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1 Introduction

The coding theorem for memoryless channels, the most fundamental theorem in
Information Theory, was presented by C.E. Shannon with a sketch of its proof in
his celebrated work [23] of 1948. The first formally satisfactory proof of the cod-
ing theorem appeared in 1954 in [12] by A. Feinstein, who attributed the part
called weak converse of the theorem to R.M. Fano [11] (in 1952). The strong
converse for memoryless channels was first proved by J. Wolfowicz [29] in 1957.
A.S. Holevo [15] and B. Schumacher–M. Westmoreland [22] extended the coding
theorem to quantum memoryless channels for transmission of classical messages.
The theorem is known as HSW Theorem in Quantum Information Theory —
named after the authors — and is one of most important results in Quantum
Information Theory. With the concept of typical subspaces A. Winter [27] suc-
cessfully extended Wolfowitz’s method to a quantum version and proved the
strong converse for quantum memoryless channels. He also presented an elegant
new proof for the direct part of the coding theorem. At the same time a proof
of the strong converse was given by T. Ogawa and H. Nagaoka [18] and their
method of proof may be regarded as an extension of that by S. Arimoto [6].
The coding theorem, direct part and strong converse, for non–stationary mem-
oryless classical quantum channels was proved by A. Winter [28] who extended
Ahlswede’s method of [1] to the quantum case.

A significant difference between Shannon’s Coding Theorem and the HSW
Coding Theorem is that in the terminology of classical Information Theory the
former is a single–letter characterization but the latter is not. Hilbert spaces of
unbounded dimensions are involved in the capacity formula in the HSW Theo-
rem. In fact it is one of the most important and challenging problems in Quantum
Information Theory to get a computable characterization. A family of quan-
tum memoryless channels, known as classical quantum channels, whose HSW
Theorem has single–letter characterization, was introduced by A.S. Holevo [14].
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An observation by A.S. Holevo [16] shows that the HWS Theorem for general
quantum channels can be easily derived from the HWS Theorem for a classical
quantum channel by regarding those channels as a classical quantum channel
with a “super alphabet”. So it seems to be natural to consider classical quantum
multi–user channel when we try to extend the Classical Multi–user Information
Theory to Quantum before a single–letter form of the HWS Theorem is obtained.

C.E. Shannon, the founder of Information Theory, also started Multi–user
Information Theory in [24]. The only multi–user channel whose single–letter
capacity region is completely known is the multiple access channel (MAC). The
Coding Theorem for MAC, the direct part and weak converse, was proved by
R. Ahlswede [2]. Its strong converse theorem was shown by G. Dueck [9] (with
the Ahlswede, Gacs, Körner Blowing Up Lemma and a wringing technique for
mutual Information) and R. Ahlswede [3] (with a stronger wringing technique for
probability alone). To the best of our knowledge the quantum model of the MAC
was first studied by A.E. Allahverdyan and D.B. Saakian [5] and the Coding
Theorem for the classical quantum MAC, the direct part and weak converse,
was shown by A. Winter [26].

However, till now the strong converse resisted all efforts of proof. Already for
the classical MAC the strong converse theorem could not be proved for many
years, because average errors are genuinely used and even nowadays there is
no way to do this via typical sequences and also not via Arimoto’s method.
In the quantum case it gets even worse, because we have no analogue of the
Blowing Up Method for operators (instead for words). Consequently Dueck’s
approach fails also. Fortunately Ahlswede’s wringing method for probabilities,
invented for classification of the role of fundamental methods, works also for
the quantum situation. However the Packing Lemma of [3] requires now a more
demanding analytical proof than the original application of Chebyshev’s inequal-
ity. We present necessary definitions and state formally our results in the next
section and provide the plan to prove the main result in Section 3. In Section
4 we show a strong converse for quantum non–stationary memoryless channels
(slightly stronger than that in [28]), which we need in the proof to the main
theorem. Finally the proof of the main theorem is completed in Section 5.

