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Abstract. Watermarking identification codes were introduced by Y.
Steinberg and N. Merhav. In their model they assumed that
(1) the attacker uses a single channel to attack the watermark and both,

the information hider and the decoder, know the attack channel;
(2) the decoder either completely he knows the covertext or knows noth-

ing about it.
Then instead of the first assumption they suggested to study more

robust models and instead of the second assumption they suggested to
consider the case where the information hider is allowed to send a secret
key to the decoder according to the covertext.

In response to the first suggestion in this paper we assume that the
attacker chooses an unknown (for both information hider and decoder)
channel from a set of channels or a compound channel, to attack the
watermark. In response to the second suggestion we present two models.
In the first model according to the output sequence of covertext the
information hider generates side information componentwise as the secret
key. In the second model the only constraint to the key space is an upper
bound for its rate.

We present lower bounds for the identification capacities in the above
models, which include the Steinberg and Merhav results on lower bounds.
To obtain our lower bounds we introduce the corresponding models of
common randomness. For the models with a single channel, we obtain
the capacities of common randomness. For the models with a compound
channel, we have lower and upper bounds and the differences of lower
and upper bounds are due to the exchange and different orders of the
max–min operations.

Keywords: Watermarking, identification, compound channel, common
randomness.

1 Introduction

Watermarking technique is a way to embed secret information into a given mes-
sage, say image, that cannot be removed nor deciphered without access to a
secret key.
It can be used to protect copy right. Watermarking is now a major activity in
audio, image, and video processing and standardization efforts for JPEG–2000,
MPEG–4 and Digital Video Disks are underway.
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One way to analyze watermarking problems is to regard them as communi-
cation systems e.g., [16], [20], [27], [28], [29], [30], and [32]. In these systems the
messages, which are called covertext, are generated by an information source.
An information hider, whom we often call encoder because of his role in the
system, has full access to the information source of covertexts and the set of
secret messages. These secret messages are independent of the covertext, they
are uniformly generated from the set, and will be called watermark. The role of
the information hider, or encoder, is to embed the watermark in the covertext.
When the embedding changes the covertext, it disturbs the message. To guar-
antee the quality of the watermarked message, we certainly would like not too
much distortion. That is, for a given distortion measure, the distortion between
the original covertext and the watermarked message in average may not exceed
a given constant. An attacker wants to remove the watermark from the wa-
termarked message without distorting the message too much i.e., the distortion
between the covertext and the message corrupted by the attacker is not too large
with respect to a certain distortion measure. Finally a decoder tries to recover
the watermark from the corrupted message correctly with high probability. As
the attacker is allowed to use a random strategy, we assume that the attacker
uses a noisy channel to attack the watermark. Depending on the models the at-
tacker may choose various channels and the encoder and decoder share different
resources (e.g., secret key, side information, etc.).

Among huge contributions on watermarking we here briefly review two of
them. In [28] P. Moulin and J.A. O’Sullivan obtained the capacity for the wa-
termarking codes under the assumptions that the covertexts are generated from
a memoryless source, the distortions are sum–type and the attack channels are
compound channels whose states are known to the decoder but unknown to the
encoder. The strategies of encoder–decoder and attacker are discussed as well.

Identification codes for noisy channels were introduced by R. Ahlswede and
G. Dueck for the situation in which the receiver needs to identify whether the
coming message equals a specified one. If not, then they don’t care what it is
[11]. It turned out that this weaker requirement dramatically increased the sizes
of messages sets which could be handled: double exponential grown in the block
lengths of codes. Identification is much faster than transmission!

Y. Steinberg and N. Merhav notice that in most cases people check watermarks
in order to identify them (e.g. copyright) rather than recognize them and so they
introduced identification codes to watermarking models [32]. In their models
the attack channels are single memoryless channels. That means the attacker’s
random strategy is known by information hider (encoder) and decoder. They
notice that the assumption is not robust and so suggested to study more robust
models. As to the resources shared by encoders and decoders they consider two
cases, the decoder either completely know the covertext or he knows nothing
about it. (In all cases the attacker must not know the covertext because otherwise
there would be no safe watermarking.)

By considering common randomness between encoder and decoder, they ob-
tained lower bounds to the capacities of watermarking identification in both
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cases and the upper bounds easily followed from a theorem in [31]. The lower
and upper bounds are tight in the former case but not in the latter case. As
Y. Steinberg and N. Merhav only studied two extremal cases, they suggested to
consider the more general case, that the decoder may obtain partial information,
about the covertext, say key, from the encoder via a secure noiseless channel.
The exponent of error probability was discussed as well.

In the present paper we deal with these two problems. But before turning to
our result, we draw readers’ attention to common randomness, which – as noticed
in [12] – plays a central role in identification problems. It does so also in [32]
and here R. Ahlswede and G. Dueck discovered in [12] that common randomness
shared by encoder and decoder can be used to construct identification codes and
therefore the rate of common randomness (in the sense of first order of logarithm)
is not larger than the rate of identification codes (in the sense of the second order
of logarithm). In general the capacities of common randomness shared by the
encoder and the decoder may be smaller than the capacities of identification.
Examples for discrete channels and Gaussian channels were presented in [5]
and [17] respectively. Notice that the sizes of the input alphabets of the former
channel is growing super exponentially as the length of codes and the sizes of
the input alphabets of the latter is infinity. In fact it is seen from [31] that for
any channel, whose input alphabet is exponentially increasing in the case that
strong converse holds, the rates of common randomness and identification codes
are the same.

The topic of common randomness has been become more and more popular
e.g., [6], [9], [10], [23], [26], [33], [34], etc. Common randomness may be ap-
plied to cryptography, (e.g., [9], [18], [23], [26]), identification (e.g., [5], [11], [12],
[10], [15], [18]), and arbitrarily varying channels (e.g., [1], [2], [8], [10]). For the
first two applications the rates are important and the distributions of common
randomnesses are required nearly uniformly. For cryptography certain secure
conditions additionally needed. For the last application one has to face in the
difficulty made by the jammer and find a smart way to generate the common
randomness.

Now let us return to the two suggestions by Steinberg and Merhav. For the first
suggestion we assume in our models, attackers are allowed to choose a channel
arbitrarily from a set of memoryless channels to attack watermarks and neither
encoders nor decoders know the attack channels. This is known as compound
channel in Information Theory.

The assumption makes our models slightly more robust than that in [28] since
in [28] the decoders are supposed to know the attack channels.

For the second suggestion we set up two models. In out first model we assume
the encoder generates a random variable at time t according to component at
time t of the output sequence of covertext source and certain probability and
sends it to decoder via a secure channel. In this case the “key” actually is a
side information of covertext shared by encoder and decoder. We obtain the
first and the second models in [32] if we choose the side information equal to
covertext almost surely and independent of covertext respectively. So our first
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model contain both models in [32]. In our second model the encoder is allowed
to generate a key according to the covertext (but independently on watermark)
in arbitrary way and sends the key to decoder through a secure channel with
rate RK . Obviously in our second model the key can be generated in a more
general way than in our first model. For all combinations of above assumptions,
we obtain lower bounds to the identification capacity, which contains both lower
bounds in [32] as special cases.

To obtain our lower bounds to identification capacities, for each combination,
we introduce a corresponding model of common randomness and obtain lower
and upper bound to its capacity. For the single channel the two bound is closed
for compound channel the gap between two bounds is up to the order of max–
min. In addition, we show a lower bound to common randomness in [32] in fact
is tight, which supports a conjecture in [32].

We must point out that our assumption of compound attack channels is still
far from the most robust and practical assumption although according to our
knowledge, it is most robust and practical existing assumption in this area.
Actually the attacker has much more choices.

– He does not necessarily use a memoryless channel and stead he can chooses
a channel with finite memory.

– The attacker may change the states time by time i.e., he may use an arbi-
trarily varying channel.

– The attacker knows output of the channel; even at time t, he know the output
at time t′ > t, since all outputs in fact are chosen by himself/herself. So the
attacker may use this information to choose attack channel. This clearly
makes the attack much more efficient.

So there is still a long way for us to achieve the most practical results and it
provide a wide space for future research.

The rest part of the paper is organized as follows. In the next section we
present the notation used in the paper. Our models and results are stated in
Section 3 and Section 4 respectively. The direct parts of coding theorems of
common randomness are proven in Section 5 and their converse parts are proven
in Section 6. In Section 7 we briefly review the observation in [12] on the relation
of identification and common randomness and therefore the lower bounds to
the identification capacities from capacities of common randomness. Finally the
converse theorem for a model in [32] is proven in Section 8.

2 The Notation

Our notation in this paper is fairly standard. log and ln stand for the logarithms
with bases 2 and e respectively and az is often written as expa[z]. The random
variables will be denoted by capital letters L, U, V, X, Y, Z etc. and their domains
are often denoted by the correspondent script letters L, U , V , X , Y, Z etc. But
in some special cases it may be exceptional. When we denote a set by a script
letter (for example, X ), its element is often denoted by the corresponding lower
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letter (for example x). X n is the nth Cartesian power of the set X and xn =
(x1, x2, . . . xn) is the sequence of length n. Pr{E} is the probability of that the
event E occurs and E[·] is the operator of expectation. PX , PXY , PZ|X etc.
will stand for the distribution of random variable X , the joint distribution of
the random variables (X, Y ), the conditional distribution of random variable Z
under the condition that X is given respectively. When we write a probability
distribution as Pn, we mean that it is a product distribution of P and similarly
a discrete memoryless channel of length n with stochastic matrix W is written
as Wn.

Throughout this paper T n
U , T n

UV , T n
U|V L(vnln) etc. will denote the sets of

typical, joint typical, and conditional typical sequences and the corresponding
sets of δ- typical, joint typical, and conditional typical sequences are written
as T n

U (δ), T n
UV (δ), T n

U|V L(vnln, δ) etc.. We always understand these sets are
not empty when we use the notation. When we introduce a set of typical se-
quences (for example, say T n

Z ), it is understood that the correspondent ran-
dom variable(s) (i.e., Z in the example) with the (joint) type as distribution
(PZ) is introduced at the same time. For a subset A of sequences of length n
we write AU = A ∩ T n

U and analogously AUV , AU|V L(vnln), AU (δ), AUV (δ),
AU|V L(vnln, δ) etc.

|T n
U | and the common values of |T n

U|L(ln)|, ln ∈ T n
L some times are written as

tU , tU|L etc. respectively (the length n of the sequences are understood by the
context). Analogously tU (δ), tY |X(δ) etc, also are used.

3 The Models

Watermarking Identification Codes
In this subsection, we state our models for the simpler case that the attacker
choose a single channel to attack the watermark and both the encoder (informa-
tion hider) and the decoder know the attack channel. In the next subsection, we
introduce the corresponding models of common randomness. In the last subsec-
tion of the section, we assume the attack chooses a channel unknown by both
encoder and decoder from a set of channels and replace the single channel by a
compound channel.

Let V be a finite set, and V be a random variable taking values in V . Then
the covertext is assumed to be generated by an memoryless information source
{V n}∞n=1 with generic V . The watermark is uniformly chosen from a finite set
{1, 2, . . . , M} independently on the context. The encoder is fully accessed the
covertext and source of watermark and encodes the outputs of covertext vn and
of watermark m jointly to a sequence xn

(
= xn(vn, m)

)
with the same length of

sequence of covertext. The attack use a single discrete memoryless channel W
to attack the watermarked sequence xn i.e., to change xn to yn with probability

Wn(yn|xn) =
n∏

t=1
W (yt|xt). Usually for practical reason people assume that

vn, xn, and yn are chosen from the same finite alphabet, but for convenience of
notation we assume they are from finite alphabets V , X , and Y respectively. The
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encoding mapping in general disturbs the covertext. To measure the distortion,
we introduce a sum type distortion measure, watermarking distortion measure
(WD–measure) ρ, such that for all vn =(v1, . . . , vn)∈Vn, xn =(x1, . . . , xn)∈X n,

ρ(vn, xn) =
n∑

t=1

ρ(vt, xt), (1)

where for all v ∈ V , x ∈ X 0 ≤ ρ(v, x) ≤ Δ, for a positive constant Δ.
By definition, there should be certain distortion constraint to the output of

attack channel. But now we are given a memoryless attack channel and we may
omit the constraint simply by assume that the attack channel satisfies the con-
straint automatically. This clearly does not loss generality. Next we have to set
up the key–resources shared by encoder and decoder, according to which we dis-
tinguish our watermarking identification codes into watermarking identification
codes with side information (WIDCSI) and watermarking identification codes
with secure key (WIDCK) as follows.

Watermarking identification codes with side information (WIDCSI)
In the first case, we assume that the encoder can generate “a component of a
key”, Lt = lt at the time t according to the current output of covertext Vt = vt

and a given conditional distribution PL|V (·|v). That is, the sender generates a se-
quence Ln = (L1, L2, . . . , Ln) = ln = (l1, l2, . . . , ln) with probability Pn

L|V (ln|vn)
if the source outputs a sequence vn of covertext and then sends it to the de-
coder. The latter try to recover the watermark from the invalidated message
by the attacker with the help of the side information Ln = ln. In this case the
key-resource is actually governed by the conditional distribution PL|V or equiv-
alently the joint probability distribution PV L. So it can be understood as a pure
side information at both sides of encoder and decoder instead of a “ secure key”.
That is, if {V n}∞n=1 is a memoryless covertext with generic V , and {Ln}∞n=1 is
a side information observed by both encoder and decoder, then {(V n, Ln)} is
a correlated memoryless source with generic (V, L). Thus the decoder can learn
some thing about the covertext from the side information whereas the attacker
knows nothing about it. A WIDCSI code becomes a “watermarking identifica-
tion code with side information at transmitter and receiver” in [32] when V and
L have the same alphabet and equal to each other almost surely and it becomes
a “watermarking identification code with side information at the transmitter on-
ly” in [32] if V and L are independent.So the two codes defined in [32] is really
the extreme cases of WIDCI codes.

