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1 Introduction

In earlier papers we introduced the measures of pseudorandomness of finite bi-
nary sequences [13], introduced the notion of f–complexity of families of binary
sequences, constructed large families of binary sequences with strong PR (=
pseudorandom) properties [6], [12], and we showed that one of the earlier con-
structions can be modified to obtain families with high f–complexity [4]. In
another paper [14] we extended the study of pseudorandomness from binary se-
quences to sequences on k symbols (“letters”). In [14] we also constructed one
“good” pseudorandom sequence of a given length on k symbols. However, in
the applications we need not only a few good sequences but large families of
them, and in certain applications (cryptography) the complexity of the family
of these sequences is more important than its size. In this paper our goal is to
construct “many” “good” PR sequences on k symbols, to extend the notion of
f–complexity to the k symbol case and to study this extended f–complexity
concept.

2 A Special Case

First we will study the special case when k, the number of symbols (the “size
of the alphabet”) is a power of 2: k = 2r. We will show that in this case any
“good” PR binary sequence

EN = (e1, e2, . . . , eN) ∈ {−1,+1}N (2.1)

defines a sequence on k symbols with “nearly as good” PR properties so that
the constructions given in the binary case can be used in the k = 2r symbol case
nearly as effectively.

First we have to recall several definitions from earlier papers. If EN is a binary
sequence of the form (2.1), then write

U(EN ; t, a, b) =
t−1∑

j=0

ea+jb
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and, for D = (d1, . . . , d�) with non–negative integers d1 < · · · < d�

V (EN ,M,D) =
M∑

n=1

en+d1en+d2 . . . en+d�
.

Then the well–distribution measure of EN is defined by

W (EN ) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣∣∣∣∣∣

t−1∑

j=0

ea+jb

∣∣∣∣∣∣
,

where the maximum is taken over all a, b, t ∈ N and 1 ≤ a ≤ a+ (t− 1)b ≤ N ,
while the correlation measure of order � of EN is defined by

C�(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣∣∣∣∣

M∑

n=1

eN+d1en+d2 . . . en+d�

∣∣∣∣∣ ,

where the maximum is taken over all D = (d1, d2, . . . , d�) and M such that
M + d� ≤ N . Then the sequence EN is considered as a “good” PR sequence if
both these measures W (EN ) and C�(EN ) (at least for small �) are “small” in
terms of N (in particular, both are o(N) as N → ∞). Indeed, it is shown in [5],
[10] that for a “truly random” EN ∈ {−1,+1} both W (EN ) and, for fixed �,
C�(EN ) are around N1/2 with “near 1” probability.

In [13] a third measure was introduced, which will be needed here: the com-
bined (well–distribution–correlation) PR measure of order � is defined by

Q�(EN ) = max
a,b,t,D

∣∣∣∣∣∣

t∑

j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+d�

∣∣∣∣∣∣

= max
a,b,t,D

|Z(a, b, t,D)| (2.2)

where

Z(a, b, t,D) =
t∑

j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+d�

is defined for all a, b, t,D = (d1, d2, . . . , d�) such that all the subscripts a +
jb+ di belong to {1, 2, . . . , N} (and the maximum in (2.2) is taken over D’s of
dimension �).

In [14] we extended these definitions to the case of k symbols. It is not at all
clear how to do this extension and, indeed, in [14] we introduced two different
ways of extension which are nearly equivalent. Here we will present only one of
them which is more suitable for our purpose.
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Let k ∈ N, k ≥ 2, and let A = {a1, a2, . . . , ak} be a finite set (“alphabet”)
of k symbols (“letters”) and consider a sequence EN = (e1, e2, . . . , eN ) ∈ AN of
these symbols. Write

x(EN , a,M, u, v) = |{j : 0 ≤ j ≤M − 1, eu+jv = a}|

and for W = (ai1 , . . . , ai�
) ∈ A� and D = (d1, . . . , d�) with non–negative integers

d1 < · · · < d�,

g(EN ,W,M,D) = |{n : 1 ≤ n ≤M, (en+d1 , . . . , en+d�
) = W}|.