2 Definitions and Results

Throughout the paper the script letters X ,Y,Z, . . . stand for finite sets and Xn,
Yn,Zn, . . . are their Cartesian powers. We denote their elements and the random
variables taking values in them, by corresponding lower letters, x, y, z, . . . , xn, yn,
zn, . . . and capital letters X, X ′, Y, Ỹ , Z, . . . , Zn, Y n, . . . respectively. The prob-
ability distribution of random variable X , the conditional distribution of random
variables X given Y, . . . are written as PX , PX|Y , . . . . When we speak of PX , we
mean the underlying random variable X is automatically defined and similarly
for PX|Y . As in the standard way (e.g., [17], |i〉, |j〉, |α〉, |β〉, . . . (the “ket”) stand
for normalized column vectors in Hilbert spaces and their dual vectors are writ-
ten as 〈i|, 〈j|, 〈α|, 〈β|, . . . (the “bra”). The density operators or states are denoted
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by Greek letters e.g. ρ, σ, ϕ, . . . . We write von Neumann entropy of state ρ and
the quantum relative entropy of ρ to σ as S(ρ) and D(ρ‖σ), respectively, i.e.,
S(ρ) = −th(ρ log ρ) and D(ρ‖σ) = tr(ρ log ρ) − tr(ρ log σ). Here and through-
out the paper log is the logarithm with base 2 whereas �n is the logarithm with
base e. Also throughout the paper we assume all Hilbert spaces in the discussion
are over the complex field and have finite dimensions.

One way to define classical quantum channels is to specify them by a set of
states Φ =

{
ϕ(x) : x ∈ X} in the same Hilbert space HH , labelled by a finite

set X . We call Φ a classical quantum channel, or shortly a c − q channel, with
input alphabet X and output space HH . x ∈ X and ϕ(x) are called input letter
and output state, respectively. We assume that the receiver, or decoder, of the
channel receives the state ϕ(x) from the output of the channel, if the sender,
or encoder, of the channel inputs a letter x ∈ X to the channel. The Holevo
quantity of a c − q channel Φ =

{
ϕ(x) : x ∈ X} with respect to the input

distribution P is denoted by χ(P ; Φ)

χ(P ; Φ) = S(σ) −
∑

x∈X
P (x)S

(
ϕ(x)

)

=
∑

x∈X
P (x)

[−tr
(
ϕ(x) log σ

)
+ tr

(
ϕ(x) log ϕ(x)

)]

=
∑

x∈X
P (x)D

(
ϕ(x)‖σ), (2.1)

where σ =
∑

x∈X
P (x)ϕ(x). (Perhaps it should be called ... mutual information.)

A non–stationary memoryless classical quantum channel, or shorter non–
stationary memoryless c− q channel, is specified by a sequence of c− q channels
{Φn}∞n=1 with common input alphabet X and output space HH such that an
output state

ϕ⊗n(xn) = ϕ1(x1) ⊗ ϕ2(x2) ⊗ · · · ⊗ ϕn(xn)

is output from the channel if the sequence xn = (x1, . . . , xn) ∈ Xn is input to
the channel, where Φt =

{
ϕt(x) : x ∈ X} for t = 1, 2, . . . , and ⊗ is the tensor

product. An (n, M, λ̄)–code for the non–stationary memoryless c − q channel,
(U ,D) consists of a subset U ⊂ Xn and a measurement D on the outputspace
HH⊗n described by {Dun : un ∈ U}, where Dun corresponds to input un, such
that |U| = M and

M−1
∑

un∈U
tr
[
ϕ⊗n(un)Dun

]
> 1 − λ̄. (2.2)

Here U is called codebook, members of U are called codewords, n is called the
length of the code, or of the codewords, and λ̄ is called the average probability of
error. 1

n log M is called rate of the code. An (n, M, λ̄)–code is used to transmit a
set of classical messages of size M as follows. In the case the encoder has to send
the mth message in the set, he sends the mth codeword, say un(m) ∈ U through
the non–stationary memoryless c−q channel. To decode the message, the decoder
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performs the measurement D to the outputstate and he decodes the output to
the m′th message of the set if the outcome of measurement D is un(m′). Then the
average fidelity of transmission is bounded from below by (2.2). A positive real
number R is said to be λ̄–achievable for a c−q channel if for all ε > 0 there exists
an (n, M, λ̄)–code for the channel with rate 1

n log M > R − ε if n is sufficiently
large. The maximum λ̄–achievable rate for a channel is called its λ̄–capacity,
denoted by C(λ̄). The capacity of the channel is defined as C = inf

λ̄>0
C(λ̄).

Instead of capacity for average probability of error, we have capacity for max-
imum probability of error, if we replace (2.2) by

tr
[
ϕ⊗n(u)Dun

]
> 1 − λ for all un ∈ U . (2.3)

However by the pigeon–hole principle we know that the coding problems for
average probability and maximum probability of error are equivalent for two
terminals channels.

We call a non–stationary memoryless c − q channel specified by {Φn}∞n=1

stationary, or a stationary memoryless c − q channel, if for all n Φn = Φ1.
The coding theorem for stationary memoryless c − q channels is an important
special case of the HSW Theorem. Coding theorem with strong converse for
non–stationary memoryless c− q channels were shown by A. Winter in [28] and
his strong converse has the following form.

