
 n
2 �

)
, for n≥4.

Proof. The case (i) is obvious. Suppose V is a subspace which does not contain
a unit vector. W.l.o.g. we may assume that dim(V ) = n − 1. This is clear because
otherwise we can embed V in an (n − 1)-dimensional subspace V ′ such that V ∩
E(n)=V ′ ∩E(n).

Thus let V be defined by the set of solutions (x1, . . . , xn)∈R
n of

n∑

i=0

aixi =0. (3.2)

Clearly ai �= 0; i = 1, . . . , n, since otherwise we would have a unit vector satisfying
(3.2).

But in this case by Lemma 1 the number of (0,1)-solutions of (3.2)
is upper bounded by

(
n
 n
2 �

)
.

The case (iii) is also simple. Note that in this case we have not more than two
zero coefficients in (3.2). Suppose first a1, . . . , an−1 �= 0, an = 0. Then |V ∩E(n)| =
2|Y |, where Y is the set of (0,1)-solutions of

n−1∑

i=1
aixi =0. Clearly Y ∩E(n−1,2)=

∅ and this implies that for some i, j ∈ [1, n − 1] we have ai �= aj . Applying now
Lemma 3 we get

2|Y |≤





4
(n−2

n−4
2

)
, if 2 |n

2
(n−1

n−3
2

)
, if 2 � n.

(3.3)

In both cases RHS of (3.3) <
(

n
 n
2 �

)
.
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By the same argument one can exclude the case with two zero coefficients. This
together with Lemma 1 implies that |V ∩E(n)|≤ (

n
 n
2 �

)
.

On the other hand this bound (for both cases (ii) and (iii)) can be achieved by
taking a1 =· · ·=a
 n

2 � =−1, a
 n
2 �+1 =· · ·=an =1. Moreover Lemma 3 implies that

the optimal subspace is unique up to the permutations of the coordinates.
The case w =n−1 requires more work.

Theorem 4.

FS(n,n−1)=
{

2n−2, if n≥9 or n=3,5,7
(

n
 n
2 �

)
, otherwise.

Proof. Let n ≥ 9. Suppose an “optimal” space V is defined by (3.2) where
a1, . . . , a� �= 0 and a�+1 = · · · = an = 0. Then the number of (0,1)-solutions of (3.2)

is bounded by 2n−�
( �⌊

�
2

⌋)< 2n−2 whenever 9 ≤ �≤n. Thus it remains only to con-

sider the case �≤8.
Case �= 8. Suppose |ai | �= |aj | for some i, j ∈ [1,8]. Then by Lemma 3 for the

(0,1)-solutions X of (3.2) we have |X|≤ (8
3

)
2n−8 <2n−2.

Suppose now |a1|= · · ·= |a8|. Denote by �1 the number of positive ai ’s. Observe

that �1 �=4, because otherwise we would have
8∑

i=1
ai =0 and consequently a solution

of (3.2) of weight n−1. On the other hand if �1 <4 then |X|≤( 8
�1

)
2n−8 <2n−2, and

hence � �=8.
Similarly using Lemma 3 one can easily prove that � �=7 and 6.
Case �=5. If |ai | �= |aj | for some i, j then |X|≤2

(4
1

)
2n−5 =2n−2.

This bound can be achieved only with a1 = 2, a2 = 1, a3 = a4 = a5 =−1 (up to
permutations). But in this case x1 = · · ·= xn−1 = 1, xn = 0 is a solution to (3.2), a
contradiction.

If now |a1|= · · ·= |a5| then clearly �1 �= 2,3 and therefore |X|≤ (5
1

) · 2n−5 < 2n−2.
Hence � �=5.

Case �=4. If ai �=aj for some i, j then |X|≤ (4
1

)
2n−4 =2n−2.

The only configuration achieving this bound is a1 =2, a2 =a3 =a4 =−1. But in
this case we will have a solution of weight n−1, a contradiction.

Let now |a1|= · · ·= |a4|. Then clearly �1 ≤1. Taking a1 =1, a2 =a3 =a4 =−1, we
get |X|=4 ·2n−4 =2n−2. Moreover X does not contain a vector of weight n−1.