Then the f–well–distribution (“f” for “frequency”) measure of EN is defined
as

δ(EN ) = max
a,M,u,v

∣∣∣∣x(EN , a,M, u, v) − M

k

∣∣∣∣

where the maximum is taken over all a ∈ A and u, v,M with u+(M −1)v ≤ N ,
while the f–correlation measure of order � of EN is defined by

γ�(EN ) = max
W,M,D

∣∣∣∣g(EN ,W,M,D) − M

k�

∣∣∣∣

where the maximum is taken over all W ∈ A�, and D = (d1, . . . , d�) and M such
that M + d� ≤ N .

We showed in [14] that in the special case k = 2, A = {−1,+1} the f–
measures δ(EN ), γ�(EN ) are between two constant multiples of the binary mea-
sures W (EN ), resp. C�(EN ), so that, indeed, the f–measures can be considered
as extensions of the binary measures.

Now let EN be the binary sequence in (2.1), and to this binary sequence assign
a sequence ϕ(EN ) whose elements are the 2n letters in the alphabet {−1,+1}r,
and whose length is [N/r]:

ϕ(EN ) =
(
(e1, . . . , er), (er+1, . . . , e2r), . . . , (e([N/r]−1)r+1, . . . , e[N/r]r)

)
.

We will show that if EN is a “good” PR binary sequence, then ϕ(EN ) is also a
“good” PR sequence on the k = 2r letters in the alphabet {−1,+1}r. Indeed,
this follows from the inequalities in the following theorem:

Theorem 1. If EN and ϕ(EN ) are defined as above, then we have

δ
(
ϕ(EN )

) ≤ 1
2r

r∑

s=1

(
r

s

)
Qs(EN ) (2.3)
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and, for � ∈ N

γ�

(
ϕ(EN )

) ≤ 1
2r�

r∑

s=1

�∑

q=1

(
r

s

)(
�

q

)
Qqs(EN ). (2.4)

Proof of Theorem 1. Clearly, for all a = (ε1, . . . , εr) ∈ {−1,+1}r, M , u and
v we have

x
(
ϕ(EN ), a,M, u, v

)

=
∣∣{j : 0 ≤ j ≤M − 1, (e(u+jv−1)r+1, . . . , e(u+jv)r) = (ε1, . . . , εr)

}∣∣

=
M−1∑

j=0

r∏

i=1

e(u+jv−1)r+iεi + 1
2

=
M

2r
+

1
2r

r∑

s=1

∑

1≤i1<···<is≤r

εi1 . . . εis

M−1∑

j=0

e(u+jv−1)r+i1 . . . e(u+jv−1)r+is

whence
∣∣∣∣x
(
ϕ(EN ), a,M, u, v

)− M

k

∣∣∣∣ =
∣∣∣∣x
(
ϕ(EN ), a,M, u, v

)− M

2r

∣∣∣∣

≤ 1
2r

r∑

s=1

∑

1≤i1<···<is≤r

∣∣∣∣∣∣

M−1∑

j=0

e(u−1)r+jvr+i1 . . . e(u−1)r+jvr+is

∣∣∣∣∣∣

=
1
2r

r∑

s=1

∑

1≤i1<···<is≤r

∣∣Z
(
(u − 1)r, vr,M − 1, (i1, . . . , is)

)∣∣

≤ 1
2r

r∑

s=1

∑

1≤i1<···<is≤r

Qs(EN ) =
1
2r

r∑

s=1

(
r

s

)
Qs(EN ) (2.5)

which proves (2.3).
Now let A = {−1,+1}r, w = (ai1 , . . . , ai�

) ∈ A�, aij = (ε(j)1 , . . . , ε
(j)
r ) and

D = (d1, . . . , d�). Then we have

g
(
ϕ(EN ), W, M, D)

=
∣∣{n : 1 ≤ n ≤ M,

(
(e(n+d1−1)r+1, . . . , e(n+d1)r), . . . , (e(n+d�−1)r+1, . . . , e(n+d�)r)

)

=
(
(ε(1)

1 , . . . , ε(1)
r ), . . . , (ε(�)