Theorem W. (Winter [28]) Given a non–stationary memoryless c − q channel
{Φn}∞n=1, for all 0 < λ < 1 and ε > 0, there is an no = no(λ, ε) (independent
of the channel) such that if there exists an (n, M, λ)–code for the channel with
n > no, then

1
n

log M ≤ 1
n

n∑

t=1

max
Pt

X (Pt; Φt) + ε.

To prove our main result, we need a slightly stronger version of the strong
converse for a non–stationary memoryless c − q channel.

Theorem 1. Let {Φn}∞n=1 be a non–stationary memoryless c − q channel such
that for diagonalizations of ϕn(x), n = 1, 2, . . . , x ∈ X ,

ϕn(x) =
d∑

j=1

Wn(j|x)|jn(x) >< jn(x)| (2.4)

where d = dimHH and HH is the output space,

inf
n,x,j

+ Wn(j|x) = w > 0, (2.5)

where the inf+ is infimum of Wn(j|x) for 1, 2, . . . ,, j = 1, 2, . . . , d and x ∈ X
with Wn(j|x) > 0. Then there exists a function h defined on (0, 1) and depending
on w in (2.5) such that for all (n, M, λ)–codes for the channel {Φn}∞n=1 and
sufficiently large n,
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1
n

log M ≤
n∑

t=1

1
n

χ(PXt ; Φt) +
1√
n

h(λ), (2.6)

where Xn = (X1, X2, . . . , Xn) is the random variable uniformly distributed over
the codebook U . In other words PXn is the empirical distribution over the code-
book and PXt is the marginal distribution of its t–th component.

We shall explain the role of the theorem in the proof of the main result in the
next section and we prove it in Section 4.

Remarks

1. As one can always use a finite set of c − q channels to approach an infinite
set of c − q channels by a quantum version (see Section VII in [28]) of
ε–net techniques in Classical Information Theory and the condition (2.5)
automatically holds, in the case that Φn, n = 1, 2, . . . are taken from a finite
set of c − q channels, the condition (2.5) can be removed from Theorem 1.
Consequently one may replace h by a function independent of w. This can
be done in exactly the same way as in [28]. However the current form of the
theorem is sufficient for our purposes.

2. By considering the previous remark, Theorem W follows from Theorem 1.

Now let us turn to our main object, (stationary) memoryless classical quantum
multiple access channels, or for short c − q MAC. In general, like for classical
MAC, a c− q MAC has more than one sender (or encoder), for simplicity in the
current paper, we consider c − q MAC with two encoders. Thus a c − q MAC
is specified by a set Φ =

{
ϕ(x, y) : x ∈ X , y ∈ Y} of states in common Hilbert

space HH labelled by the elements in a Cartesian product X × Y of two finite
sets X and Y. Again HH is called output space and X and Y are called input
alphabets. We address the two encoders as X– and Y–encoders. The decoder
receives the state

ϕ⊗n(xn, yn) = ϕ(x1, y1) ⊗ ϕ(x2, y2) ⊗ · · · ⊗ ϕ(xn, yn) (2.7)

if the X–encoder and the Y–encoder send input sequences xn = (x1, x2, . . . , xn)
∈ Xn and yn = (y1, y2, . . . , yn) ∈ Yn, respectively, over the c − q MAC. An
(n, M, N, λ̄)–code (U ,V ,D) for a c − q MAC Φ consists of a subset U ⊂ Xn,
a subset V ⊂ Xn, with cardinalities |U| = M , |V| = N respectively and a
measurement D = {Dun,vn : un ∈ U , vn ∈ V}, where Dun,vn corresponds an
outcoming (un, vn), such that

M−1N−1
∑

un∈U

∑

vn∈V
tr
[
ϕ⊗n(un, vn)Dun,vn

]
> 1 − λ̄. (2.8)

We call U and V X– and Y–codebooks and their members codewords. λ̄ and
n are called average probability of error and length of code (or of codewords),
respectively.