Thus in the case �=4 we can achieve the claimed upper bound in Theorem 4.
Case �=3 is impossible and this can be easily verified.
Case �= 2. We have |X|≤ 2n−2 and this bound can be achieved only by taking

a1 �=a2.
Let now n≤8.
Case n = 8. It follows from the observations above that if ai = 0 for some i ∈

[1,8] then |X|≤26. On the other hand if ai �=0, i =1, . . . ,8 then |X|≤ (8
4

)
>26 and
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this bound can be achieved by taking a1 =· · ·=a4 =1, a5 =· · ·=a8 =−1. Thus

FS(8,7)=
(

8
4

)
.

Similarly one can easily show that

FS(6,5)=
(

6
3

)
, FS(4,3)=

(
4
2

)
, FS(2,1)=

(
2
1

)
.

Case n = 7. If ai = 0 for some i ∈ [1,7], then again by the observations above
we get |X|≤25 and this bound can be achieved in two different ways

(a) a1 =1, a2 =a3 =a4 =−1, a5 =a6 =a7 =0,

(b) a1, a2 �=0, a1 �=a2, a3 =· · ·=a7 =0.

On the other hand if ai �= 0; i = 1, . . . ,7 then |a1| = · · · = |a7|, because otherwise
|X|≤2

(6
2

)
<25. But in this case �1 ≤2, avoiding weight 6 and therefore again |X|≤(7

2

)
<25. Hence FS(7,6)=25.

Case n=5. If ai =0 for some i ∈ [1,5] then we know that |X|≤23. This bound
can be achieved in two different ways:

(a) a1, a2 �=0, a1 �=a2, a3 =a4 =a5 =0,

(b) a1 =1, a2 =a3 =a4 =−1, a5 =0.

If ai �= 0; i = 1, . . . ,5, then for some i, j ∈ [1,5]|ai | �= |aj |. Hence in view of
Lemma 3 we have |X|≤2

(4
1

)=8, and this bound can be achieved with

(c) a1 =2, a2 =1, a3 =a4 =a5 =−1.

Hence FS(5,4)=23.
Case n=3. We have FS(3,2)=2 and the bound can be achieved in two differ-

ent ways:

(a) a1 �=a2; a1, a2 �=0, a3 =0,

(b) a1 =2, a2 =a3 =−1.

This completes the proof of Theorem 2.

Remark 4. Note that we have described all nonequivalent configurations attaining
the bound. Indeed we have proved that for n≥9 or n=7,3 there are only two opti-
mal nonequivalent configurations. For n= 8,6,4,2 the optimal configurations are
unique up to permutations of coordinates. For n=5 there are three nonequivalent
optimal configurations.
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What can we say about other values for w? The simplest unsolved cases are w=
2 and w =n−2. For these cases we have the following conjectures.

Conjecture 1. For n=3�+ r, 0≤ r ≤2

FS(n,2)=2
�∑

i=0

(
�

i

)(
2�+ r −1

2i

)
.

The corresponding (n−1)-dimensional subspace is defined by

2
�∑

i=1

xi −
n−�−1∑

j=�+1

xj =0.

Conjecture 2. For n≥6

FS(n,n−2)=11 ·2n−6.

The corresponding subspace is defined by

2x1 −x2 −x3 −x4 −x5 −x6 =0.

The next partial result directly follows from Theorem 1 and the simple fact that
FS(n,w)≥ (

n
 n
2 �

)
, if 2 � w.

Proposition 1. For n=2w, 2w ±1, 2w ±2 and 2 � w we have

FS(n,w)=
(

n
⌊

n
2

⌋
)

.

Note however that we do not know the answer if w is even. In general we have
the following

Conjecture 3. For 2 � w and n≥2w

FS(n,w)=
(

n
⌊

n
2

⌋
)

.