1 , . . . , ε(�)
r )
)}∣∣ =

M∑

n=1

r∏

i=1

�∏

j=1

e(n+dj−1)+iε
(j)
i + 1

2

=
M

2r�
+

1
2r�

r∑

s=1

�∑

q=1

∑

1 ≤ i1 < · · · < is ≤ r
1 ≤ j1 < · · · < jq ≤ �

(
s∏

μ=1

q∏

ν=1

ε
(jν)
iμ

)(
M∑

n=1

s∏

μ=1

q∏

ν=1

e(n+djν−1)r+iμ

)
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so that, as in (2.5),

∣∣∣∣g
(
ϕ(EN ), W, M, D

)− M

2r�

∣∣∣∣ =
∣∣∣∣g
(
ϕ(EN ), W, M, D

)− M

k�

∣∣∣∣

≤ 1
2r�

r∑

s=1

�∑

q=1

∑

1 ≤ i1 < · · · < is ≤ r
1 ≤ j1 < · · · < jq ≤ �

∣∣Z
(
0, r, M − 1, (dj1r + i1, dj1r + i2, . . . , djq r + is)

)∣∣

≤ 1
2r�

r∑

s=1

�∑

q=1

∑

1 ≤ i1 < · · · < is ≤ r
1 ≤ j1 < · · · < jq ≤ �

Qqs(EN ) =
1

2r�

r∑

s=1

�∑

q=1

(
r

s

)(
�

q

)
Qqs(EN )

whence (2.4) follows and this completes the proof of Theorem 1.
Finally, we will make some comments on the applicability of the construc-

tion described at the beginning of this section. First, we remark that in certain
applications this simple construction can be used even in the case when k, the
number of the given symbols, is not a power of 2; the price paid is a slight
data expansion. E.g., consider the following problem in cryptography: assume
that a plaintext is given which uses, say, k = 80 characters, and we want to
encrypt it by using a PR sequence of letters taken from an alphabet of appro-
priate size as key. Then we consider the smallest power of 2 ≥ the number of
characters: 27 > 80 (> 26). Next to each of the characters we assign one of the
27 blocks of bits of length 7 taken from {0, 1}7, and we replace each character
in the plaintext by the corresponding block from {0, 1}7, so that the plaintext
is mapped into a sequence a1, a2, . . . , aM whose elements belong to {0, 1}7. Now
by using the algorithm described above with r = 7, we construct a PR sequence
b1, b2, . . . , bM of letters from the alphabet A = {0, 1}7 (whose size is power of 2:
|A| = 27). Then we obtain the ciphertext c1, c2, . . . , cM by taking ci ∈ {0, 1}7 as
the residue of ai + bi modulo 27 (and to decipher c1, c2, . . . , cM , we subtract bi
from ci modulo 27).

A further remark on the limits of the applicability of this method: this al-
gorithm can be applied only if N is “much greater”, than k = 2r. Indeed, N
must grow at least as fast as a large power of k, otherwise the inequalities in
Theorem 1 become trivial or say very little.

3 A Construction in the General Case

We will construct a large family of sequences on k symbols with a given length
which has good PR properties (for any k ∈ N, k ≥ 2). This construction will
be the generalization of the construction given in [6] in the special case k = 2
(however, it is much more difficult to control the general case presented here).

We will need four definitions.

Definition 1. A multiset is said to be a k–set if each element occurs with mul-
tiplicity less than k.
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(So that a 2–set is a set whose elements are distinct, each occurring only once;
in this case we will also call the set “simple set”.)

Definition 2. If k ∈ N, k ≥ 2, m ∈ N, A and B are multisets whose elements
belong to Zm

1 (= the ring of the residue classes modulo m) and A+B represents
every element of Zm with multiplicity divisible by k, i.e., for all c ∈ Zm, the
number of solutions of

a+ b = c, a ∈ A, b ∈ B (3.1)

(the elements of A,B counted with their multiplicity) is divisible by k (includ-
ing the case when there are no solutions), then the sum A + B is said to have
property Pk.

Definition 3. If k, h, �,m ∈ N, k ≥ 2 and h, � ≤ m, then (h, �,m) is said to
be a k–admissible triple if there is no simple set A ⊂ Zm and k–set B with
elements from Zm such that |A| = h, |B| = � (multiple elements counted with
their multiplicity), and A + B possesses property Pk.