Watermarking identification codes with secure key (WIDCK)
In this case we assume the encoder may generate a key Kn = Kn(vn) according
to the whole output sequence V n = vn of the random covertext V n in an arbi-
trary way and send it to the decoder through a secure (noiseless) channel so that
the attacker has absolutely has no knowledge about the covertext (except its dis-
tribution) nor the key. Since for given output vn of the covertext the encoder
may generate the Kn randomly, a WIDCSI code is a special WIDCK code. We
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shall see that in general the latter is more powerful. Notice that a deterministic
key function of output of covertext is a special random key. Finally of course the
size of the key must be constraint. We require it exponentially increasing with
the length of the code and its rate upper bounded by the key rate RK . When the
key rate is larger than the covertext entropy H(V ) the encoder certainly may
inform the receiver the output of covertext. However “the rest part” of the key
may serve as a common randomness between the communicators which increases
the identification capacity (see [12], [10], and [32]).

Thus an (n, R, λ1, λ2, D1) WIDCSI code is a system {Qm, Dm(ln) : ln ∈ Ln,
m ∈ M} for M = {1, 2, . . . , M} satisfying the following conditions.

– Qm, m = 1, 2, . . . , M are stochastic matrices Qm : Vn × Ln −→ X n such
that for m = 1, 2, . . . , M ,

∑

vn∈Vn,ln∈Ln

Pn
V L(vn, ln)

∑

xn∈Xn

Qm(xn|vn, ln)ρ(vn, xn) ≤ D1, (2)

where PV L is the joint distribution of the generic (V, L).
– For all ln ∈ Ln, m ∈ M, Dm(ln) ⊂ Yn and for all m ∈ M,

∑

vn∈Vn,ln∈Ln

Pn
V L(vn, ln)

∑

xn∈Xn

Qm(xn|vn, ln)Wn(Dm(ln)|xn) > 1 − λ1, (3)

and for all m, m′ ∈ M, m �= m′,
∑

vn∈Vn,ln∈Ln

Pn
V L(vn, ln)

∑

xn∈Xn

Qm(xn|vn, ln)Wn(Dm′(ln)|xn) < λ2. (4)

λ1 and λ2 is called the errors of the first and the second kinds of the code
– The rate of the code is

R = log log M. (5)

Watermarking identification codes with secure key (WIDCK)
Next we define WIDCK code. Let {V n}∞n=1 be a memoryless covertext with
generic V and alphabet V , the attack channel W be memoryless, and WD-
measure ρ be as (1). Then an (n, R, RK , λ1, λ2, D1) WIDCK code is a system
{Q∗

m, D∗
m(kn), WKn : m ∈ M, kn ∈ Kn} for M = {1, 2, . . . , M} satisfying the

following conditions.

– Kn is a finite set, which will be called the key book, with

1
n

log |Kn| ≤ RK . (6)

RK will be called key rate.
– WKn is a stochastic matrix, WKn : Vn −→ Kn. The output random variable

will be denoted by Kn when the random covertext V n is input to the chan-
nel WKn i.e., the pair of random variables (V n, Kn) have joint distribution
PV nKn(vn, kn) = Pn

V (vn)WKn(kn|vn), vn ∈ V kn ∈ Kn. In particular Kn
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may be a deterministic function of output of covertext and in this case we
write K(·) as a function defined on Vn. Note that the choice of Kn does
NOT depend on the message m ∈ M since the key should independent of
the protected message.

– Q∗
m, m = 1, 2, . . . , M are stochastic matrices from Vn × Kn to X n, (the

alphabet of the input of the attack channel), such that
∑

vn∈Vn

Pn
V (vn)

∑

kn∈Kn

WKn(kn|vn)
∑

xn∈Xn

Q∗
m(xn|vn, kn)ρ(vn, xn) ≤ D1. (7)

– For all kn ∈ Kn, m ∈ M, Dm(kn) ⊂ Yn and for all m ∈ M, the error of first
kind

�
vn∈Vn

P n
V (vn)

�
kn∈Kn

WKn(kn|vn)
�

xn∈Xn

Q∗
m(xn|vn, kn)W n(Dm(kn)|xn) > 1 − λ1,

(8)

and for all m, m′ ∈ M m �= m′,

�
vn∈Vn

P n
V (vn)

�
kn∈Kn

WKn(kn|vn)
�

xn∈Xn

Q∗
m(xn|vn, kn)W n(Dm′ (kn)|xn) < λ2.

(9)

– Finally the rate of the code is defined in (5).

The capacities of the codes of the two types are defined in the standard way
and denoted by CWIDSI((V, L), W, D1) and CWIDK(V, W, RK , D1) respectively,
where (V, L) and V are the generic of memoryless correlated source and source
respectively, W is an attack memoryless channel, RK is the key rate, and D1 is
the distortion criterion.

The Common Randomness
We speak of the common randomness between two (or among more than two)
persons who share certain common resources, which may be correlated sources
and/or (noisy or noiseless) channels. The common randomness between these
two persons is just two random variables with common domain, which converges
each other respect to probability. According to the resources different models
are established.

For the purpose to build watermarking identification codes we need the follow-
ing two kinds of common randomness. In the following two models of common
randomness, the correlated source {(V n, Ln)}∞n=1 corresponds to the source of
covertext and side information and the memoryless channel W corresponds the
attack channel in the models of watermarking identification. The Kn in the Mod-
el II corresponds the key in the model of WIDCK.

Model I: Two-source with a constraint noisy channel
Let {(V n, Ln)}∞n=1 be a correlated memoryless source with two components,
alphabets V and L, and generic (V, L). Assume that there are two persons, say
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sender (or encoder) and receiver (or decoder). The sender may observe the whole
output of the source (V n, Ln) whereas only the output of the component Ln is
observable for the receiver. To establish common randomness the sender may
send message through memoryless channels W with input and output alphabets
X and Y under certain constraint condition (specified below). The receiver is not
allowed to send any message to the sender. The sender first chooses a channel
code with set of codewords U ⊂ X n with the same length n as output sequence
of the source and generates a random variable M , his/her “private randomness”
taking values uniformly in a finite set M (, which is exponentially increasing as
the length n of the source sequences increases) and independent of (V n, Ln) of
the output of the source. Assume a (sum type) distortion measure ρ in (1) and a
criterion of distortion D1 are given. According to the output (V n, Ln) = (vn, ln)
of the source and the output of his/her private randomness M = m the sender
chooses a codeword xm(vn, ln) ∈ U(⊂ X n) such that the average of the distortion
between the codeword and the component V n = vn of the correlated source may
not exceed D1. Namely,

1
n

∑

m∈M
PM (m)

∑

vn∈Vn

∑

ln∈Ln

PV L(vn, ln)ρ(xm(vn, ln), vn) ≤ D1. (10)

The receiver receives an output sequence yn ∈ Yn with the probability

Wn(yn|xm(vn, ln))

if the sender input the codeword xm(vn, ln) to the channel. We also allow to
choose xm(v, ln) as a random input sequence instead of deterministic one (it is
more convenient in the proof). Finally for a finite set A which typically increases
exponentially when the length n of the source increases, i. e., for a constant κ

1
n

log |A| ≤ κ, (11)

the sender creates a random variable F with range A, according to the outputs
of (V n, Ln) and M , through a function

F : Vn × Ln × M −→ A (12)

and the receiver creates a random variable G according to the output of the
channel Wn and the output of the component Ln of the source, through a
function

G : Ln × Yn −→ A. (13)

After the terminology in [10] we called the pair of random variables (F, G)
generated in the above way permissible and say that a permissible pair (F, G)
represents λ-common randomness if

Pr{F �= G} < λ. (14)

Typically λ should be an arbitrarily small but positive real number when
length n of source sequences is arbitrarily large. It is not hard to see that under
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the conditions (11) and (14) by Fano inequality, the entropy rates 1
nH(F ) and

1
nH(G) are arbitrarily close if λ in (14) is arbitrarily small. This was observed
in [10]. Thus we can choose any one from the pair of entropy rates, say 1

nH(F )
as the rate of common randomness.

A pair of real numbers (r, D1) is called achievable for common randomness
if for arbitrary positive real numbers ε, λ, μ and sufficiently large n (depending
on ε, λ and μ) there exists a λ-common randomness satisfying (10) – (14), such
that

1
n

H(F ) > r − ε (15)

and ∑

a∈A
| Pr{F = a} − 1

|A| |< μ. (16)

The last condition says that the common randomness is required to be nearly
uniform and we call it nearly uniform condition. We set it for reducing the
errors of second kind of identification codes. The set of achievable pairs is called
common randomness capacity region. For fixed D1 the common randomness
capacity (CR-capacity) is CCRI((V, L), W, D1) = max{r : (r, D1) is achievable}.

Notice that there is no limit to the amount of sender’s private randomness in
the present model and the next model, Model II. However because of the limit
of the capacity of the channel the “ extra” private randomness is useless.

We remark here that this model is different from the model (i) in [10] in
three points. First, the channel connect the sender and receiver is noiseless with
constraint that rate ≤ R in the model (i) of [10] whereas in general it is noisy
in current model. More importantly, because of the requirement of distortion
the source not only plays a role of “ side information” but also a role of “con-
strainer”. That is, to fight for reducing the distortion the sender has to choose
codewords properly. This makes the transformation more difficult. To see that
let us consider an extremal case that the component Ln of the source is a con-
stant. In this case the source makes no difference at all in the model (i) of [10]
and therefore the common randomness capacity is trivially equal to capacity of
the channel. But in this case for the present model the source makes difference
i.e., because of it the sender may not choose the codewords freely and therefore
the common randomness is reduced. To obtain the CR-capacity region for this
model is also absolutely non-trivial. Finally in this model the sender and receiver
observe the output (V n, Ln) = (vn, ln) and Ln = ln respectively. The common
randomness before the transmission, is equal to H(Ln) = I(V n, Ln; Ln) the mu-
tual information between the two observations. So it seems to be not surprising
our characterization in Theorem 4.1 is quite different from that in Theorem 4.1
of [10] and it cannot obtain simply by substituting rate of noiseless channel by
the capacity of the noisy channel.

Model II: Two-source with a constraint noisy channel and a noiseless
channel
It is clear that our goal to study the common randomness of the model I is for
the construction of WIDCSI-codes. Next to study WIDCK codes we introduced
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the Model II of common randomness. Actually our model is a little more general
than that we really need. That is, we add “the side information”. But for this
we need to do almost no more work. Thus to define the Model II we only add a
noiseless channel between the sender and receiver based on th Model I.

Namely we assume that the correlated source {(V n, Ln)}∞n=1, the noisy chan-
nel W , the distortion constraint (10), and the sender’s private randomness M
are still available. Additionally the sender may send a message kn from a set
of message Kn with rate 1

n log |K| ≤ RK to the receiver via noiseless channel.
Again RK is called key rate. Of course kn is necessarily to be a function of the
outputs of the source and sender’s private randomness i.e., kn = kn(vn, m) for
vn ∈ Vn, m ∈ M. More generally the sender may use random strategies i.e.,
treats kn is output of a channel WK with input (vn, m). To define the common
randomness for this model we change (13) to

G : Kn × Ln × Yn −→ A. (17)

and keep the conditions (10), (11), (12), (14), (15), and (16) unchanged (but
now the definition of function G has been changed due to the changing).

Analogously, one can define CR-capacity CCRII((V, L), W, RK , D1) for mem-
oryless correlated source with generic (V, L), memoryless channel W , key rate
RK and the distortion criterion D1 of this model.

The Models for Compound Channels
In this subsection we assume that the attacker employ a (stationary) memoryless
channel from a family of channels satisfying attack distortion criterion to attack
the watermark. Neither the sender nor receiver knows the which channel the
attacker uses. These channels are known as compound channels in Information
Theory. This assumption is slightly more robust and practical than that in [28]
where the decoder has to know the attack channel in order to decode. In fact,
according to our knowledge it is most robust assumption in this direction.

A compound channel is just a family of memoryless channels W = {W (·|·, s) :
s ∈ S} with common input and output alphabet X and Y respectively. S is a
index set which is called state set and its members are called states. An output
sequence yn ∈ Yn is output with the probability

Wn(yn|xn, s) =
n∏

t=1

W (yt|xt, s)

when the channel is governed by the state s and xn ∈ X n is input.
Underlie assumption for the attacker to use a compound channel to attack

a watermarking transmission or identification code is that the attacker knows
the input distribution Pn generated by the code. He then may employ such a
compound channel that for all s ∈ S

1
n

∑

xn∈Xn

Pn(xn)
∑

yn∈Yn

Wn(yn|xn, s)ρ′(xn, yn) ≤ D2,



118 R. Ahlswede and N. Cai

where ρ′ is a sum type distortion measure, attack distortion measure (AD-
measure), may or may not be identify to WD-measure ρ and D2 is the attack
distortion criterion. In particular when the codewords are generated by an i. i.
d. input distributions so that the input distribution generated by the code is an
i. i. d. distribution

Pn(xn) =
n∏

i=1

P (xt)

a compound channel such that for all s ∈ S
∑

x∈X
P (x)

∑

y∈Yn

W (y|x, s)ρ′(x, y) ≤ D2

may be used. We always assume that all compound channels under the consid-
eration satisfy the condition of distortion and do not worry it at all.

To adjust the models in the last two subsections to the compound channels
the following modifications are necessary.

For WIDCSI code for compound channels: replace (3) and (4) by for all ln ∈
Ln, m ∈ M, Dm(ln) ⊂ Yn such that for all m ∈ M, and s ∈ S,

∑

vn∈Vn,ln∈Ln

Pn
V L(vn, ln)

∑

xn∈Xn

Qm(xn|vn, ln)Wn(Dm(ln)|xn, s) > 1 − λ1, (18)

and for all m, m′ ∈ M m �= m′, and s ∈ S
∑

vn∈Vn,�n∈Ln

Pn
V L(vn, �n)

∑

xn∈Xn

Qm(xn|vn, �n)Wn(Dm′(ln)|xn, s) < λ2 (19)

respectively.
For WIDCK for compound channels: replace (8) and (9) by for all kn ∈

Ln, m ∈ M, Dm(kn) ⊂ Yn such that for all m ∈ M, and s ∈ S,

�
vn∈Vn

P n
V (vn)

�
kn∈Kn

WKn(kn|vn)
�

xn∈Xn

Q∗
m(xn|vn, kn)W n(Dm(kn)|xn, s) > 1 − λ1,

(20)

and for all m, m′ ∈ M m �= m′, and s ∈ S,
∑

vn∈Vn

Pn
V (vn)

∑

kn∈Kn

WKn(kn|vn)
∑

xn∈Xn

Q∗
m(xn|vn, kn)Wn(Dm′(kn)|xn, s) < λ2.