4. Forbidden Weights of Different Parity

Let H ⊂R
n be a hyperplane which contains (0,1)-vectors of only even or only odd

weight. How big can |H ∩ E(n)| be? The next result gives a complete answer to
this question. Define

F(n, ε mod 2)=max

{

|H ∩E(n)| :∀(x1, . . . , xn)∈ (
H ∩E(n)

) n∑

i=1

xi �≡ ε mod 2

}

, ε ∈{0,1}.
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Theorem 5.
(i) F(n, ε mod 2)= (

n
 n
2 �

)
,

(ii) All optimal hyperplanes, up to the permutations of the coordinates, are those
that are defined by

−
�∑

i=1

xi +
n∑

j=�+1

xj =λ, (4.1)

where λ=⌊
n
2

⌋−� or
⌈

n
2

⌉−�, 0≤�≤⌊
n
2

⌋
.

Proof. Consider the case where all (0,1)-vectors in a hyperplane H have even
weights and let H be defined by

n∑

i=1

aixi =λ. (4.2)

Clearly ai �= 0 (i = 1, . . . , n) because otherwise we would have an “odd” vector.
This in view of Lemma 1 implies

|H ∩E(n)|≤
(

n
⌊

n
2

⌋
)

. (4.3)

Let now X be the (0,1)-solutions of equation (4.1), i.e. X�
(
E(n)∩H

)
. Observe

first that |X|= (
n
 n
2 �

)
. Note also that for any other value of λ we have |X|< (

n
 n
2 �

)
.

Moreover all vectors of X have the same parity, namely for every (x1, . . . , xn)∈X

one has
n∑

i=1

xi ≡λ mod 2.

To complete the proof we apply Lemma 3 which in particular says that if |ai | �=
|aj | (in (4.2)) for some i, j ∈ [1, n] then we have strict inequality in (4.3).

The proof of the “odd” case is identical.

Consider now the same problem in the case where H is a subspace of R
n.

Denote the corresponding function by FS(n, ε mod 2). Clearly

FS(n, ε mod 2)≤F(n, ε mod 2).

Moreover taking the hyperplane defined by


 n
2 �∑

i=1

xi −
n∑

j=
 n
2 �+1

xj =0,

we get FS(n,1 mod 2)=F(n,1 mod 2)= (
n


n/2�
)
.

The “even” case is more complicated.
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Theorem 6.

FS(n,0 mod 2)=





( n−1
n−1

2 −1

)
, if n≡3 mod 4

( n−1⌊
n−1

2

⌋), otherwise.

To prove the theorem we need the following result from [5]. Let H be the hyper-
plane defined by the equation

n∑

i=1

aixi =0 (4.4)

and suppose also (w.l.o.g.) that a1, . . . , a� >0, a�+1, . . . , an ≤0, 1≤�≤n−1.

Theorem 7 [5]. Let A⊂ (
E(n)∩H

)
be an antichain. Then

|A|≤
(

�
⌊

�
2

⌋
)(

n−�
⌊

n−�
2

⌋
)

≤ max
1≤�≤n

(
�

⌊
�
2

⌋
)(

n−�
⌊

n−�
2

⌋
)

=





2
(n−2

n−2
2

)
, if 2 |n

(n−1
n−1

2

)
, if 2 � n.

(4.5)

We will also use the following fact which can be easily verified.

Proposition 2. For integers 3≤�≤ n
2 we have

(a)
(

�
⌊

�
2

⌋
)(

n−�
⌊

n−�
2

⌋
)

<

(
n−1⌊
n−1

2

⌋
)

(4.6)

except for the case �=7, n=8.
(b) if n=4k +3 then

(
�

⌊
�
2

⌋
)(

n−�
⌊

n−�
2

⌋
)

<

(
n−1

n−1
2 −1

)
(4.7)

except for cases �=3, n=4 and �=3 or 4, n=11 (for this case we have equality in
(4.7)).