Definition 4. If k, h, �,m ∈ N, k ≥ 2 and h, � ≤ m, then (h, �,m) is said to
be a (k, k)–admissible triple if there are no k–sets A,B with elements from Zm

such that |A| = h, |B| = � (multiple elements counted with their multiplicity),
and A + B possesses property Pk.

Note that in the special case k = 2 property P2 is the property P introduced in
[6], while both 2–admissibility and (2,2)–admissibility are the admissibility used
there.

Theorem 2. Assume that k ∈ N, k ≥ 2, p is a prime number, χ is a (multi-
plicative) character modulo p of order k (so that k|(p − 1)), f(x) ∈ Fp[x] (Fp

being the field of the residue classes modulo p) has degree h(> 0), f(x) has no
multiple zero in F̄p (= the algebraic closure of Ep), and define the sequence
Ep = {e1, . . . , ep} on the k letter alphabet of the k–th (complex) roots of unity
by

en =

{
χ
(
f(n)

)
for

(
f(n), p

)
= 1

+1 for p | f(n).

Then

(i) we have
δ(Ep) < 11hp1/2 log p, (3.2)

(ii) if � ∈ N is such that the triple (r, t, p) is k–admissible for all 1 ≤ r ≤ h,
1 ≤ t ≤ �(k − 1), then

γ�(Ep) < 10�hkp1/2 log p. (3.3)

1 In classical notation this is Z/m Z and Zp stands for p–adic integers, but in this
paper they don’t occur and no confusion can happen.
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Proof of Theorem 2. The proof of both (i) and (ii) will be based on

Lemma 1. Assume that p is a prime number, χ is a non–principal character
modulo p of order k, f(x) ∈ Fp[x] has degree h and a factorization
f(x) = b(x− x1)r1 . . . (x− xs)rs (where xi �= xj for i �= j) in F̄p with

(k, r1, . . . , rs) = 1. (3.4)

Let X,Y be real numbers with 0 < Y ≤ p. Then
∣∣∣∣∣∣

∑

x<n≤X+Y

χ
(
f(n)

)
∣∣∣∣∣∣
< 9sp1/2 log p ≤ 9hp1/2 log p. (3.5)

Proof of Lemma 1. With h in the upper bound in (3.5), this is Theorem 2 in
[13] where we derived it from A. Weil’s theorem [17] (see also Lemma 1 and its
proof in [6]). To see that (3.5) also holds in the slightly sharper form with the
factor s in place of h, all we have to observe is that in the proof of Theorem 2
in [13], at a certain point (p. 374, line 6 from below) we bounded s by h from
above; skipping this step we obtain (3.5) in the sharper form. (We are indebted
to Igor Shparlinski for this observation.)

We will need Lemma 1 in the following slightly modified form:

Lemma 2. The assertion of Lemma 1 also holds if assumption (3.4) is replaced
by

(k, r1, . . . , rs) < k (3.6)

(i.e., there is an ri with k � ri).

Note that this lemma is sharper than Lemma 3 in [14] since now x1, . . . , xs ∈ Fp

is not assumed.

Proof of Lemma 2. Write δ = (k, r1, . . . , rs) so that

δ < k (3.7)

by (3.6), and define the character χ1 by χ1 = χδ; then by (3.7), χ1 is a non–
principal character. Write the polynomial ϕ(x) = b−1f(x) = (x − x1)r1 . . . (x −
xs)rs ∈ Fp[x] as the product of powers of distinct irreducible polynomials over
Fp: ϕ(x) =

(
π1(x)

)u1
. . .
(
πt(x)

)ut . Since irreducible polynomials cannot have
multiple zeros, and distinct irreducible polynomials are coprime and thus cannot
have a common zero, thus it follows that the exponents u1, . . . , ut are amongst
the exponents r1, . . . , rs whence, by the definition of δ, we have δ | (u1, . . . , ut).
Then writing ψ(x) =

(
π(x)

)u1/δ
. . .
(
π(x)

)ut/δ, clearly we have ψ(x) ∈ Fp[x] and

f(x) = bϕ(x) = b
(
ψ(x)

)δ
.
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It follows that

∣∣∣∣∣∣

∑

X<n≤X+Y

χ
(
f(n)

)
∣∣∣∣∣∣
= |χ(b)|

∣∣∣∣∣∣

∑

X<n≤X+Y

(
χ
(
ψ(n)

))δ
∣∣∣∣∣∣
≤
∣∣∣∣∣∣

∑

X<n≤X+Y

χ1

(
ψ(n)

)
∣∣∣∣∣∣
.