(21)
Here the fact that Qm, Q∗

m, Dm(ln) and Dm(kn) are independent of the states
governing the channels reflects the requirement that neither encoder nor decoder
knows the states and that (18) – (21) hold for all s ∈ S is because the worst
case to the encoder and decoder is considered.

For the Common randomness in the models I and II: for compound channels,
replace (14) by, whenever any state s governs the channel,

Pr{F �= G|s} < λ. (22)
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Again the functions F , G, codewords are independent of the states because
the states are unknown for both encoder and the decoder.

Analogously, for compound channel W the corresponding capacities of
watermarking identification codes and common randomness are denoted by
CWIDSI((V, L), W , D1), CWIDK(V, W , RK , D1), CCRI((V, L), W , D1) and
CCRII((V, L), W , RK , D1).

4 The Results

The Results on Common randomness
For given a correlated memoryless source {(V n, Ln)}∞n=1 whose generic has
joint distribution PV L, a memoryless channel W and distortion criterion D1,
let Q((V, L), W, D1) be the set of random variable (V, L, U, X, Y ) with domain
V × L × U × X × Y and the following properties, where U is a finite set with
cardinality |U| ≤ |V||L||X | and X and Y are input and output alphabets of the
channel W respectively.

For all v ∈ V , l ∈ L, u ∈ U , x ∈ X , and y ∈ Y

Pr{(V, L, U, X, Y ) = (v, l, u, x, y)}
= PV LUXY (v, l, u, x, y)
= PV L(v, l)PUX|V L(u, x|v, l)W (y|x). (23)

For the given distortion measure ρ

Eρ(V, X) ≤ D1. (24)

I(U ; V, L) ≤ I(U ; L, Y ). (25)

Then we have the coding theorem of common randomness in the model I for
single channel W .

Theorem 4.1

CCRI((V, L), W, D1) = max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ; L, Y ) + H(L|U)]. (26)

For a given correlated source with generic (V, L) a channel W and positive
real numbers RK and D1, we denote by Q∗((V, L), W, RK , D1) the set of random
variables (V, L, U, X, Y ) with domain as above and such that (23), (24) and

I(U ; V, L) ≤ I(U ; L, Y ) + RK (27)

hold. Then

Theorem 4.2

CCRII((V, L), W, RK , D1) = max
(V,L,U,X,Y )∈Q∗((V,L),W,RK ,D1)

[I(U ; L, Y )+H(L|U)]+RK .

(28)
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To state the coding theorem for compound channels we need new notation.
For random variables (V, L, U, X) with alphabet V ×L×U ×X as above and the
channel with input and output alphabets X and Y respectively, denote by Y (W )
the random variable such that the joint distribution PLV UXY (W ) = PLV UXW
(consequently, LV U ↔ X ↔ Y form a Markov chain). For a compound channel
W with set of stares S and a state s ∈ S we also write Y (W (·|·, s)) = Y (s).
With the notation we write

I(U ; L, Y (W)) = inf
s∈S

I(U ; L, Y (s))

and
I(U ; Y (W)|L) = inf

s∈S
I(U ; Y (s)|L).

Sometimes just for the convenience, we also write Y (s) as Ỹ (s) when we
substitute PLV UX by PL̃Ṽ ŨX̃ and similarly Ỹ (W). Then

I(U ; L, Y (W)) = I(U ; L) + I(U ; Y (W)|L). (29)

Now for a compound channel we define Q1((V, L), W , D1) as the set of ran-
dom variables (V, L, U, X) such that its marginal distribution for the first two
components is equal to the distribution PV L and (24) and

I(U ; V, L) ≤ I(U ; L, Y (W)) (30)

hold. Analogously to set Q∗((V, L), W, RK , D1) we define Q∗
1((V, L), W , RK , D1)

the set of random variables (V, L, U, X) such that its marginal distribution for
the first two components is equal to the distribution PV L and (24) and

I(U ; V, L) ≤ I(U ; L, Y (W)) + RK . (31)

hold. Then

Theorem 4.3

sup
(V,L,U,X)∈Q1((V,L),W,D1)

[I(U ; L, Y (W)) + H(L|U)] ≤ CCRI((V, L), W , D1)

≤ inf
W∈W

max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ; L, Y ) + H(L|U)]. (32)

Theorem 4.4

sup
(V,L,U,X)∈Q∗

1((V,L),W,RK,D1)
[I(U ; L, Y (W)) + H(L|U)] + RK

≤ CCRII((V, L), W , RK , D1)
≤ inf

W∈W
max

(V,L,U,X,Y )∈Q∗((V,L),W,RK,D1)
[I(U ; L, Y ) + H(L|U)] + RK . (33)

Notice the gaps of lower and upper bounds in both Theorems 4.3 and 4.4 are
due to the orders of inf–sup.
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The Results on Watermarking Identification Codes
We shall use the same notation as in the above part. Moreover for above sets
V , X and Y and a finite set U with cardinality bounded by |V||X |, a memoryless
source with generic V , a memoryless cannel W , and compound channel W , we
define the following sets. Let Q∗∗(V, W, RK , D1) be the set of random variables
(V, U, X, Y ) with domain V × U × X × Y such that for all v ∈ V , u ∈ U , x ∈ X ,
and y ∈ Y

PV UXY (v, u, x, y) = PV (v)PUX|V (u, x|v)W (y|x), (34)

I(U ; V ) ≤ I(U ; Y ) + RK , (35)

and (24) hold. Let Q∗∗
1 (V, W , RK , D1) be set of random variables (V, U, X) with

domain V × U × X such that for all v ∈ V , u ∈ U and x ∈ X ,

PV UX(v, u, x) = PV (v)PUX|V (u.x|v), (36)

I(U ; V ) ≤ I(U ; Y (W)) + RK , (37)

and (24) hold, where I(U ; Y (W)) = infW∈W I(U ; Y (W )). In particular, when
the second component Ln of the correlated source {(V n, Ln)}∞n=1 is a constant,
Q∗((V, L), W, RK , D1) and Q∗

1((V, L), W , RK , D1) become Q∗∗(V, W, RK , D1)
and Q∗∗

1 (V, W , RK , D1) respectively.

Theorem 4.5

CWIDSI((V, L), W, D1) ≥ max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ; L, Y ) + H(L|U)]. (38)

Theorem 4.6

CWIDK(V, W, RK , D1) ≥ max
(V,U,X,Y )∈Q∗∗(V,W,RK ,D1)

I(U ; Y ) + RK . (39)

Theorem 4.7

CWIDSI((V, L), W , D1) ≥ sup
(V,L,U,X)∈Q1((V,L),W,D1)

[I(U ; L, Y (W)) + H(L|U)].

(40)

Theorem 4.8

CWIDK(V, W, RK) ≥ sup
(V,U,X)∈Q∗∗

1 (V,W,RK ,D1)
I(U ; Y (W)) + RK . (41)

Note that in Theorems 4.6 and 4.8 one may add side information Ln, the
second component of the correlated source and then one can obtain the corre-
sponding lower bound almost does not change the proofs.
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A result on Watermarking Transmission Code with a common Exper-
iment Introduced by Steinberg-Merhav
To construct watermarking identification code Y. Steinberg and N. Merhav in
[32] introduced a code, which they call watermarking transmission code with
common experiment, distortion measure ρ, and covertext PV . They obtained
there an inner bound to the its capacity region, which is sufficient for achieving
their goal. We shall show their bound is tight and therefore actually the capacity
region. Their definition and result on it and our proof will be presented it the
last section.

5 The Direct Theorems for Common Randomness

In this section we prove the direct parts of Theorems 4.1 – 4.4. Since a DMC can
be regarded as a special compound channel with a single member (i.e., |S| = 1),
we only have to show the direct parts of Theorems 4.3 and 4.4. To this end we
need the following three lemmas for n–type PṼ L̃Ũ over the product set V ×L×U
of finite sets V , L and U .

Lemma 5.1 (Uniformly covering). For �n ∈ T n
L̃

, let Ui(�n) i = 1, 2, . . . , 
2nα�
be a sequence of independent random variables with uniform distribution over
T n

Ũ |L̃(�n) and for any vn ∈ T n
Ṽ |L̃(�n) let ÛŨ|Ṽ L̃(vn�n) be the random set {Ui(�n) :

i = 1, 2, . . . , 
2nα�} ∩ T n
Ũ |Ṽ L̃

(vn�n). Then for all ε ∈ (0, 1]

Pr

������|ÛŨ|Ṽ L̃(vn�n)| − �2nα�
|T n

Ũ|Ṽ L̃
(vn�n)|

|T n
Ũ|L̃(�n)|

����� ≥ �2nα�
|T n

Ũ |Ṽ L̃
(vn�n)|

|T n
Ũ |L̃(�n)| ε

�
< 4 · 2− ε2

4 2nη

(42)

for sufficiently large n if


2nα� > 2nη
|T n

Ũ |L̃(�n)|
|T n

Ũ |Ṽ L̃
(vn�n)|

Proof: Let

Zi(vn, �n) =

{
1 if Ui(�n) ∈ T n

Ũ |Ṽ L̃
(vn�n),

0 else,
(43)

and q =
|T n

Ũ|Ṽ L̃
(vn�n)|

|T n
Ũ|L̃

(�n)| . Then |ÛŨ|Ṽ L̃(vn�n)| =
�2nα�∑

i=1
Zi(vn�n) and for

i = 1, 2, . . . , 
2nα�

Pr{Zi(vn�n) = z} =

{
q if z = 1
1 − q if z = 0

(44)

by the definitions of Ui(�n) and Zi(vn, �n).
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Then by Chernov’s bound, we have that

Pr

⎧
⎨

⎩

�2nα�∑

i=1

Zi(vn�n) ≥ 
2nα�q(1 + ε)

⎫
⎬

⎭

≤ e−
ε
2 �2

nα�q(1+ε) E e
ε
2

�2nα��

i=1
Zi(vn,�n)

= e−
ε
2 �2

nα�q(1+ε)
�2nα�∏

i=1

E e
ε
2 Zi(vn,�n)

= e−
ε
2 �2

nα�q(1+ε)[1 + (e
ε
2 − 1)q]�2

nα�

≤ e−
ε
2 �2

nα�q(1+ε)
[
1 +

(
ε

2
+
(ε

2

)2
)

q

]�2nα�

≤ expe

{
−ε

2

2nα�q(1 + ε) +

ε

2

2nα�q

(
1 +

ε

2

)}

= e−
ε2
4 �2nα�q < 2e−

ε2
4 2nη

(45)

if 
2nα� > 2nηq−1.
Here the first inequality follows from Chernov’s bound; the second equality

holds by (44); the second inequality holds because e
ε
2 < 1 + ε

2 +
(

ε
2

)2 a by the
assumption that ε < 1, e

ε
2 < e

1
2 < 2; and the third inequality follows from the

well known inequality 1 + x < ex. Similarly one can obtain

Pr

⎧
⎨

⎩

�2nα�∑

i=1

Zi(vn�n) ≤ 
2nα�q(1 − ε)

⎫
⎬

⎭
< 2e−

ε2
4 2nη

(46)

if 
2nα� > 2nηq−1.
Finally we obtain the lemma by combining (45) and (46).

Lemma 5.2 (Packing). Let PL̃Ũ be an n–type, let Ui(�n), i = 1, 2, . . . , 
2nα� be
a sequence of independent random variables uniformly distributed on T n

Ũ|L̃(�n) for
an �n ∈ T n

L̃
, and let Y be a finite set. Then for all n–types PL̃ŨỸ and PL̃ŨY with

common marginal distributions PL̃Ũ and PY = PỸ , all i, γ > 0 and sufficiently
large n,

Pr

��
� 1

�2nα�

�2nα��
i=1

������T n
Ỹ |L̃Ũ

�
�nUi(�n)

	
∩



��

j �=i

T n
Y |L̃Ũ

�
�nUj(�n)

	�
������ ≥ tỸ |L̃Ũ2− n

2 γ

��
� < 2− n

2 γ

(47)

if 
2nα� ≤ tŨ|L̃

tŨ|L̃Y
2−nγ.

Here tỸ |L̃Ũ , tŨ |L̃, and tŨ |L̃Y are the common values of |T n
Ỹ |L̃Ũ

(�nun)| for
(�n, un) ∈ T n

L̃Ũ
, |T n

Ũ |L̃(�n)| for �n ∈ T n
L̃

, and |T n
Ũ |L̃Y

(�nyn)| for (�n, yn) ∈ T n
L̃Y

,
respectively.
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Proof: For i = 1, 2, . . . , 
2nα�, yn ∈ T n
Y

= T n
Ỹ

, let

Ẑi(yn) =

{
1 if yn ∈

⋃
j 	=i TY |L̃Ũ

(
�nUj(�n)

)

0 else
(48)

and for all un ∈ T n
Ũ |L̃(�n)

Si(un) =

∣
∣
∣
∣
∣∣
T n

Ỹ |L̃Ũ
(�nun) ∩

⎡

⎣
⋃

j 	=i

T n
Y |L̃Ũ

(
�nUj(�n)

)
⎤

⎦

∣
∣
∣
∣
∣∣
. (49)

Then
Si(un) =

∑

yn∈TỸ |L̃Ũ(�nun)

Ẑj(yn) (50)

and

E Ẑi(yn) = Pr

��
�yn ∈

�
j �=i

T n
Y |L̃Ũ

�
�nUj(�n)

	��� ≤
�
j �=i

Pr
�
yn ∈ T n

Y |L̃Ũ

�
�nUj(�n)

	�

=
�
j �=i

Pr
�
Uj(�n) ∈ T n

Ũ|L̃Y (�nyn)
�

= (2�nα� − 1)
tŨ|L̃Y

tŨ|L̃
< 2−nγ (51)

if 
2nα� ≤ tŨ|L̃

tŨ|L̃Y
2−nγ .