Proof of Theorem 6. Let X be the set of (0,1)-solutions of (4.4), i.e. X �
(
E(n)∩

H
)

and X does not contain “even” vectors. Clearly ai �=0, i =1, . . . , n and w.l.o.g.
we may assume that a1, . . . , a� >0, a�+1, . . . , an <0, 1≤�≤⌊

n
2

⌋
. Let n=4k + r, 0≤

r ≤3.
Observe first that the bound (4.3) can be achieved for the hyperplane H defined

by

2kx1 −
n∑

i=2

xi =0. (4.8)
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Then clearly X={1}×E(n−1,2k). Note further that two different vectors u, v ∈
X form an antichain. This is clear because otherwise either (u − v) or (v − u)∈X

has even weight, a contradiction.
Therefore by Theorem 7 we have

|X|≤
(

�
⌊

�
2

⌋
)(

m−�
⌊

n−�
2

⌋
)

. (4.9)

In view of (4.5), (4.6) and (4.7) we infer that the main values for � we have to con-
sider are �= 1 or �= 2. Moreover observe that if �= 1 then we are done. This is
obvious for the cases n= 4k, 4k + 1, 4k + 2. If n= 4k + 3 then X ={1}×X′ where
X′ ⊂ E(4k + 2), X′ ∩ E(4k + 2,2k + 1) = ∅ and X′ is an antichain. It is not hard
to prove that under these conditions one has |X′| ≤ (4k+2

2k

)
(and we leave it to the

reader).
Case n=4k +1. Combining (4.5) with (4.6) we get

|X|≤
(

n
n−1

2

)
.

Case 4k + 2. Consider symmetric chain decompositions of power sets 2[2]

and 2[3,n]. This corresponds to the symmetric chain decompositions of E(2)

and E(n−2). In E(2) we have two symmetric chains C1 ={
(0,0), (0,1), (1,1)

}
and

C2 ={
(1,0)

}
.

For each symmetric chain B = {b1, . . . ,br} ⊂ E(n − 2) consider the “product
chains” C1 × B and C2 × B (defined before), that is Ci × B

{
(c,b) : c ∈Ci ,b ∈ B

}
,

i =1,2 suppose first that a1 �=a2 (in 4.4). This with the antichain condition implies
that X contains at most one vector from the products C1 ×B and C2 ×B, for each
symmetric chain B ⊂E(n−2).

Note also that in the symmetric chain decomposition of E(n− 2) (correspond-
ing to 2[3,n]) we have

(4k
2k

)− ( 4k
2k−1

)
“singles”, that is chains of size one (and hence

of weights 2k). Since X contains only “odd” vectors these singles can be combined
only with (0,1) or (1,0) in C1 and C2. The number of product chains is 2

(4k
2k

)
there-

fore we can estimate

|X|≤2
(

4k

2k

)
−

((
4k

2k

)
−

(
4k

2k −1

))
=

(
4k +1

2k

)
.

In fact one can show that |X|< (4k+1
2k

)
.

Suppose now a1 =a2.
Note that in this case if (1,0, x3, . . . , x2) ∈ X then (1,0,1 − x3, . . . ,1 − xn) /∈ X

since otherwise (0,1,1 − x3, . . . ,1 − xn) and consequently (1,1, . . . ,1) ∈ X, a con-
tradiction with the vector being “even”.

Let us define X′ = {
(x1, . . . , xn)∈X :x1 +x2 =1

}
and X′′ = {

(x1, . . . , xn)∈X :x1 =
x2 =1

}
. Clearly

X =X′ ∪X′′ and |X′′|≤
(

4k

2k −1

)
. (4.10)
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Suppose further |X′|≤ (4k
2k

)− ( 4k
2k−1

)
. Then with (4.10) we get

|X|= |X′|+ |X′′|≤
(

4k

2k

)
.

If conversely |X′| > (4k
2k

) − ( 4k
2k−1

)
then by observation above at least |X′| product

chains have not elements from X. Hence

|X|≤2
(

4k

2k

)
−|X′|<

(
4k +1

2k

)
.

Case n=4k. As above we consider all product chains C1 ×B, C1 ×B where B

is a chain from a symmetric chain decomposition of E(4k −2).
The number of singles in a symmetric chain decomposition of E(4k − 2) is(4k−2

2k−1

)− (4k−2
2k−2

)
and these singles cannot be combined with (1,1)∈C1. Therefore

|X|≤2
(

4k −2
2k −1

)
−

((
4k −2
2k −1

)
−

(
4k −2
2k −2

))
≤

(
4k −1
2k −1

)
.