(3.8)
To estimate this sum, we will apply Lemma 1. Indeed, χ1 is of order k/δ, and
clearly ψ(x) has the factorization ψ(x) = (x−x1)r1/δ . . . (x−xs)rs/δ in F̄p. Thus
replacing χ and f(x) in Lemma 1 by χ1 and ψ(x), condition (3.4) becomes

(
k

δ
,
r1
δ
, . . . ,

rs
δ

)
= 1

which holds trivially by the definition of δ. Thus, indeed, Lemma 1 can be applied
to estimate the last sum in (3.8), and applying it, we obtain the desired upper
bound.

(i) If a is a k–th root of unity, then writing

S(a,m) =
1
k

k∑

t=1

(
āχ(m)

)t
, (3.9)

clearly we have

S(a,m) =

{
1, if χ(m) = a

0, if χ(m) �= a.
(3.10)

If a is a k–th roof of unity, u, v,M ∈ N and

1 ≤ u ≤ u+ (M − 1)v ≤ p, (3.11)

then we have

x(Ep, a,M, u, v) =
∑

0≤j≤M−1

eu+jv=a

1 (3.12)

where
∣∣∣∣∣∣∣∣∣∣

∑

0≤j≤M−1

eu+jv=a

1 −
∑

0≤j≤M−1

χ(f(u+jv))=a

1

∣∣∣∣∣∣∣∣∣∣

≤
∑

0≤j≤M−1

p|f(u+jv)

1. (3.13)
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By (3.9) and (3.10),

∑

0≤j≤M−1

χ(f(u+jv))=a

1 =
M−1∑

j=0

S
(
a, f(u+ jv)

)
=

M−1∑

j=0

1
k

k∑

t=1

(
āχ
(
f(u+ jv)

))t

=
1
k

∑

0≤j≤M−1

(f(u+jv),p)=1

1 +
1
k

k−1∑

t=1

āt
M−1∑

j=0

χt
(
f(u+ jv)

)

=
M

k
− 1
k

∑

0≤j≤M−1

p|f(u+jv)

1 +
1
k

k−1∑

t=1

āt
M−1∑

j=0

χt
(
f(u+ jv)

)

whence∣∣∣∣∣∣∣∣∣∣

∑

0≤j≤M−1

χ(f(u+jv))=a

1 − M

k

∣∣∣∣∣∣∣∣∣∣

≤ 1
k

k−1∑

t=1

∣∣∣∣∣∣

M−1∑

j=0

χt
(
f(u+ jv)

)
∣∣∣∣∣∣
+

1
k

∑

0≤j≤M−1

p|f(u+jv)

1. (3.14)

Writing g(x) = f(u+ xv), it follows from (3.12), (3.13) and (3.14) that
∣∣∣∣x(Ep, a,M, u, v) − M

k

∣∣∣∣ ≤
1
k

k−1∑

t=1

∣∣∣∣∣∣

M−1∑

j=0

χt
(
g(j)

)
∣∣∣∣∣∣
+ 2

∑

0≤j≤M−1

p|g(j)

1. (3.15)

The case M = 1 is trivial, thus we may assume that M > 1. Then by
v ≥ 1 and (3.11) we have 1 ≤ v < p so that (v, p) = 1. It follows that the
polynomials f(x), g(x) ∈ Fp[x] have the same degree, and since f(x) does
not have multiple zeros, g(x) does not have multiple zeros either. Moreover,
χ1 = χt is also a character modulo p, and for 1 ≤ t ≤ k− 1 the character χ1

is different from the principal character χ0. Thus by Lemma 1 we have
∣∣∣∣∣∣

M−1∑

j=0

χt
(
g(j)

)
∣∣∣∣∣∣
=

∣∣∣∣∣∣

M−1∑

j=0

χ1

(
g(j)