Hence by (50) and (51) we have that E Si(un) ≤ tỸ |L̃Ũ2−nγ and i.e.,
E
[
Si(Ui(�n))|Ui(�n)

]
< tỸ |L̃Ũ2−nγ (a.s.), so

E Si

(
Ui(�n)

)
= E

{
E
[
Si(Ui(�n))|Ui(�n)

]}
< tỸ |L̃Ũ2−nγ . (52)

Thus by Markov’s inequality we have that

Pr

⎧
⎨

⎩
1


2nα�

�2nα�
∑

i=1

Si

(
Ui(�n)

)
≥ tỸ |L̃Ũ2−

n
2 γ

⎫
⎬

⎭
< 2−

n
2 γ ,

i.e., (47).

Lemma 5.3 (Multi–Packing). Under the conditions of the previous lemma, let
Ui,k(�n), i = 1, 2, . . . , 
2nβ1�, k = 1, 2, . . . , 
2nβ2�, be a sequence of independent
random variables uniformly distributed on T n

Ũ|L̃(�n) for a given �n ∈ T n
L̃

. Then
for all n–types PL̃Ũ Ỹ and PL̃ŨY in the previous lemma

Pr

⎧
⎨

⎩
1

�2nβ2�

�2nβ2�∑

k=1

1
�2nβ1�

�2nβ1�∑

i=1

∣
∣∣
∣
∣
∣
T n

Ỹ |L̃Ũ

(
�nUi,k(�n)

)
∩

⎡

⎣
⋃

j �=i

T n
Y |L̃Ũ

(
�nUj,k(�n)

)
⎤

⎦

∣
∣∣
∣
∣
∣
≥ tỸ |L̃Ũ2−nη

⎫
⎬

⎭

< 2−
n
2 γ

(53)

if 
2nα� ≤ tŨ|L̃

tŨ|L̃Y
2−nγ.
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Proof: For un ∈ T n
Ũ |L̃(�n), let

Si,k(un) =

∣
∣
∣
∣
∣∣
T n

Ỹ |L̃Ũ
(�nun) ∩

⎡

⎣
⋃

j 	=i

T n
Y |L̃Ũ

(
�nUj,k(�n)

)
⎤

⎦

∣
∣
∣
∣
∣∣
.

Then we have shown in the proof to the previous lemma (c.f. (52))

E Si,k

(
Ui(�n)

)
< tỸ |L̃Ũ2−nγ .

Thus (53) follows from Markov’s inequality.
Now let us turn to the direct part of Theorem 4.3.

Lemma 5.4 (The Direct Part of Theorem 4.3). For a compound channel W,

CCRI

(
(V, L), W , D1

)
≥ sup

(V,L,U,X)∈Q1

(
(V,L),W,D1

)
[
I(U ; L, Y (W)

)
+ H(L|U)

]
.

(54)
Proof: We have to show for a given correlated memoryless source with generic
(V, L), a compound channel W , (V, L, U, X) ∈ Q1

(
(V, L), W , D1

)
and sufficiently

large n, the existence of the functions, F , G and xm(vn, �n) satisfying (10) – (13),
(22), (15) and (16) with the rate arbitrarily close to I

(
U ; L, Y (W)

)
+ H(L|U).

Obviously the set of achievable rates of the common randomness is bounded and
closed (i.e., compact). So without loss of generality, by uniform continuity of
information quantities, we can assume that Eρ(V, X) < D1, and I(U ; V, L) <
I
(
U ; L, Y (W)

)
. Because I(U ; V, L) = I(U ; L)+ I(U ; V |L) and I

(
U ; L, Y (W)

)
=

I(U ; L) + I
(
U ; Y (W)|L

)
, there exists a sufficiently small but positive constant

ξ, such that
I
(
U ; Y (W)|L

)
− I(U ; V |L) > ξ. (55)

Without loss of generality, we also assume PU is an n–type to simplify the
notation. Then for arbitrary ε1 > 0, by uniform continuity of information quan-
tities, we can find δ1, δ2 > 0 with the following properties.

(a) For all �n ∈ T n
L (δ1) with type P�n = PL̃, there exists a δ′ > 0, such that

(vn, �n) ∈ T n
V L(δ′2) yields that T n

Ṽ |L̃(�n) ⊂ T n
V̂ |L̃(�n, δ2), where PṼ L̃ is the

joint type of (vn, �n) and PV̂ L̃ = PL̃PV |L.
We call a pair (vn, �n) of sequences with �n ∈ T n

L (δ1), (vn, �n) ∈ T n
V L(δ2),

(δ1, δ2)–typical and denote the set of (δ1, δ2)–typical sequences by T n(δ1, δ2).
Then we may require δ2 → 0 as δ1 → 0. Moreover (e.g., see [35]), there

exist positive ζ1 = ζ1(δ1), ζ2 = ζ2(δ1, δ2), and ζ = ζ(δ1, δ2) such that

Pn
L

(
T n

L (δ1)
)

> 1 − 2−nζ1 (56)

Pn
V |L

{
vn : (vn, �n) ∈ T n(δ1, δ2)|�n

)
> 1 − 2−nζ2 (57)

for all �n ∈ T n
L (δ1) and

Pn
V L

(
T n(δ1, δ2)

)
> 1 − 2nζ . (58)
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(b) For all �n ∈ T n
L (δ1) with type P�n = PL̃ (say), one can find a joint type

of sequences in Ln × Un, say PL̃Ũ , with marginal distributions PL̃ and PU ,
sufficiently close to PLU , (which will be specified below). We say that PL̃Ũ

is generated by the type PL̃ of �n.
(c) For all (vn, �n) ∈ T n(δ1, δ2) with joint type Pvn�n = PṼ L̃ (say), one can find

a joint type PṼ L̃Ũ of sequences in Vn ×Ln ×Un with marginal distributions
PṼ L̃ and PL̃Ũ and sufficiently close to PV LU (which will be specified below),
where PL̃Ũ is the type generated by PL̃. We say PṼ L̃Ũ is generated by the
joint type PṼ L̃ of (vn, �n).

(d) For all (δ1, δ2)–typical sequences (vn, �n) with joint type PṼ L̃ (say) and the
joint type PṼ L̃Ũ generated by PṼ L̃, we let (Ṽ , L̃, Ũ , X̃) be random variables
with joint distribution PṼ L̃ŨX̃ such that for all v ∈ V , � ∈ L, u ∈ U and
x ∈ X

PṼ L̃ŨX̃(v, �, u, x) = PṼ L̃Ũ (v, �, u)PX|V LU (x|v, �, u), (59)

and let
(
Ṽ , L̃, Ũ , X̃, Ỹ (W )

)
be random variables with joint distribution

PṼ L̃ŨX̃Ỹ (W) such that for all v ∈ V , � ∈ L, u ∈ U , x ∈ X , and y ∈ Y

PṼ L̃ŨX̃Ỹ (W )(v, �, u, x, y) = PṼ L̃ŨX̃(v, �, u, x)W (x|y), (60)

for any W ∈ W and PṼ L̃ŨX̃ in (59). Then the following inequalities hold

Eρ(Ṽ , X̃) < D1, (61)

|H(L̃) − H(L)| < ε1, (62)

|I(Ũ ; Ṽ |L̃) − I(U ; V |L)| < ε1, (63)

and
|I(Ũ ; Ỹ (W)|L̃) − I(U ; Y (W)|L)| < ε1, (64)

where I(Ũ ; Ỹ (W)|L̃) = infW∈W I(Ũ ; Ỹ (W )|L̃).

For arbitrarily small fixed ε2 with 0 < ε2 < 1
2ξ, for ξ in (55), we choose ε1

(and consequently, δ1, δ2) so small that ε1 < 1
2ε2 and an α such that

I(U ; Y (W)|L) − ξ

2
< α < I(U ; Y (W)|L) − ε2 (65)

and M = 2nα (say) is an integer. Notice that by (65) we may choose α arbitrarily
close to I(U ; Y (W)|L) − ε2 and therefore arbitrarily close to I(U ; Y (W)|L) by
choosing ε2 arbitrarily small. Then by (55), (63) and (65) we have that

α > I(U ; V |L) +
ξ

2
> I(Ũ ; Ṽ |L̃) +

ξ

2
− ε1 > I(Ũ ; Ṽ |L̃) +

ξ

4
, (66)

where the last inequality holds by our choice ε1 < 1
2ε2 < 1

4ξ, and by (64) and
(65) we have

α < I(Ũ ; Ỹ (W)|L̃) + ε1 − ε2 < I(Ũ ; Ỹ (W)|L̃) − ε2

2
. (67)
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Denote by tŨ |L̃ and tŨ |Ṽ L̃ the common values of |T n
Ũ |L̃(�n)|, �n ∈ T n

L̃
and

|T n
Ũ |Ṽ L̃

(vn, �n)|, (vn, �n) ∈ T n
Ṽ L̃

, respectively.

Then it is well known that 1
n log

tŨ|L̃

tŨ|Ṽ L̃
arbitrarily close to I(Ũ ; Ṽ |L̃).

This means under our assumption that 1
2ε2 < 1

4ξ, (66) implies that for all
types PṼ L̃Ũ generated by the joint types PṼ L̃ of (δ1, δ2)–typical sequences

2
n
3 ε2

tŨ|L̃
tŨ|Ṽ L̃

< 2nα = M. (68)

Next we let QW(�nun, τ) be the set of conditional type PY |L̃Ũ , for a pair
(�n, un) of sequences such that there exists a W ∈ W with T n

Y |L̃Ũ
(�nun) ⊂

T n
Ỹ (W )|L̃Ũ

(�nun, τ), where PL̃Ũ is the type of (�n, un) and PL̃ŨỸ (W) is the
marginal distribution of the distribution in (60). Then

⋃

PY |L̃Ũ∈QW (�nun,τ)

T n
Y |L̃Ũ

(�nun, τ) =
⋃

W∈W
T n

Ỹ (W)|L̃Ũ
(�nun, τ), (69)

and
|QW(�nun, τ)| < (n + 1)|L||U||Y|. (70)

Again for the commonvalues tŨ|L̃ of |T n
Ũ |L̃(�n)|, �n ∈ T n

L̃
, tŨ|L̃Y of |T n

Ũ |L̃Y
(�nyn)|,

(�n, yn) ∈ T n
L̃Y

, lim
n→∞

1
n log

tŨ|L̃

tŨ|L̃Y
= I(Ũ ; Y |L̃).

Thus, (67) yields that for all PṼ L̃Ũ generated by the joint type of (δ1, δ2)–
typical sequences, (�n, un) ∈ T n

L̃Ũ
, and PY |L̃Ũ ∈ QW(�nun, τ),

M = 2nα < 2−
n
4 ε2

tŨ |L̃
tŨ|L̃Y

, (71)

if we choose τ so small (depending on ε2) that for all PY |L̃Ũ ∈ QW(�nun, τ)

I(Ũ ; Y |L̃) > I(Ũ ; Y (W)|L̃) − 1
8
ε2

(recalling that by its definition I(Ũ ; Ỹ (W)|L̃) = inf
W∈W

I(Ũ ; Ỹ (W )|L̃)).

Now we are ready to present our coding scheme at rate α, which may arbi-
trarily close to I(U ; Y (W)|L).

Coding Scheme

1) Choosing Codebooks:
For all �n ∈ T n

L (δ1) with type PL̃, PL̃Ũ generated by PL̃ (cf. condition (b)
above), we apply Lemma 5.1 with η = ε2

3 and Lemma 5.2 with γ = ε2
4 to

random choice. Then since the numbers of sequences vn, �n and the number
of n–joint types are increasing exponentially and polynomially respectively,
for all �n ∈ T n

L (δ1) with type PL̃Ũ generated by PL̃, by (68), (71) we can
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find a subset U(�n) ⊂ T n
Ũ|L̃(�n) with the following property if n is sufficiently

large.
If (vn, �n) ∈ T n(δ1, δ2) and has joint type PṼ L̃ and PṼ L̃Ũ is generated by

PṼ L̃ (cf. condition (c) above), then
∣
∣
∣∣
∣
|UŨ |Ṽ L̃(vn�n)| − M

tŨ|Ṽ L̃

tŨ |L̃

∣
∣
∣∣
∣
< M

tŨ|Ṽ L̃

tŨ|L̃
ε (72)

for any ε > 0 (with ε → 0 as n → ∞), where

UŨ |Ṽ L̃(vn�n) � U(�n) ∩ T n
Ũ |Ṽ L̃

(vn�n). (73)

For any PṼ L̃Ũ generated by a joint type of (δ1, δ2)–typical sequence, (vn, �n),
and joint type PL̃Ũ Ỹ with marginal distribution PL̃Ũ and any PY |L̃Ũ ∈
QW

(
�nun

m′(�n), τ
)

(notice that QW(�nun, τ) depends on (�nun) only through
their joint type P�nun !)

M−1
M∑

m=1

∣
∣
∣∣
∣
∣
T n

Ỹ |L̃Ũ

(
�nũn

m(�n)
)

∩

⎡

⎣
⋃

m′ 	=m

T n
Y |L̃Ũ

(
�nũn

m′(�n)
)
⎤

⎦

∣
∣
∣∣
∣
∣
< 2−

n
8 ε2tỸ |L̃Ũ

(74)
if we label the members of U(�n) as ũn

1 (�n), ũn
2 (�n), . . . , ũn

M (�n). Consequently
by (70) and the fact that (�n, un), (�′n, u′n) have the same type QW(�nun) =
QW(�′nu′n),

M−1
M∑

m=1

∣∣
∣
∣
∣
∣
T n

Ỹ |L̃Ũ

(
�n, ũn

m(�n)
)

∩

⎡

⎣
⋃

m′ �=m

⋃

PY |L̃Ũ∈QW (�nun
m′(�n))

T n
Y |L̃Ũ

(
�nun

m′(�n)
)
⎤

⎦

∣∣
∣
∣
∣
∣

< 2−
n
9 ε2tỸ |L̃Ũ .

(75)
We call the subset U(�n) the codebook for �n and its members ũn

m(�n), for
m = 1, 2, . . . , M codewords.