The same argument can be used to analyse the case �=4, n=8.
Case n= 4k + 3. We proceed as before. In a symmetric chain decomposition of

E(4k + 1) (corresponding to 2[3,4k+1]) we have m �
(4k+1

2k

) − ( 4k
2k−1

)
chains of size

two, i.e. chains consisting of two vectors of weight 2k and 2k +1.
Suppose a1 �=a2. Let B ={b1,b2}⊂E(4k+1) be a symmetric chain where b1 and

b2 have weights 2k and 2k +1 resp. Then note that X contains at most one vector
from the vectors (1,0,b1) (1,1,b2), (0,1,b1). This implies that at least m product
chains have not common vectors with X. Thus we get

|X|≤2
(

4k +1
2k

)
−

((
4k +1

2k

)
−

(
4k +1
2k −1

))
=

(
4k +2

2k

)
.

Suppose now a1 =a2. Define three new sets
X10 = {b ∈ E(4k + 1) : (1,0,b) ∈ X}, X01 = {b ∈ E(4k + 1) : (0,1,b) ∈ X}, X11 = {b ∈

E(4k +1) : (1,1,b)∈X}.
Clearly X10 =X01, X10 ∩X11 =∅, X10 ∩E(4k +1,2k −1)=∅, and

|X|= |X10|+ |X01 ∪X11|. (4.11)

Claim.

|X10|≤
(

4k +1
2k +2

)
. (4.12)

Proof. First note that any two elements u, v ∈ X10 are intersecting, since other-
wise (1,0,u), (0,1, v)∈X and consequently the even vector (1,1, v +u)∈X, a con-
tradiction. Thus X is an intersecting antichain. We use now the approach which
was used in Sperner’s original proof of his theorem. The idea is as follows (see for
details [6] or [7]).
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Let Wi = X10 ∩ E(4k + 1, i) be the vectors of minimal weight i and let 1 ≤ i ≤
2k − 1. We replace then Wi by the set of all vectors W ′

i+1 ⊂E(4k + 1, i + 1) which
“cover” (contain in the language of sets) the vectors of Wi .

One can easily see that (X�Wi)∪W ′
i+1 is again an intersecting antichain. More-

over it can be shown that |W ′
i+1|≥ |Wi |.

The described transformation can be iteratively applied to all levels of weight
less than 2k. The same procedure we apply to the set of vectors Wj ⊂X10 of max-
imum weight 2k + 2 <j ≤n, replacing Wj by the set of all vectors W ′

j−1 ⊂E(4k +
1, j −1) which are covered by vectors of Wj . In other words we replace Wj by its
1-shadow. It can be shown again that this transformation does not decrease the
size of the family. Thus X10 can be brought to an intersecting antichain X∗ with
|X∗|≥ |X10| such that X∗ =W2k ∪W2k+2 consists only of vectors W2k of weight 2k

and vectors W2k+2 of weight 2k + 2. In view of Theorem EKR we have |W2k| ≤( 4k
2k−1

)
. If now |W2k+2|≤

( 4k
2k+2

)
then we are done since

|X∗|= |W2k|+ |W2k+2|≤
(

4k

2k −1

)
+

(
4k

2k +2

)
=

(
4k +1
2k +2

)
.

Therefore assume

|W2k+2|=
(

4k

2k +2

)
+ s, s ≥1. (4.13)

Since X∗ is an antichain we can write

|W2k|≤
(

4k +1
2k

)
−|∂2W2k+2|.

Further using Theorem KK we get the estimation

|∂2W2k+2|≥
(

4k

2k

)
+ s.

Hence

|W2k|≤
(

4k +1
2k

)
−

(
4k

2k

)
− s =

(
4k

2k +1

)
− s

which with (4.13) gives

|X∗|≤
(

4k

2k +2

)
+

(
4k

2k +1

)
=

(
4k +1
2k +2

)
.

Note now that X10 ∪X11 is an antichain and therefore

|X10 ∪X11|≤
(

4k +1
2k +1

)
.
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Hence by (4.11) and (4.12)

|X|≤
(

4k +1
2k +1

)
+

(
4k +1
2k +2

)
≤

(
4k +2

2k

)
.

To complete the proof of the theorem, it remains to treat the case n= 7, �= 3.
This can be easily done using a similar approach.
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