)
∣∣∣∣∣∣
< 9hp1/2 log p for 1 ≤ t ≤ k − 1. (3.16)

Since f and g are of the same degree thus
∑

0≤j≤M−1

p|g(j)

1 ≤
∑

0≤j<p

p|g(j)

1 ≤ h. (3.17)

It follows from (3.15), (3.16) and (3.17) that
∣∣∣∣x(Ep, a,M, u, v) − M

k

∣∣∣∣ ≤
k − 1
k

· 9hp1/2 log p+ 2h < 11hp1/2 log p

which completes the proof of (3.2).
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(ii) In order to prove (3.3), assume that � ∈ N, � ≤ N , b1, . . . , b� are k–th roots
of unity, w = (b1, . . . , b�), D = (d1, . . . , d�), 0 ≤ d1 < · · · < d�, M ∈ N and
M + d� ≤ N . Then

g(En, w,M,D) =
∣∣{n : 1 ≤ n ≤M, (en+d1 , . . . , en+d�

) = w
}∣∣

=
∣∣{n : 1 ≤ n ≤M, en+d1 = b1, . . . , en+d�

= b�
}∣∣. (3.18)

Here we have

en+d1 = χ
(
f(n+ d1)

)
, . . . , en+d�

= χ
(
f(n+ d�)

)
(3.19)

except for the values of n such that

f(n+ di) ≡ 0 (mod p) for some 1 ≤ i ≤ �. (3.20)

For fixed i, this congruence may have at most h solutions, and i may assume
at most � values. Thus the total number of solutions of (3.20) is ≤ h�. If n
is not a solution of (3.20), then (3.19) holds, so that by (3.10), for all these
n we have

�∏

i=1

S
(
bi, f(n+ di)

)
=

{
1 if en+d1 = b1, . . . , en+d�

= b�

0 otherwise.
(3.21)

For the exceptional values of n satisfying (3.20) (whose number is ≤ h�)
again by (3.10) we have

�∏

i=1

S
(
bi, f(n+ di)

)
= 0 or 1. (3.22)

It follows from (3.18), (3.21) and (3.22) that
∣∣∣∣∣g(EN , w,M,D) −

M∑

n=1

�∏

i=1

S
(
bi, f(n+ di)

)
∣∣∣∣∣ ≤ h� (3.23)

where we have

M∑

n=1

�∏

i=1

S
(
bi, f(n+ di)

)
=

M∑

n=1

�∏

i=1

1
k

k∑

ti=1

(
b̄iχ
(
f(n+ di)

)ti

=
1
k�

k∑

t1=1

· · ·
k∑

t�=1

bt11 . . . bt�

�

M∑

n=1

χ
((
f(n+ d1)t1 . . .

(
f(n+ d�)

)t�
)

=
M

k�
+

1
k�

∑
· · ·
∑

0≤t1,...,t�≤k−1

(t1,...,t�) �=(0,...,0)

bt11 . . . bt�

�

M∑

n=1

χ
((
f(n+ d1)

)t1
. . .
(
f(n+ d�)

)t�
)
.

(3.24)



Large Families of Pseudorandom Sequences of k Symbols – Part I 303

It follows from (3.23) and (3.24) that
∣∣∣∣g(EN , w,M,D) − M

k�

∣∣∣∣

≤ 1
k�

∑
· · ·
∑

0≤t1,...,t�≤k−1

(t1,...,t�) �=(0,...,0)

∣∣∣∣∣

M∑

n=1

χ
((
f(n+ d1)

)t1
. . .
(
f(n+ d�)

)t�
)
∣∣∣∣∣+ h�. (3.25)

Write f(x) = Bf1(x) where B ∈ Zp and f1(x) ∈ Zp[x] is a unitary polyno-
mial, and set G(x) = f1(x + d1)t1 . . . f1(x + d�)t� . Then the innermost sum
in (3.25) can be rewritten in the following way:

∣∣∣∣∣

M∑

n=1

χ
((
f(n+ d1)

)t1
. . .
(
f(n+ d�)

)t�
)
∣∣∣∣∣

=
∣∣χ(Bt1+···+t�)

∣∣
∣∣∣∣∣

M∑

n=1

χ
(
G(n)

)
∣∣∣∣∣ ≤

∣∣∣∣∣

M∑

n=1

χ
(
G(n)

)
∣∣∣∣∣ . (3.26)

It suffices to show:

Lemma 3. If k, f, h, � are defined as in Theorem 2, then G(x) has at least
one zero (in F̄p) whose multiplicity is not divisible by k.