2) Choosing Input Sequence to Send through the Channel:
The sender chooses an input sequence xn ∈ X n according to the output
(vn, �n) of the correlated source observed by him and his private randomness
as follows.
— In the case that outcome of the source is a (δ1, δ2)–typical sequence

(vn, �n) with joint type PṼ L̃, the sender chooses a codeword in
UŨ |Ṽ L̃(vn, �n) in (73) randomly uniformly (by using his private random-
ness), say

ũm(�n) ∈ UŨ|Ṽ L̃(vn, �n) ⊂ U(�n). (76)

Then the sender chooses an input sequence xn ∈ X n with probability

PX|V LU

(
xn|vn, �n, ũn

m(�n)
)

(77)

by using the chosen ũn
m(�n) and his private randomness and sends it

through the channel.
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— In the other case i.e., a non–(δ1, δ2)–typical sequence is output, the
sender chooses an arbitrarily fixed sequence, say xn

e , and sends it through
the channel.

— The codewords randomly chosen here and the random input of the chan-
nel generated here will be denoted by U ′n and X ′n in the part of analysis
below.

3) Choosing the Common domain A of Functions F and G:
Let

J = 
2n(H(L)−2ε1)� (78)

and let e be an abstract symbol (which stands for that “an error occurs”).
Then we define

A =
{
{1, 2, . . . , M} × {1, 2, . . . , J}

}
∪ {e}. (79)

4) Defining the Functions F and G:
To define functions F and G we first partition each T n

L̃
⊂ T n

L (δ1) into J

subsets with nearly equal size i.e., each subset has cardinality
⌊ |T n

L̃
|

J

⌋
or

⌈ |T n
L̃
|

J

⌉
. Then we take the union of the jth subsets in the partitions over all

T n
L̃

⊂ T n
L (δ1) and obtain a subset Lj of T n

L (δ1). That is for j = 1, 2, . . . , J

|Lj ∩ T n
L̃

| =

⌊
|T n

L̃
|

J

⌋

or

⌈
|T n

L̃
|

J

⌉

. (80)

4.1) Defining Function F :
The sender observes the output of the source and decides on the value
of function F .
— In the case that the source outputs a (δ1, δ2)–typical sequence (vn, �n),

F takes value (m, j) if �n ∈ Lj , according to sender’s private random-
ness ũm(�n) in (76) is chosen in the step 2) of the coding scheme.

— In the other case F = e.
4.2) Defining Function G:

The receiver observes the output �n of the component Ln (side informa-
tion) of the correlated source and output of the channel yn to decide on
the value of function G. We use the abbreviation

Ym(�n) =
⋃

PY |L̃Ũ∈QW (�nũn
m(�n),τ)

T n
Y |L̃Ũ

(
�nũn

m(�n), τ
)
.

— In the case that �n ∈T n
L (δ1) and that there exists an m∈{1, 2, . . . , M}

such that yn ∈ Ym(�n) �

{
⋃

m′ 	=m

Ym(�n)

}

G takes value (m, j) if

�n ∈ Lj . Notice that this m must be unique if it exists.
— In the other case G = e.
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Analysis

1) Distortion Criterion:

First we recall our assumption that the watermarking distortion measure ρ is
bounded i.e.

0 ≤ ρ ≤ Δ. (81)

Then by (58)

1
n

Pr
(
(V n, Ln) /∈ T n

V L(δ2)
)
E
[
ρ(V ′n, X ′n)|(V n, Ln /∈ T n

V L(δ2)
]

< 2−nξΔ. (82)

On the other hand, under the condition that

(V n, Ln) ∈ T n
Ṽ L̃

⊂ T n
V L(δ2),

by definition (V n, Ln, U ′n) ∈ T n
Ṽ L̃Ũ

with probability one for the joint type PṼ L̃Ũ

generated by PṼ L̃.
So, by (60), (61) and the definition of (U ′n, X ′n) we have that

1
n

E
[
ρ(V ′n, X ′n)|(V n, Ln) ∈ T n

L̃Ṽ

]

=
∑

(v,�,u)∈V×L×U
PṼ L̃Ũ (v, �, u)

∑

x

PX|V LU (x|v, �, u)ρ(v, x)

= Eρ(Ṽ , X̃) < D1. (83)

Thus it follows from (82) and (83) that

1
n

Eρ(V n, X ′n) = Pr
(
(V n, Ln) /∈ T n

V L(δ2)
)
E
[
ρ(V n, X ′n)|(V n, Ln) /∈ T n

V L(δ2)
]

+
∑

T n
Ṽ L̃

⊂T n
V L(δ2)

Pr
(
(V n, Ln) ∈ T n

Ṽ L̃

)
E
[
ρ(V n, X ′n)|(V n, Ln) ∈ T n

Ṽ L̃

]

< D1, (84)

for sufficiently large n.

2) The Condition of Nearly Uniformity

By the definition of function F in the step 4.1) of the coding scheme,
Pr{F = e} ≤ Pr

{
(V n, Ln) /∈ T n

V L(δ2)
}

= 1 − Pn
V L(T n

V L(δ2)
}
, and hence by

(58),
|Pr{F = e} − |A|−1| ≤ max{2−nζ, |A|−1} −→ 0 (n → ∞). (85)

Next fix an �n ∈ T n
L (δ1) with type PL̃ (say), let PL̃Ũ be the joint type generat-

ed by PL̃, and let Q(L̃Ũ) be the set of joint types PṼ L̃Ũ with marginal distribu-
tion PL̃Ũ and generated by the joint type of some (δ1, δ2)–typical sequence. Then
Pr{U ′n = un|Ln = �n} > 0, only if un ∈ U(�n) =

{
ũn

m(�n) : m = 1, 2, . . . , M
}
.
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Moreover, for a (δ1, δ2)–typical sequence (vn, �n) with joint type PṼ L̃, ũn
m(�n)

∈ U(�n), by the coding scheme

Pr
{
V n = vn, U ′n = un

m(�n)|L = �n
}

=

{
Pn

V |L(V n = vn|�n)|UŨ |Ṽ L̃(vn�n)|−1 if un
m(�n) ∈ UŨ|Ṽ L̃(vn�n)

0 else.
(86)

Recalling (73), then we have that for all �n ∈ T n
L̃

⊂ T n
L (δ1), ũn

m(�n) ∈ U(�n)

Pr
{
U ′n = ũn

m(�n)|L = �n
}

=
∑

PṼ L̃Ũ∈Q(L̃Ũ)

∑

vn∈T n
Ṽ |L̃Ũ

(�nũn
m(�n))

Pn
V |L(vn|�n)|UŨ |Ṽ L̃(vn�n)|−1. (87)

By (72) we have that

[
M(1 + ε)

]−1 |T n
Ũ |L̃(�n)|

|T n
Ũ |Ṽ L̃

(vn�n)| < |UŨ |Ṽ L̃(vn�n)|−1 <
[
M(1 − ε)

]−1 |T n
Ũ |L̃(�n)|

|T n
Ũ |Ṽ L̃

(vn�n)| .

(88)
On the other hand,

∑

PṼ L̃Ũ∈Q(L̃Ũ)

∑

vn∈T n
Ṽ |L̃Ũ

(�nũn
m(�n))

Pn
V |L(vn|�n)

|T n
Ũ |L̃(�n)|

|T n
Ũ |Ṽ L̃

(vn�n)|

=
∑

PṼ L̃Ũ∈Q(L̃Ũ)

∑

vn∈T n
Ṽ |L̃Ũ

(�nũn
m(�n))

Pn
V n|L(T n

Ṽ |L̃(�n)|�n)
|T n

Ũ|L̃(�n)|
|T n

Ṽ |L̃(�n)||T n
Ũ |Ṽ L̃

(vn, �n)|

=
∑

PṼ L̃Ũ∈Q(L̃Ũ)

Pn
V |L

(
T n

Ṽ |L̃(�n)|�n
)

= Pr
{
(V n, �n) ∈ T n(δ1, δ2)|�n

}
, (89)

where the first equality holds because the value of Pn
V |L(vn|�n) for given �n

depends on vn through the conditional type; the second equality hold by the
fact that

tŨ|L̃

tṼ |L̃tŨ|Ṽ L̃
=

tŨ|L̃

tṼ Ũ|L̃
= 1

tṼ |L̃Ũ
; and the last equality holds because PṼ L̃Ũ

is generated by PṼ L̃ uniquely (see its definition in condition (c)).
Thus by combining (57), (87) – (89), we obtain for an η > 0 with η → 0 as

n → ∞, ε → 0

(1 − η)M−1 < Pr
{
U ′n = ũn

m(�n)|L = �n
}

< (1 + η)M−1, (90)

for �n ∈ T n
L(δ1), ũn

m(�n) ∈ U(�n).
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So for m ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , J},

Pr
{
F = (m, j)

}
= Pr

{
U ′n = ũn

m(Ln), Ln ∈ Lj

}

=
∑

�n∈Lj

Pn
L (�n)Pr

{
U ′n = ũn

m(�n)|L = �n
}

< (1 + η)M−1Pn
L (Lj). (91)

Since |T n
L̃

| > 2n(H(L̃)+ ε1
2 ) for sufficiently large n, by (62) and (78), we have

that
|T n

L̃
|

J > 2
n
2 ε1 and hence by (80)

|Lj ∩ T n
L̃

| ≤
⌈

|T n
L̃

|
J

⌉

<
|T n

L̃
|

J
+ 1 <

|T n
L̃

|
J

(
1 + 2−

n
2 ε1

)
.

Because the value of Pn
L (�n) depends on �n through its type, this means that

Pn
L (Lj ∩ T n

L̃
) < J−1Pn

L (T n
L̃

)
(
1 + 2−

n
2 ε
)

and consequently

Pn
L (Lk) < Pn

L

(
T n

L (δ1)
)
J−1 (1 + 2−

n
2 ε1

)
(92)

which with (91) is followed by

Pr
{
F = (m, j)

}
< M−1J−1(1 + η)

(
1 + 2−

n
2 ε1

)
Pn

L

(
T n

L (δ1)
)
. (93)

Similarly we have that

Pr
{
F = (m, j)

}
> M−1J−1(1 − η)

(
1 − 2−

n
2 ε1

)
Pn

L

(
T n

L (δ1)
)
. (94)

Now (56), (93) and (94) together imply that for an η′ > 0 with η′ → 0 as
n → ∞, η → 0, ∑

(m,j)

|Pr
{
F = (m, j)

}
− |A|−1| < η′, (95)

which with (85) completes the proof of condition of nearly uniformity.

3) The Rate:

In (65) one can choose

α > I
(
U ; Y (W)|L

)
− ε′ for any ε′ with ε2 < ε′ <

1
2
ξ.

Then by (58), (78), (79), (95), we know that for an η′′ > 0 with η′′ → 0 as
n → ∞, η′ → 0

1
n

H(F ) >
1
n

log |A| − η′′ > I
(
U ; Y (W)|L

)
− ε′ + H(L) − 2ε1 − η′

= I
(
U ; Y (W)|L

)
+ I(U ; L) + H(L|U) − ε′ − 2ε1 − η′

= I
(
U ; L, Y (W)

)
+ H(L|U) − ε′ − 2ε1 − η′,

for sufficiently large n.
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4) Estimation of Probability of Error:

In and only in the following three cases an error occurs.

Case 1
The source outputs a non–(δ1, δ2)–typical sequence whose probability is less than
2−nζ by (58).

Now we assume that a (δ1, δ2)–typical sequence (vn, �n) with joint type PṼ L̃

is output. So the sender first chooses a ũn
m(�n) ∈ UŨ|Ṽ L̃(vn, �n), then an xn ∈

X n according to his private randomness and sends xn through the channel.
Consequently a yn ∈ Yn is output by the channel. Then in the following two
cases an error occurs.

Case 2
A codeword ũm(�n) ∈ UŨ |Ṽ L̃(vn�n) ⊂ Un(�n) is chosen and an output sequence

yn /∈ Ym(�n) =
⋃

PY |L̃Ũ∈QW (�n,ũm(�n))

T n
Y |L̃Ũ

(
�nũm(�n), τ

)

is output of the channel. Suppose now W ∈ W governs the channel. Then by
(59), and (60) the probability that yn ∈ Yn is output of the channel under the
condition that (V n, Ln) = (vn, �n) ∈ T n(δ1, δ2) is output of the correlated source
and U ′n = ũn

m(�n) ∈ UŨ |Ṽ L̃(vn, �n) is chosen is

Pr
{
Y ′n = yn|(V n, Ln) = (vn, �n), U ′n = ũn

m(�n)
}

=
∑

xn∈Xn

Pn
X|V LU (xn|vn, �n, ũn

m(�n))Wn(yn|xn)

= Pn
Ỹ (W)|Ṽ L̃Ũ

(
yn|vn, �n, ũm(�n)

)
. (96)

On the other hand

T n
Ỹ (W )|Ṽ L̃Ũ

(
vn�nun

m(�n), τ
)

⊂ T n
Ỹ (W )|L̃Ũ

(
�nun

m(�n), τ
)

⊂ Ym.

So the probability that such an error occurs vanishes exponentially as n grows.

Case 3
A codeword ũn

m(�n) is chosen and a yn ∈ Ym ∩
[⋃

m′ 	=m Ym′
]

is output of the
channel.

Now by (86), (88), (90), and simple calculation, we obtain that

[
(1 − η)(1 − ε)

]−1
Pn

V |L(vn|�n)
tŨ|L̃
tŨ |Ṽ L̃

< Pr
{
V n = vn|Ln = �n, U ′n = ũn

m(�n)
}

<
[
(1 + η)(1 + ε)

]−1
Pn

V |L(vn|�n)
tŨ |L̃
tŨ|Ṽ L̃

(97)

for (δ1, δ2)–typical sequences (vn, �n) with joint type PṼ L̃ and
ũm(�n) ∈ UŨ |Ṽ L̃(vn, �n), where PṼ L̃Ũ is the type generated by PṼ L̃.
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Moreover, since tŨ |Ṽ L̃ =
tṼ Ũ|L̃

tṼ |L̃
, tŨ Ṽ |L̃ = tŨ |L̃tṼ |L̃Ũ , and since for given �n,

the value of Pn
V |L(vn|�n) depends on vn through the conditional type,

Pn
V |L(vn|�n)

tŨ |L̃
tŨ |Ṽ L̃

= Pn
V |L(vn|�n)

tṼ |L̃
tṼ |L̃Ũ

= Pn
V |L

(
T n

Ṽ |L̃(�n)|�n
) 1
tṼ |L̃Ũ

. (98)

Further it is well known that for all

(vn, �n, un) ∈ T n
Ṽ L̃Ũ

, lim
n→∞

1
n

(

log Pn
Ṽ |L̃Ũ

(vn|�n, un) − log
1

tṼ |L̃Ũ

)

= 0.