Define R1 = 1
n log |M | and R2 = 1

n log |N |. (R1, R2) is called pair of rates of
the code. A pair (R1, R2) of positive real numbers is called λ̄–achievable if for
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all ε > 0 and sufficiently larger n there exists an (n, M, N, λ̄)–code for the c− q
MAC with rates 1

nM > R1 − ε and 1
n log N > R2 − ε. The set of achievable

pairs of real numbers is called λ̄–capacity region of the c− q MAC and denoted
by R(λ̄). Then the capacity region of the c − q MAC Φ is defined as

R =
⋂

1>λ̄>0

R(λ̄). (2.9)

As a special case of a c − q MAC Φ =
{
ϕ(x, y) : x ∈ X , y ∈ Y} becomes a

classical MAC, when ϕ(x, y) x ∈ X , y ∈ Y can be simultaneously diagonalized
by the same basis. One may define the capacity region (λ–capacity region) for
maximum probability of error in an analogous way by replacing (2.8) by

tr
[
ϕ(un, vn)Dun,vn

]
> 1 − λ

for all un ∈ U , vn ∈ V .
However, it turned out that unlike for two terminal channels capacity regions

for maximum probability of error and average probability of error of the same
c − q MAC may be different even for the special case of a classical MAC (c.f.
[8]).

Throughout the paper for c−q MAC we only consider the average probability
of error and to present the formulas of capacity region of a c− q MAC for it we
introduce the following notation.

For a given c−q MAC Φ with input alphabets X and Y, and a pair of random
variables (X, Y ) distributed on X × Y we write

χ(X, Y ; Φ) = χ(PXY ; Φ), (2.10)

where χ(·; ·) is the Holevo quantity defined in (2.1),

χ(X : Φ|Y ) =
∑

y∈Y
PY (y)χ

(
PX|Y (·|y); Φ(·, y)

)

=
∑

y∈Y
PY (y)

[

S(σXY,2(y)
)−

∑

x∈X
PX|Y (x|y)S

(
ϕ(x, y)

)
]

, (2.11)

where Φ(·, y) =
{
ϕ(x, y) : x ∈ X} for all y ∈ Y is a c − q channel with input

alphabet X and σXY,2 =
∑

x
PX|Y (x, y)ϕ(x, y) for all y ∈ Y, and

χ(Y ; Φ|X) =
∑

x∈X
PX(x)χ

(
PY |X(·|x); Φ(x, ·))

=
∑

x∈X
PX(x)

[
S(σXY,1(x)

) −
∑

y∈Y
PY |X(y|x)S

(
ϕ(x, y)

)]
(2.12)

where Φ(x, ·) =
{
ϕ(x, y) : y ∈ Y} for all x is a c− q channel with input alphabet

Y and σXY,1(x) =
∑

y
PY |X(y|x)ϕ(x, y).
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Then it immediately follows from (2.1), (2.10) – (2.12) that

χ(X, Y ; Φ) =
∑

x∈X

∑

y∈Y
PXY (x, y)D

(
ϕ(x, y)‖σXY

)
, (2.13)

where σXY =
∑

x∈X

∑

y∈Y
PXY (x, y)ϕ(x, y),

χ(X ; Φ|Y ) =
∑

y∈Y
PY (y)

∑

x∈X
PX|Y (x|y)D

(
ϕ(x, y)‖σXY,2(y)

)
, (2.14)

and

χ(Y ; Φ|X) =
∑

x∈X
PX(x)

∑

y∈Y
PY |X(y|x)D

(
ϕ(x, y)‖σXY,1(x)

)
. (2.15)

For a pair of random variables (X, Y ) with values in X × Y we let R(X, Y )
be the set of pairs of positive real numbers (R1, R2) satisfying

R1 + R2 ≤ χ(X, Y ; Φ), (2.16)
R1 ≤ χ(X ; Φ|Y ), (2.17)

and
R2 ≤ χ(Y ; Φ|X). (2.18)

Denote by ∂(X ) × ∂(Y) the set of pairs of independent random variables X
taking values on X and Y taking values on Y (i.e. PXY (x, y) = PX(x)PY (y))
and

R∗ = conv

⎡

⎣
⋃

(X,Y )∈∂(X )×∂(Y)

R(X, Y )

⎤

⎦ , (2.19)

where conv(A) stand for the convex closure of the set A.
Then the Coding Theorem for the c − q MAC of A. Winter [26] says that

R = R∗. (2.20)

The main contribution of this paper is the strong converse for all c− q MAC.