Indeed, assuming that Lemma 3 has been proved, the proof of (3.3) can be
completed in the following way: by Lemma 3, we may apply Lemma 2 with
G(x) in place of f(x) (since then (3.6) holds by Lemma 3). The degree of
G(x) is clearly

ht1 + · · · + ht� ≤ �h(k − 1) < �hk,

thus applying Lemma 2 we obtain
∣∣∣∣∣

M∑

n=1

χ
(
G(n)

)
∣∣∣∣∣ < 9�hkp1/2 log p.

Each of the innermost sums in (3.25) can be estimated in this way. Thus it
follows from (3.25) that
∣∣∣∣g(EN , w, M, D) − M

k�

∣∣∣∣ ≤
1

k�

∑
· · ·
∑

0≤t1,...,t�≤k−1

(t1,...,t�) �=(0,...,0)

9�hkp1/2 log p + h� < 10�hkp1/2 log p

for all w,M,D which proves (3.3). Thus it remains to prove the lemma:

Proof of Lemma 3: We will say that the polynomials ϕ(x), ψ(x) ∈ Fp[x]
are equivalent: ϕ ∼ ψ if there is an a ∈ Fp such that ψ(x) = ϕ(x + a).
Clearly, this is an equivalence relation.
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Write f1(x) as the product of irreducible polynomials over Fp. It follows
from our assumption on f(x) that these irreducible factors are distinct. Let
us group these factors so that in each group the equivalent irreducible factors
are collected. Consider a typical group ϕ(x + a1), . . . , ϕ(x+ ar).

Then writing G(x) as the product of irreducible polynomials over Fp, all
the polynomials ϕ(x+ ai + dj) with 1 ≤ i ≤ r, 1 ≤ j ≤ � occur amongst the
factors, and for fixed i, j such a factor occurs tj times. All these polynomials
are equivalent, and no other irreducible factor belonging to this equivalence
class will occur amongst the irreducible factors of G(x).

Since irreducible polynomials have no multiple zeros and distinct irre-
ducible polynomials cannot have a common zero, the conclusion of Lemma 3
fails, i.e., the multiplicity of each of the zeros of G(x) is divisible by k, if and
only if in each group, formed by equivalent irreducible factors ϕ(x+ai+dj) of
G(x) each taken tj times, every polynomial of form ϕ(x+ c) with c ∈ Fp oc-
curs with multiplicity divisible by k, i.e., the number of representation of c in
the form ai +dj, counting this representation with multiplicity tj , is divisible
by k. In other words, if we write A = {a1, . . . , ar} and B denotes the k–set
whose elements are d1, . . . , d�, each dj taken with multiplicity tj ≤ k − 1,
for each group A + B must possess property Pk. Now consider any of these
groups (by deg f > 0 there is at least one such group). Since A+B possesses
property Pk, (|A|, |B|, p) is not a k–admissible triple. Here we clearly have

|A| = r ≤ deg f1 = deg f = h

and

|B| =
�∑

j=1

tj ≤ �(k − 1)

which contradicts our assumption on �. Thus the conclusion of Lemma 3
cannot fail, and this completes the proof.

4 The Necessity of the k–Admissibility

Upper bound (3.3) in Theorem 2 is proved assuming certain k–admissibility.
(The study of k–admissibility is a difficult problem to which we return in the next
sections). Thus Theorem 2 could be applied more easily without this assumption,
so that one might like to know whether this assumption is really necessary, or
it can be dropped? Next we will show that, subject to certain mild conditions
on the parameters involved, any negative example with a sum A + B (A simple
set, B k–set) having property Pk induces a construction of the type described in
Theorem 2 with the property that conclusion (3.3) fails, i.e., certain correlation
is large. (Sums A + B of this type will be constructed later in Section 6.)