So by (97) and (98), we have that

Pr
{
V = vn|Ln = �n, U ′n = ũn

m(�n)
}

< 2nθPn
V |L

(
T n

Ṽ |L̃(�n)|�n
)
Pn

Ṽ |L̃Ũ

(
vn|�n, ũn

m(�n)
)

≤ 2nθPn
Ṽ |L̃Ũ

(
vn|�n, ũn

m(�n)
)

(99)

for (δ1, δ2)–typical sequences (vn, �n) with type PṼ L̃, ũn
m ∈ UŨ|Ṽ L̃(�n) ⊂ U(�n)

and sufficiently large n, and a θ → 0 as n → ∞.
We choose θ < 1

20ε2.
Since Pr

{
(V n, Ln) = (vn, �n), U ′n = un

}
> 0 only if (vn, �n) is (δ1, δ2) typical

and un ∈ UŨ |Ṽ L̃(vn, �n), by (96) and (99) we have that

Pr
{
Y ′n = yn|Ln = �n, U ′n = ũn

m(�n)
}

≤
∑

vn∈Vn

2nθPn
Ṽ |L̃Ũ

(vn|�n, un
m(�n)

}
Pn

Ỹ (W )|Ṽ L̃Ũ
(yn|vn, �n, un)

≤ 2nθPn
Ỹ (W )|L̃Ũ

(
yn|�n, un

m(�n)
)

(100)

for �n ∈ T n
L (δ1), ũm(�n) ∈ U(�n) and yn ∈ Yn if W ∈ W governs the channel.

Now we obtain an upper bound in terms of a product probability distribution

Pn
Ỹ (W)|L̃Ũ

(
yn|�n, un

m(�n)
)

whose value depends on yn through the conditional type. Consequently by (75)
and (100) we have that for all �n ∈ T n

L (δ1), ũm(�n) ∈ U(�n) with joint type PL̃Ũ ,
PỸ |L̃Ũ ∈ QW

(
�ni, ũm(�n), τ

)

M−1
M∑

m=1

Pr

⎧
⎨

⎩
Y ′n ∈ T n

Ỹ |L̃Ũ

(
�n, un

m(�n)
)

∩

⎡

⎣
⋃

m′ �=m

Ym′(�n)

⎤

⎦ |Ln = �n, U ′n = ũn
m(�n)

⎫
⎬

⎭

≤ 2nθM−1
M∑

m=1

Pn
Ỹ (W )|L̃Ũ

⎧
⎨

⎩
T n

Ỹ |L̃Ũ

(
�nun

m(�n)
)

∩

⎡

⎣
⋃

m′ �=m

Ym′(�n)

⎤

⎦ |�n, un
m(�n)

⎫
⎬

⎭

≤ 2nθ · 2−
n
9 ε2Pn

Ỹ (W )|L̃Ũ

{
T n

Ỹ |L̃Ũ

(
�n, un

m(�n)
)
|�n, ũn

m(�n)
}

≤ 2−n( 1
9 ε2−θ) < 2−

n
20 ε2 ,

(101)
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where the last inequality holds by our choice θ < ε2
20 . Recalling

Ym(�n) =
⋃

PỸ |L̃Ũ∈QW (�nũm(�n),τ)

T n
Ỹ |L̃Ũ

(
�nun

m(�n)
)
,

by the union bound and (101) we obtain that

M−1
M∑

m=1

Pr

⎧
⎨

⎩
Y ′n ∈ Ym(�n) ∩

⎡

⎣
⋃

m′ 	=m

Ym(�n)

⎤

⎦ |Ln = �n, U ′n = ũm(�n)

⎫
⎬

⎭

< (n + 1)|L||Ũ||Y|2−
n
20 ε2

< 2−
n
21 ε2 (102)

for �n ∈ T n
L (δ1), ũn

m(�n) ∈ U(�n) and sufficiently large n. Finally by (90) and
(102) we obtain an upper bound to the probability that on error of this type
occurs, under the condition Ln = �n ∈ T n

L (δ1).

M∑

m=1

Pr
{
U ′n = ũm(�n)|Ln = �n

}
Pr

⎧
⎨

⎩
Y ′n ∈ Ym(�n) ∩

⎡

⎣
⋃

m′ �=m

Ym′(�n)

⎤

⎦ |Ln = �n, U ′n = ũm(�n)

⎫
⎬

⎭

< (1 + η)
M∑

m=1

M−1Pr

⎧
⎨

⎩
Y ′n ∈ Ym(�n) ∩

⎡

⎣
⋃

m′ �=m

Ym′(�n)

⎤

⎦ |Ln = �n, U ′n = ũm(�n)

⎫
⎬

⎭

< (1 + η)2−
n
21 ε2 ,

(103)

which completes the proof because by definition
M∑

m=1
Pr

{
U ′n = ũm(�n)|Ln = �n

}
= 1 for all �n ∈ T n

L (δ1).

Remark: Our model of identification becomes that in [32] if L takes a constant
value with probability one. So our proof of the lemma above provides a new
proof of Theorem 4 in [32] (as special case) without using the Gelfand–Pinsker
Theorem in [24].

Corollary 5.1 (Direct Part Theorem 4.1): For all single channels W

CCRI

(
(V, L), W, D1

)
≥ max

(V,L,U,X,Y )∈Q((V,L),W,D1)

[
I(U ; L, Y ) + H(L|U)

]
.

Lemma 5.5 (Direct Part of Theorem 4.4): For all compound channels W

CCRII

(
(V, L), W, RK , D1

)

≥ sup
(V,L,U,X)∈Q∗

1((V,L),W,RK,D1)

[
I
(
U ; L, Y (W)

)
+ H(L|U)

]
+ RK . (104)
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Proof: By the same reason as in the proof of the previous lemma, it is sufficient
for us to show the availability of I

(
U ; L, Y (W)

)
+H(L|U)+RK for (V, L, U, X)

with Eρ(V, X) < D1 and for some ξ > 0

I
(
U ; Y (W)|L

)
+ RK − I(U ; V |L) > ξ. (105)

In the case I
(
U ; Y (W)|L

)
> I(U ; V |L), by the previous lemma I

(
U ; LY (W)

)

+ H(L|U) is achievable even if the noiseless channel is absent. So sender and
receiver may generate n

(
I(U ; LY (W)) + H(L|U)

)
bits of common randomness

and at the same time the sender sends RK bits of his private randomness via
the noiseless channel to the receiver to make additionally nRK bits of common
randomness. That is, the rate I

(
U ; L, Y (W)

)
+ H(L|U) + RK is achievable.

So, next we may assume that I
(
U ; Y (W)|L

)
≤ I(U ; V ; |L). Moreover we can

assume

I
(
U ; Y (W)|L

)
> 0,

because otherwise I
(
U ; L, Y (W)

)
+ H(L|U) + RK = I(U ; L) + H(L|U) + RK =

H(L)+RK is achievable as follows. We partition T n
L (δ1) into Lj , j = 1, 2, . . . , J

as in the step 4) of the coding scheme in the proof of the previous lemma to get
n
(
H(L) − 2ε1

)
bits of common randomness and get other nRK bits of common

randomness by using the noiseless channel. Thus it is sufficient for us to assume
that

0 < I
(
U ; Y (W)|L

)
≤ I(U ; V |L) < I

(
U ; Y (W)|L

)
+ RK − ξ, (106)

for a ξ with 0 < ξ < RK .
We shall use (δ1, δ2)–typical sequences, the joint types PL̃Ũ and PṼ L̃Ũ generat-

ed by the types PL̃ and PŨL̃ respectively, and the random variables (Ṽ , L̃, Ũ , X̃)
and

(
Ṽ , L̃, Ũ , X̃, Ỹ (W)

)
in (59) and (60) satisfying (61) – (64), which are defined

in the conditions (a) – (d) in the proof of the previous lemma.
Instead of the choice α in (65) we now choose β1, β2 > 0 and β3 ≥ 0 for

arbitrarily small but fixed ε2 with 0 < ε2 < 1
2ξ such that

I
(
U ; Y (W)|L

)
− 3

2
ε2 < β1 < I

(
U ; Y (W)|L

)
− ε2, (107)

I(U ; V |L) − I
(
U ; Y (W)|L

)
+ ξ ≤ β2 ≤ RK (108)

and

0 ≤ β3 = RK − β2. (109)

Notice that the existence and positivity of β2 are guaranteed by (106).
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By adding both sides of the first inequalities in (107) and (108), we obtain that

β1 + β2 > I(U ; V |L) +
(

ξ − 3
2
ε2

)
, (110)

and by the first inequality in (107) and the equality in (109) we have that

β1 + β2 + β3 > I
(
U ; Y (W)|L

)
+ RK − 3

2
ε2. (111)

Let ξ − 3
2ε2 = 2η and rewrite (110) as

β1 + β2 > I(U ; V |L) + 2η. (112)

Then η > ξ
8 > 0 by our choice ε2 < 1

2ξ.
Next as in the proof to the previous lemma we fix an (arbitrary small)

positive ε2, η, choose ε1 (and consequently δ1, δ2) sufficiently small so that
ε1 < min

( 1
2ε2,

1
2η
)
. Then by (64) and the second inequality in (109) we have

that
β1 < I

(
Ũ ; Ỹ (W)|L̃

)
− ε2

2
, (113)

and by (65) and (112) we have that

β1 + β2 > I(Ũ ; Ṽ |L̃) +
3
2
η. (114)

Without loss of generality we assume that 2nβ1 , 2nβ2 and 2nβ3 are integers
and denote by M1 = 2nβ1, I = 2nβ2 and K ′ = 2nβ3 .

Then similarly as in the proof of the previous lemma, we have that for suffi-
ciently large n, sufficiently small τ , all joint types PṼ L̃Ũ generated by types of
(δ1, δ2)–typical sequences and QW(�nun, τ) in the proof of the previous lemma,

2nη
tŨ |L̃
tŨ |Ṽ L̃

< M1I (115)

and

M1 < 2−
n
3 ε2

tŨ|L̃
tŨ |L̃Y

, (116)

for all PY |L̃Ũ ∈ QW(�nun, τ).

Coding Scheme

1) Choosing the Codebook:
We choose a codebook for all �n ∈ T n

L (δ1) in a similar way as in the step 1)
of the coding scheme in the proof of the previous lemma. But we now use
Lemma 5.1 for α = β1 + β2 and Lemma 5.3 for γ = ε2

3 instead of Lemmas
5.1 and 5.2. Thus by random choice we obtain subsets of T n

U U i(�n) =
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{
ũn

m,i(�
n) : m = 1, 2, . . . , M1

}
for i = 1, 2, . . . , I for all �n ∈ T n

L (δ1) such
that for

U∗(�n) =
I⋃

i=1

U i(�n), (117)

and U∗
Ũ |Ṽ L̃

(vn�n) = U∗(�n) ∩ T n
Ũ |Ṽ L̃

(vn, �n), where PṼ L̃Ũ is the type gener-
ated by the joint type PṼ L̃ of (δ1, δ2)–sequences (vn, �n) as before, and with
an abuse of notation in the union in (117): counting it twice and labelling it
as different elements ũn

m,i(�
n) and ũn

m′,i′(�n) if a codeword appears twice in
it, the following holds.

∣
∣∣
∣
∣
U∗

Ũ|Ṽ L̃
(vn�n) − M1I

tŨ |Ṽ L̃

tŨ |Ṽ L̃

∣
∣∣
∣
∣
< M1I

tŨ|Ṽ L̃

tŨ|Ṽ L̃

ε, (118)

and for QW(�nvn, τ) in the proof of the previous lemmas and any conditional
type PỸ |L̃Ũ ,

I−1
I∑

i=1

M−1
1

M1∑

m=1

∣∣
∣
∣
∣
∣
T n

Ỹ |L̃Ũ

(
�nun

m,i(�
n)
)
∩

⎡

⎣
⋃

m′ �=m

⋃

PY |L̃Ũ∈QW (�nvn)

T n
Y |L̃Ũ

(
�nun

m′,i(�
n)
)
⎤

⎦

∣∣
∣
∣
∣
∣

< 2−
n
7 ε2tỸ |L̃Ṽ

(119)

here (118) and (119) are analogous to (72) and (75) respectively, and are
shown in an analogous way.

2) Choosing Inputs of the Channels:
In the current model, we have an additional noiseless channel with rate RK

except for the noisy channel which exists in the Model I. The sender chooses
the inputs of the two channels as follows.

2.1) Choosing the Input Sequence of the Noisy Channel:
— In the case that the source outputs a (δ1, δ2)–typical sequence (vn, �n)

with joint type PṼ L̃, by (118) for the type PṼ L̃Ũ generated by
PṼ L̃, U∗

Ũ|Ṽ L̃
(vn�n) �= ∅. Then similarly to the Step 2) of the cod-

ing scheme in the proof of the previous lemma, the sender random-
ly and uniformly chooses a member of U∗

Ũ |Ṽ L̃
(vn�n), say ũn

m,i(�
n),

and according to the probability PX|V LU

(
xn|vn, �n, ũn

m,i(�
n)
)

choos-
es an input sequence xn of the channel W and sends xn through the
channel.

— In the case that the output of the source is non–(δ1, δ2)–typical, the
sender sends an arbitrary fixed sequence xn

e through the channel.
2.2) Choosing the Input of the Noiseless Channel:

— In the case that a (δ1, δ1)–typical sequence (vn, �n) with joint type
PṼ L̃ is output of the correlated channel, the sender first spends
log I = nβ2 bits to send the index i ∈ {1, 2, . . . , I} to the receiver
via the noiseless channel if a codeword ũn

m,i(�
n) ∈ U i(�n) ⊂ U∗(�n)
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is chosen in the substep 2.1) in the current coding scheme, then he
randomly and uniformly chooses a k′ ∈ {1, 2, . . . , K ′} independent of
the output of the source and sends it through the noiseless channel
by using the rest of nRK − nβ2 = nβ3 = log K ′ bits.

— In the case that a non–(δ1, δ2)–typical sequence is output, the sender
sends a constant message through the noiseless channel.