Assume that k ∈ N, k ≥ 2, p is a prime, A = {a1, . . . , ar} ⊂ {0, 1, . . . , p− 1},
B is a k–set with elements from {0, 1, . . . , p− 1}, |A| = r < p, |B| = t < p, the
distinct elements of B are d1, . . . , d�, their multiplicities are t1, . . . , t� (1 ≤ ti ≤
k−1), and A+B has property Pk. Set f(n) = (n+a1) . . . (n+ar), and define the
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sequence Ep = {e1, . . . , ep} in the same way as in Theorem 2. Set M = p− d�.
We claim that assuming also

p→ ∞,

M = p− d� � p (4.1)

and
r� = o(p), (4.2)

γ� cannot be “small”:
|γ�(Ep)| �= o

( p
k�

)
. (4.3)

Consider the sum

SM =
M∑

n=1

et1
n+d1

. . . et�

n+d�
.

Here we have

e
tj

n+dj
=
(
χ
(
f(n+ dj)

))tj = χ

(
r∏

i=1

(n+ ai + dj)tj

)

except for n, j such that

n+ ai + dj ≡ 0(mod p) for some 1 ≤ i ≤ r. (4.4)

If n is such that there are no i (with 1 ≤ i ≤ r), j satisfying (4.4), then we
have

et1
n+d1

. . . et�

n+d�
= χ

⎛

⎝
�∏

j=1

r∏

i=1

(n+ ai + dj)tj

⎞

⎠ = χ

(
∏

c∈A+B
(n+ c)

)
. (4.5)

Here every c ∈ A+ B is counted as many times as the number of solutions of

a+ d = c, a ∈ A, d ∈ B
where the d’s are counted with their multiplicity; for fixed c ∈ Zp, denote the
number of solutions of this equation by ϕ(c) (for c /∈ A + B we set ϕ(c) = 0).
Then (4.5) can be rewritten as

et1
n+d1

. . . et�

n+d�
=

∏

c∈Zp

f(c) �=0

(
χ(n+ c)

)ϕ(c)
.

Since A+ B possesses property Pk, k | ϕ(c) for all c ∈ Zp, and we assumed that
n+ c �= 0 if ϕ(c) �= 0. Since χ is a character of order k, it follows that

et1
n+d1

. . . et�

n+d�
=

∏

c∈Zp

ϕ(c) �=0

(
χk(n+ c)

)ϕ(c)/k =
∏

c∈Zp

ϕ(c) �=0

1 = 1
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for every n for which (4.4) has no solution in i, j. In (4.4) the pair (i, j) can be
chosen in r� ways, and (i, j) determine n uniquely. Thus we have

|SM −M | < r�. (4.6)

On the other hand, assume that contrary to (4.3), we have

|γ�(Ep)| = o
( p
k�

)

so that, denoting the set of the k–th roots of unity by A, for every �–tuple
w = (ε1, . . . , ε�) ∈ A� we have

g(Ep, w,M,D) =
M

k�
+ o

( p
k�

)
.

It follows that

SM =
∑

(ε1,...,ε�)∈A�

g
(
Ep, (ε1, . . . , ε�),M, (d1, . . . , d�)

)
εt1
1 . . . εt�

�

=
M

k�

∑

(ε1,...,ε�)∈A�

εt1
1 . . . εt�

� + o

⎛

⎝ p

k�

∑

(ε1,...,ε�)∈A�

1

⎞

⎠ .

By 1 ≤ ti ≤ k − 1, the first sum is 0. Thus we have

SM = o(p)

which contradicts (4.1), (4.2) and (4.6), and this completes the proof of our
claim.

5 Concluding Remarks

We have just shown that the assumption on the k–admissibility in Theorem 2
cannot be dropped. Thus in order to be able to use the construction in Theorem
2, we need criteria for a triple (r, t, p) to be k–admissible. We will present suffi-
cient criteria of this type in Part II. The complexity of the family that we have
constructed will be also studied there. Finally we estimate the cardinality of a
smallest family achieving a prescribed f–complexity by extending the result of
[4] from binary to k–ary alphabets. Somewhat surprisingly we also improve the
earlier results by establishing a uniformity property.
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premiers, ibid. 4, 185–208, 1958; Corrigendum ibid. 5, 259, 1959.
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