3) Choosing the Common Range A of Functions F and G:
Let J be as in (78) and

A =
[
{1, 2, . . . , M1} × {1, 2, . . . , I} × {1, 2, . . . , K ′} × {1, 2, . . . , J}

]
∪ {e}.

(120)
4) Defining the Functions F and G:

Partition T n
L (δ1) into Lj , j = 1, 2, . . . , J as in the step 4) of the coding scheme

in the proof of the previous lemma and let Kn = {1, 2, . . . , I}×{1, 2, . . . , K ′}.

4.1) Defining Function F :
The sender decides on the value of function F according to the output
of the correlated source and his private randomness as follows.
— In the case that a (δ1, δ2)–typical sequence (vn, �n) is output, F takes

value (m, i, k′, j) if �n ∈ Lj , ũn
m,i(�

n) ∈ Uj(�n) ∩ U∗
Ũ |Ṽ L̃

(vn�n) is
chosen in step 2) of the current coding scheme, and k′ is chosen for
sending it via the noiseless channel in the last nβ3 bits (that means
(i, k′) is sent through the noiseless channel).

— In the other case F = e.
4.2) Defining Function G:

The receiver decides on the value of the function G according to the
output (i, k′) ∈ Kn of the noiseless channel, the output �n of the compo-
nent Ln of the correlated source, and the output yn ∈ Yn of the noisy
compound channel W as follows.
Let

Ym.i(�n) =
⋃

PY |L̃Ũ∈QW (�nũn
m,i(�n),τ)

T n
Y |L̃Ũ

(
�nun

m, i(�n)
)

for m = 1, 2, . . . , M1, i = 1, 2, . . . , I, and the type PL̃Ũ generated by the
type PL̃ of �n ∈ Lj ⊂ T n

L (δ1).
— In the case that (i, k′) is output of the noiseless channel, �n ∈ T n

L (δ1)
is output of the source, and there exists an m ∈ {1, 2, . . . , M1} such
that the output of the noisy compound channel W ,

yn ∈ Ym,i(�n) �

{
⋃

m′ 	=m

Ym′,i(�n)

}

, G takes value (m, i, k′, j) if �n ∈

Lj .
— In the other case G = e.
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Analysis
1) – 3) Distortion Criterion, The Nearly Uniformity Condition, and the Rate.

One can verify the distortion criterion, the nearly uniformity condition and
the rate

1
n

log H(F ) > β1 + β2 + β3 + o(1) = I
(
U ; Y (W)|L

)
+ RK + o(1)

(c.f. (111)), and obtain analogous inequalities

(1 − η)(M1I)−1 < Pr
{
U ′n = un

m,i(�
n)|L = �n

}
< (1 + η)(M1I)−1 (121)

to the inequalities in (90) for �n ∈ T n
L (δ1), un

m,i(�
n) ∈ U∗(�n) and random

variable U ′n chosen by the sender in step 2) of the coding scheme in the
same way as in parts 1) – 3) of the Analysis in the proof of the previous
lemma except that the roles of U(�n) and (72) there are played by U∗(�n) =
I⋃

i=1
U i(�n) and (118). Notice that in those parts of the proof of the previous

lemma (75) is not used, neither is (119) here correspondingly.
4) Estimation of Probability of Error:

By the same reason as in the proof of the previous lemma, the probabilities
of errors of the first two types, the error caused by that a non–(δ1, δ2)–
typical sequence is output and the error caused by that ũm,i(�n) is chosen
and yn /∈ Ym,i(�n) is output of the noisy compound channel exponentially
vanish as n grows.

Next by replacing U(�n) and (75) by U i(�n) and (119), in the same way
as in the proof of the previous lemma we now obtain

(M1I)−1
I∑

i=1

M1∑

m=1

Pr

⎧
⎨

⎩
Y ′n ∈ Ym,i(�n) ∩

⎡

⎣
⋃

m′ �=m

Ym′,i(�n)

⎤

⎦ |Ln = �n, U ′n = un
m,i(�

n)

⎫
⎬

⎭

< 2−
n
21 ε2

(122)instead of (102).

Finally analogously to in the way to obtain (103) in the proof of the
previous lemma from (90) and (102), we finish the proof by combining (121)
and (122).

Corollary 5.2 (Direct Part of Theorem 4.2): For all single channels W

CCRII

�
(V, L), W, RK , D1

	
≥ max

(V,L,U,X,Y )∈Q∗((V,L),W,RK ,D1)

�
I(U ;L, Y )+H(L|U)

	
+RK .

6 The Converse Theorems for Common Randomness

To obtain single letter characterizations for the converse parts of coding theorems
for common randomness, we need a useful identity which appears in [22] (on
page 314).
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Lemma 6.1. (Csizár-Körner) Let (An, Bn) be an arbitrary pair of random se-
quences and let C be an arbitrary random variable. Then

H(An|C) − H(Bn|C)

=
n∑

t=1

[H(At|At+1, At+2, . . . , An, Bt−1, C)−H(Bt|At+1, At+2, . . . , An, Bt−1, C)].

(123)

Proof
Let (At+1, At+2, . . . , An, Bt) to be understood as An and Bn when t = 0 and
t = n, respectively. Then:

H(An|C) − (Bn|C)

=
n−1∑

t=0

H(At+1, At+2, . . . , An, Bt|C) −
n∑

t=1

H(At+1, At+2, . . . , An, Bt|C)

=
n∑

t=1

H(At, At+1, . . . , An, Bt−1|C) −
n∑

t=1

H(At+1, At+2, . . . , An, Bt|C)

=
n∑

t=1

[H(At, At+1, . . . , An, Bt−1|C) − H(At+1, . . . , An, Bt−1|C)]

−
n∑

t=1

[H(At+1, At+2, . . . , An, Bt|C) − H(At+1, . . . , An, Bt−1|C)]

=
n∑

t=1

[H(At|At+1, At+2, . . . , An, Bt−1, C)−H(Bt|At+1, At+2, . . . , An, Bt−1, C)].

(124)

Lemma 6.2 (The converse part of Theorem 4.1)
For single channel W ,

CCRI((V, L), W, D1) ≤ max(V,L,U,X,Y )∈Q((V,L),W,D1)[I(U ; LY ) + H(L|U)].
(125)

Proof: Assume that for a source output of length n there are functions F and
K such that for the channel Wn and the distortion measure (10) - (16) hold.
Denote by Xn and Y n the random input and output of the channel generat-
ed by the correlated source (V n, Ln), sender’s private randomness M , and the
channel.

Then (10) be rewritten in terms of (V n, Xn) as

1
n
Eρ(V n, Xn) ≤ D1 (126)
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Further by Fano inequality, (11) - (14), we have that

H(F )
≤H(F ) − H(F |G) + nλ log κ + h(λ)
=I(F ; G) + nλ log κ + h(λ)
≤I(F ; Ln, Y n) + nλ log κ + h(λ)
=I(F ; Y n|Ln) + I(F ; Ln) + nλ log κ + h(λ)
≤I(F ; Y n|Ln) + H(Ln) + nλ log κ + h(λ)

=I(F ; Y n|Ln) +
n∑

t=1

H(Lt) + nλ log κ + h(λ)

=
n∑

t=1

I(F ; Yt|Ln, Y t−1) +
n∑

t=1

H(Lt) + nλ log κ + h(λ), (127)

where h(z) = −z log z − (1 − z) log(1 − z) for z ∈ [0, 1] is the binary entropy.
Here the first inequality follows from the Fano inequality, (11), (12) and (14);
the second inequality holds by (13); and the third equality holds because the
source is memoryless. Since I(F ; V n, Ln) ≤ H(F ), the first four lines in (127) is
followed by

0 ≤ I(F ; Ln, Y n) − I(F ; V n, Ln) + nλ log κ + h(λ)
≤ [I(F ; Y n|Ln) + I(F ; Ln)] − [I(F ; V n|Ln) + I(F ; Ln)] + nλ log κ + h(λ)
= I(F ; Y n|Ln) − I(F ; V n|Ln) + nλ log κ + h(λ)
= [H(Y n|Ln) − H(Y n|Ln, F )] − [H(V n|Ln) − H(V n|Ln, F )] + nλ log κ + h(λ)
= [H(Y n|Ln) − H(V n|Ln)] + [H(V n|Ln, F ) − H(Y n|Ln, F )] + nλ log κ + h(λ).

(128)

To obtain a single letter characterization we substitute An, Bn and C in (123)
by V n, Y n and (Ln, F ) respectively and so

H(V n|LnF ) − H(Y n|LnF )

=
n∑

t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, Ln, Y t−1, F ) − H(Yt|Vt+1, Vt+2, . . . , Vn, Ln, Y t−1, F )].

(129)
Moreover because the source is memoryless, we have

H(V n|Ln) =
n∑

t=1

H(Vt|Lt). (130)

We now substitute (128), (129); (130) and H(Y n|Ln) =
∑n

t=1 H(Yt|Ln, Y t−1)
into (127) and continue it;
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0 ≤
n∑

t=1

[H(Yt|Ln, Y t−1) − H(Vt|Lt)] +
n∑

t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, Ln, Y t−1, F )

− H(Yt|Vt+1, Vt+2, . . . , Vn, Ln, Y t−1, F )] + nλ log κ + h(λ)

=
n∑

t=1

[H(Yt|Ln, Y t−1) − H(Yt|Vt+1, Vt+2, . . . , Vn, Ln, Y t−1, F )]

−
n∑

t=1

[H(Vt|Lt) − H(Vt|Vt+1, Vt+2, . . . , Vn, Ln, Y t−1, F )] + nλ log κ + h(λ)

=
n∑

t=1

I(Yt; Vt+1, Vt+2, . . . , Vn, F |Ln, Y t−1)

−
n∑

t=1

I(Vt; Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y t−1, F |Lt)

+ nλ log κ + h(λ)

≤
n∑

t=1

[I(Yt; Vt+1, Vt+2, . . . , VnL1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y t−1, F |Lt)]

−
n∑

t=1

I(Vt; Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y t−1, F |Lt)]

+ nλ log κ + h(λ). (131)

Let J be the random variable taking values in {1, 2, . . . , n} uniformly, and

UJ = (VJ+1, VJ+2, . . . , Vn, L1, L2 . . . , LJ−1, LJ+1, . . . , Ln, Y J−1, F ). (132)

Then J and (VJ , LJ) are independent i. e., I(J ; VJ , LJ) = 0. Thus (131) is
rewritten and continued in the following a few lines.

0 ≤nI(UJ ; YJ |LJ , J) − nI(UJ ; VJ |LJ , J) + nλ log κ + h(λ)
=n[I(UJ ; LJ , YJ |J) − I(UJ ; LJ |J)] − [I(UJ ; VJ , LJ |J) − I(UJ ; LJ |J)

+ nλ log κ + h(λ)
=nI(UJ ; LJ , YJ |J) − nI(UJ ; VJ , LJ |J) + nλ log κ + h(λ)
≤nI(UJ , J ; LJ , YJ ) − n[I(UJ , J ; VJ , LJ) − I(J ; VJ , LJ)] + nλ log κ + h(λ)
=nI(UJ , J ; LJ , YJ ) − nI(UJ , J ; VJ , LJ) + nλ log κ + h(λ). (133)

Next we denote by

(V ′′, L′′, U ′′, X ′′, Y ′′) = (VJ , LJ , UJJ, XJ , YJ) (*)

for the uniformly distributed J and UJ in (132). Then, obviously (V ′′, L′′) has the
same probability distribution with the generic (V, L) of the correlated source,
the conditional probability distribution PY ′′|X′′ = W , and (V ′′L′′U ′′, X ′′, Y ′′)
forms a Markov Chain. Namely, the joint distribution of (V ′′, L′′, U ′′, X ′′, Y ′′) is
PV ′′L′′U ′′X′′Y ′′ = PV LPU ′′X′′|V ′′L′′W . With the defined random variables, (126)
is rewritten as
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Eρ(V ′′, X ′′) = E[Eρ(V ′′, X ′′)|J ] = E[Eρ(VJ , XJ)|J ] =
1
n
Eρ(V n, Xn) ≤ D1.

(134)
Moreover, by substituting (∗) in (133) and then dividing both sides of resulting

inequality by n, we obtain that

0 ≤ I(U ′′; L′′, Y ′′) − I(U ′′; V ′′, L′′) + o(1), (135)

(as λ → 0).
Because the set {PV,L,U,X,Y : (V, L, U, X, Y ) ∈ Q((V, L), W, D1)} is a closed

set, by (134) and (135) is is sufficient for us to complete the proof to show that

1
n

H(F ) ≤ I(U ′′; L′′, Y ′′) + H(L′′|U ′′) + o(1)

for λ → 0. This is done by dividing both sides of (127) by n and continuing it
by the following few lines.

1
n

H(F )

≤ 1
n

n∑

t=1

I(F ; Yt|Ln, Y t−1) +
1
n

n∑

t=1

H(Lt) + λ log κ +
1
n

h(λ),

≤ 1
n

n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, F ; Yt|Ln, Y t−1) +
1
n

n∑

t=1

H(Lt) + λ log κ +
1
n

h(λ),

≤ 1
n

n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y t−1, F ; Yt|Lt)

+
1
n

n∑

t=1

H(Lt) + λ log κ +
1
n

h(λ)

=I(UJ ; YJ |LJ , J) + H(LJ |J) + λ log κ +
1
n

h(λ)

≤I(UJ , J ; YJ |LJ) + H(LJ |J) + λ log κ +
1
n

h(λ)

=I(UJ , J ; YJ |LJ) + H(LJ) + λ log κ +
1
n

h(λ)

=I(UJ , J ; YJ |LJ) + I(UJ ; LJ) + H(LJ |UJ) + λ log κ +
1
n

h(λ)

≤I(UJ , J ; YJ |LJ) + I(UJ , J ; LJ) + H(LJ |UJ) + λ log κ +
1
n

h(λ)

=I(UJ , J ; LJ , YJ) + H(LJ |UJ) + λ log κ +
1
n

h(λ)

=I(U ′′; L′′, Y ′′) + H(L′′|U ′′) + λ log κ +
1
n

h(λ), (136)
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where the second equality holds because UJ is independent of J . Finally the
upper bound to the size of U follows from the Support Lemma in [13] (as well
on page 310 in the book [22]).

Lemma 6.3. (The converse part of Theorem 4.2) For a single channel W ,

CCRI((V, L), W, RK , D1) ≤ max
(V,L,U,X,Y )∈Q∗((V,L),W,RK,D1)

[I(U ; L, Y ) + H(L|U)] + RK .

(137)

Proof: Let {(V n, Ln)}∞n=1 be a correlated source with generic (V, L), W be
a noisy channel, and RK and D1 be the key rate and the distortion crite-
rion in the Model II of common randomness respectively. Let F and G be
functions satisfying (10) - (12), (17), and (14) - (16) in the Model II of com-
mon randomness (for output sequence of source of length n). Denote by Xn

and Kn inputs of noisy channel Wn and the noiseless channel chosen by the
sender according to the output of the correlated source and his/her private ran-
domness. Then (126) holds and similarly to (127) by Fano inequality, we have
that

H(F )
≤I(F ; G) + nλ log κ + h(λ)
≤I(F ; Y n, Ln, Kn) + nλ log κ + h(λ)
=I(F ; Y n, Ln) + I(F ; Kn|Y n, Ln) + nλ log κ + h(λ)
=I(F ; Y n|Ln) + I(F ; Ln) + I(F ; Kn|Y n, Ln) + nλ log κ + h(λ)
≤I(F ; Y n|Ln) + H(Ln) + H(Kn|Y n, Ln) + nλ log κ + h(λ)
≤I(F ; Y n|Ln) + H(Ln) + H(Kn) + nλ log κ + h(λ)
≤I(F ; Y n|Ln) + H(Ln) + nRK + nλ log κ + h(λ)

=
n∑

t=1

I(F ; Yt|Ln, Y t−1) +
n∑

t=1

H(Lt) + nRK + nλ log κ + h(λ), (138)

where the second inequality holds by (17). Analogously to (128) we have

0 ≤ I(F ; Y n, Ln, Kn) − I(F ; V n, Ln) + nλ log κ + h(λ)
= I(F ; Y n, Ln) − I(F ; V n, Ln) + I(F ; Kn|Y n, Ln) + nλ log κ + h(λ)
≤ I(F ; Y n, Ln) − I(F ; V n, Ln) + H(Kn|Y n, Ln) + nλ log κ + h(λ)
≤ I(F ; Y n, Ln) − I(F ; V n, Ln) + nRK + nλ log κ + h(λ). (139)

Note that we only used the basic properties of Shannon information measures,
Lemma 6.1, and the assumption that the correlated source is memoryless in the
estimation of I(F ; Y n, Ln) − I(F ; V n, Ln) in the part of (128) - (131) and all
these are available here. So we have the same estimation here i. e.,
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I(F ; Y n, Ln) − I(F ; V nLn)

≤
n∑

t=1

I(Yt; Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y t−1, F |Lt)

−
n∑

t=1

I(Vt; Vt+1, Vt+2, . . . , Vn, L1, L2 . . . , Lt−1, Lt+1, . . . , Ln, Y t−1, F |Lt)

+ nλ log κ + h(λ). (140)

Let UJ and J be defined as in (132). Then (140) is rewritten as

I(F ; Y n, Ln) − I(F ; V nLn) ≤ nI(UJ , J ; LJ , YJ) − nI(UJ , J ; VJ , LJ) + nλ log κ + h(λ).

(141)
Let (V ′′, L′′, U ′′, X ′′, Y ′′) is defined as in the previous lemma.

Then (134) and PV ′′L′′U ′′X′′Y ′′ = PV LPU ′′X′′|V ′′L′′W are certainly fulfilled. But
now (139) - (141) lead us to

0 ≤ I(U ′′; L′′, Y ′′) − I(U ′′; V ′′, L′′) + RK + o(1). (142)

In the same way as (136) we can show

n∑

t=1

I(F ; Yt|Ln, Y t−1) +
n∑

t=1

H(Lt) + nRK + nλ log κ + h(λ)

≤nI(U ′′; L′′, Y ′′) + nH(U ′′|L′′) + nλ log κ + h(λ) (143)

which with (138) yields

1
n

H(F ) ≤ I(U ′′; L′′Y ′′) + H(U ′′|L′′) + RK + λ log κ +
1
n

h(λ).

Again |U| is bounded by the Support Lemma. Thus our proof is finished.

Finally it immediately follows from Lemmas 6.2 and 6.3 that

Corollary 6.4. For compound channel W,

1) (The converse part of Theorem 4.3:)

CCRI((V, L), W , D1) ≤ inf
W∈W

max
(V,L,U,X,Y )∈Q((V,L),W,D1)

[I(U ; L, Y ) + H(L|U)]

(144)
and

2) (The converse part of Theorem 4.4:)

CCRII((V, L), W , RK , D1)
≤ inf

W∈W
max

(V,L,U,X,Y )∈Q∗((V,L),W,RK,D1)
[I(U ; L, Y ) + H(L|U)] + RK . (145)
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7 Constructing Watermarking Identification Codes from
Common Randomness

R. Ahlswede and G. Dueck found in [12] that a identification code with the same
rate can be always obtained from the common randomness between a sender and
and receiver under the condition

(*) The sender can send a massage with arbitrarily small but positive rate (in
the exponential sense).

Thus under the condition (*) the capacity of identification is not smaller than
that of common randomness. Note that the sets Q((V, L), W, D1), Q∗∗(V, W,
Rk, D1), Q1((V, L), W , D1), and Q∗∗

1 (V, W , Rk, D1) are not empty implies the
condition (*) in the Theorems 4.5, 4.6, 4.7, and 4.8 respectively. Consequently
Theorems 4.5, 4.6, 4.7, and 4.8 follows from Theorems 4.1, 4.2, 4.3, and 4.4
respectively.

8 A Converse Theorem of a Watermarking Coding
Theorem Due to Steinberg-Merhav

In order to construct identification codes in [32], Y. Steinberg and N. Merhav
introduced the following code to build common randomness between sender and
receiver and obtained an inner bound of the capacity region. This inner bound
is sufficient for their goal. We shall show that it is as well tight. This would
support their conjecture that the lower bound in their Theorem 4 ([32]) is tight
although it does not imply it.

Let {V n}∞n=1 be a memoryless source with alphabet V and generic V and W
be a noisy channel with input and output alphabets X and Y respectively. A
pair of functions (f, g) is called an (n, M, J, δ, λ, D) watermarking transmission
code with a common experiment, distortion measure ρ, distortion level D and
covertext PV if the followings are true.

— f is a function from Vn × {1, 2, . . . , M} to {1, 2, . . . , J} × X n.
— g is a function from Yn to {1, 2, . . . , J} × {1, 2, . . . , M}.

1
M

M∑

m=1

∑

vn∈Vn

Pn
V (vn)Wn({y : g(yn) = (fJ(vn, m), m)}|fX(vn, m)) ≥ 1 − λ,

(146)
where fX and fJ are projections of f to X n and {1, 2, . . . , J} respectively.

1
M

M∑

m=1

∑

vn∈Vn

Pn
V (vn)ρ(vn, fX(vn, m)) ≤ D. (147)

For m = 1, 2, . . . , M , there exists a subset B(m) ⊂ {1, 2, . . . , J} of cardinality
|B(m)| ≥ J2−nδ such that

J−12−nδ ≤ Pn
V {fJ(V n, m) = j} ≤ J−12nδ (148)
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for all j and ∑

j∈B(m)

Pn
V {fJ(V n, m) = j} ≥ 1 − λ. (149)

g serves as a decoding function here. (148) and (149) play the same role as
nearly uniform condition in construction of identification codes from common
randomness. In fact one can find the nearly uniform condition (16) is stronger
but for the purpose to construct identification codes the conditions (148) and
(149) are strong enough.

A pair (R1, R2) is called achievable with distortion D if for all positive reals
δ, λ, and ε there is an (n, M, J, δ, λ, D) code defined as above such that

1
n

log M > R1 − ε (150)

and
1
n

log J > R2 − ε. (151)

The set of achievable pair of rates is called capacity region and denoted by R.
Denote by R(∗) the subset of pair of real numbers such that there exist random
variables (V, U, X, Y ) taking values in V × U × X × Y such that |U| ≤ |Y| + |X |,
for all
v ∈ V , u ∈ U , x ∈ X and y ∈ Y,

PV UXY (v, u, x, y) = PV (v)PUX|V (u, x|v)W (y|x),

Eρ(V, X) ≤ D,

0 ≤ R1 ≤ I(U ; Y ) − I(U ; V ), (152)
and

0 ≤ R2 ≤ I(U ; V ). (153)
It was shown in [32]

Theorem 8.1 (Steinberg-Merhav)

R∗ ⊂ R. (154)

We now show the opposite contained relation holds i. e.,

Theorem 8.2
R ⊂ R∗. (155)

Proof: Let (f, g) be a pair of functions satisfying (146) - (151) for sufficiently
large n (which is specified later) and Zn be a random variable with uniform
distribution over {1, 2, . . . , M}. Further let f(V n, Zn) = (Bn, Xn), where Bn

and Xn have ranges {1, 2, . . . , J} and X n respectively and Y n be the random
output of the channel Wn when Xn is input.

Then (148) and (149) are rewritten as

J−12−nδ ≤ PBn|Zn
(j|m) ≤ J−12nδ (156)
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for all j ∈ B(m) and
PBn|Zn

(Bn ∈ B(m)|m) ≥ 1 − λ (157)

respectively. So,

H(Bn|Zn) =
M∑

m=1

PZn(m)H(Bn|Zn = m)

≥ −
M∑

m=1

PZn(m)
∑

j∈B(m)

PBn|Zn
(j|m) log PBn|Zn

(j|m)

≥ −
M∑

m=1

PZn(m)
∑

j∈B(m)

PBn|Zn
(j|m) log J−12nδ

= (log J − nδ)
M∑

m=1

PZn(m)PBn|Zn
(Bn ∈ B(m)|m)

≥ (log J − nδ)(1 − λ) (158)

where the second inequality holds by (156) and the last inequality follows from
(157). Or equivalently

1
n

log J ≤
1
nH(Bn|Zn)

1 − λ
+ δ. (159)

Since H(Bn) ≤ log J , (159) implies that for a function θ such that θ(δ, λ) → 0
as δ, λ → 0,

1
n

log J − θ(δ, λ) <
1
n

H(Bn|Zn) ≤ 1
n

H(Bn) ≤ 1
n

log J. (160)

which says that Bn and Zn are “nearly independent”. Moreover because Zn is
independent of V n, by Fano’s inequality,

R1 − ε <
1
n

log M =
1
n

H(Zn)

=
1
n

H(Zn|V n)

≤ 1
n

H(Bn, Zn|V n)

≤ 1
n

[H(Bn, Zn|V n) − H(Bn, Zn|Y n)] + λ log JM +
1
n

h(λ)

=
1
n

[I(Bn, Zn; Y n) − I(Bn, Zn; V n)] + λ
1
n

log JM +
1
n

h(λ)

(161)

where the second inequality follows from Fano’s inequality. Since Bn is a function
of V n and Zn, we have also

H(Bn, Zn|V n) ≤ H(V n, Zn|V n) = H(Zn), (162)
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which and (160) are followed by

R2 − ε <
1
n

log J <
1
n

H(Bn|Zn) + θ(δ, λ)

=
1
n

[H(Bn, Zn) − H(Zn)] + θ(δ, λ)

≤ 1
n

[H(Bn, Zn) − H(Bn, Zn|V n)] + θ(δ, λ)

=
1
n

I(Bn, Zn; V n) + θ(δ, λ). (163)

So far we have had a non-single-letter characterization of the capacity region
(161) and (163). In the rest part of the proof we shall reduce it to a single letter
one.

First we substitute An, Bn, and C in (123) by V n, Y n, and (Bn, Zn) respec-
tively and obtain that

H(V n|Bn, Zn) − H(Y n|Bn, Zn)

=
n∑

t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn) − H(Yt|Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn)].

(164)
Next we note that H(V n) =

∑n
t=1 H(Vt) because the source is memoryless

and H(Y n) =
∑

t=1 H(Yt|Y t−1). Therefore, we have

I(Bn, Zn; Y n) − I(Bn, Zn; V n)
=H(Y n) − H(V n) + [H(V n|Bn, Zn) − H(Y n|Bn, Zn)]

=
n∑

t=1

H(Yt|Y t−1) −
n∑

t=1

H(Vt) +
n∑

t=1

[H(Vt|Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn)

− H(Yt|Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn)]

=
n∑

t=1

[H(Yt|Y t−1) − H(Yt|Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn)]

−
n∑

t=1

[H(Vt) − H(Vt|Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn)]

=
n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, Bn, Zn; Yt|Y t−1)

−
n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn; Vt)

≤
n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn; Yt)

−
n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn; Vt). (165)
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Moreover,

I(Bn, Zn; V n)

=
n∑

t=1

I(Bn, Zn; Vt|Vt+1, Vt+2, . . . , Vn)

≤
n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, Bn, Zn; Vt)

≤
n∑

t=1

I(Vt+1, Vt+2, . . . , Vn, Y t−1, Bn, Zn; Vt). (166)

So we may let I be a random variable taking values in {1, 2, . . . , n} uniformly
and

U ′ = (VI+1, VI+2, . . . , Vn, Y I−1, Bn, Zn)

and conclude by (163), (164), (165), (166)

R1 − ε ≤ I(U ′; YI |I) − I(U ′; VI |I) + λ log JM +
1
n

h(λ)

≤ I(U ′, I; YJ) − I(U ′, I; VI) + I(I; VI) + λ log JM +
1
n

h(λ), (167)

and
R2 − ε ≤ I(U ′; VI |I) ≤ I(U ′, I; VI) + θ(δ, λ). (168)

Let U = (U ′, I), V ′ = VI , X = XI and Y = YI . Then PV ′ = PV , (V ′U, X, Y )
forms a Markov chain and (168) can be re-written as

R2 ≤ I(U ; V ′) + θ(δ, λ),

and
EP (v′, x′) < D.

Further that I(I; VI) = 0 (as the source is stationary) and (167) are followed
by

R1 ≤ I(U ; Y ) − I(U ; V ′) + λ log JM +
1
n

h(λ) + ε.

Finally |U| is bounded by the support Lemma in the standard way.
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