Theorem 2. Given a c− q M Φ, there exists a function h̃ defined on (0, 1) such
that for all (n, M, N, λ̄)–codes with λ̄ ∈ (0, 1), there exist random variables X̃n =
(X̃1, . . . , X̃n) and Ỹ n = (Ỹ1, . . . , Ỹn) taking values in Xn and Yn, respectively,
with

1
n

log M +
1
n

log N ≤ 1
n

n∑

t=1

χ(X̃t, Ỹt; Φ) +
log n√

n
h̃(λ̄), (2.21)

1
n

log M ≤ 1
n

n∑

t=1

χ(X̃t; Φ|Ỹt) +
log n√

n
h̃(λ̄), (2.22)
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and
1
n

log N ≤ 1
n

n∑

t=1

χ(Ỹt; Φ|X̃t) +
log n√

n
h̃(λ̄), (2.23)

and for all t, X̃t and Ỹt are independent.
But the dependence is not necessary. It is a consequence of the dependence

of h on w in (2.5) in Theorem 1. So by Remark 1 and on inspection of the proof
for Theorem 2, one may obtain an h̃∗ independent of the channel.

3 Outline of Ideas to Extend Ahlswede’s Strong Converse
Proof for Classical MAC to c − q MAC

Roughly speaking, his proof is divided into three steps.
In the first step Ahlswede extended Augustin’s strong converse theorem in [7],

which says that for an arbitrary (n, M, λ) code for a (classical) non–stationary
memoryless channel {Wn}∞n=1

log M ≤
n∑

t=1

I(Xt; Yt) +
3

1 − λ
|X |√n,

where Xn = (X1, . . . , Xn) is random variable uniformly distributed on the code-
book. Y n = (X1, . . . , Yn) is the output random variable for input Xn, and I is
Shannon’s mutual information.

By applying the strong converse in the first step to the classical MAC, one
may obtain an outer bound for the achievable rate pair (R1, R2) such that

R1 + R1 <
∼

1
n

n∑

t=1

I(XtYt; Zt)

R1 <
∼

1
n

n∑

t=1

I(Xt; Zt|Yt)

and

R2 ≤ 1
n

n∑

t=1

I(Yt; Zt|Xt),

formally like the capacity region. But now (Xt, Yt) may not be independent! So
the outer bound is not tight.

The reason is due to application of the strong converse of non–stationary
channels in step 1 requiring the maximum error criterion, whereas for MAC the
capacity regions of maximum and average error criteria may be different [8]. By
the Markov inequality one may obtain a subcode A from the original code for
MAC. But the uniform distributions over A are not independent. To solve the
problem R. Ahlswede discovered the following technique for the second step.

Lemma A. (Wringing Technique [3]) Let P and Q be probability distributions
over a Cartesian power Zn of a finite set Z such that for a positive constant c
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P (zn) ≤ (1 + c)Q(zn) for all zn ∈ Zn,

then for any 0 < γ < c, 0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, 2, . . . , n}, where
0 ≤ k ≤ c

γ such that for some z̄t1 , . . . , z̄tk
,

P (zt|z̄t1 , . . . , z̄tk
) ≤ max

[
(1 + γ)Q(zt|z̄t1 , . . . , z̄tk

), ε
]

and
P (z̄t1 , . . . , z̄tk

) ≥ εk.

With the lemma Ahlswede obtained a further subcode B from the subcode A
(without loosing too much rate) such that the uniform distribution over the
codebook for it is nearly componentwise independent. Notice that the uniform
distribution for B is not necessarily independent, but componentwise indepen-
dence is sufficient for the purpose.

In the third step Ahlswede first combined the results in the first two steps
to obtain an outer bound in terms of nearly componentwise independent input
distributions and then by some calculation based on the continuity of Shannon
information quantities showed the outer bound is arbitrarily close to the capacity
region of the classical MAC.

We now plan to finish our proof for Theorem 2 paralleling these three steps.
We first inspect the second step, the wringing technique, and find that we can
take it into our proof almost without doing additional work, because the wringing
technique is only applied in the input space and by definition our input space
is classical. That means the only thing, which we need to do, is replace the
codebook for the classical MAC by one for the c − q MAC, and then consider
the consequence at the output.

As by Fannes inequality [10] von Neumann entropy is continuous the extension
to the quantum version in the third step is not so difficult. The only difficult
part for the extension is the first part. Winter’s strong converse (Theorem W)
in [28] for non–stationary c−q channels is in terms of optimal input distribution
whereas the strong converse, which we need, is in terms of empirical distributions
over codebooks. Hayashi and Nagaoka [13] extended a general capacity formula
due to Verdu and Han [25] to classical quantum channels. But it turned out that
they obtained a “ratewise” strong converse for stationary c−q channels in terms
of optimal input distributions by applying their formula.

So to prove our strong converse for c − q MAC, Theorem 2, we have to show
a strong converse for non–stationary c − q channels in terms of the uniform
distribution over the codebook i.e. our Theorem 1. In summary we state our
plan as follows.

In the first step we prove Theorem 1 as an auxiliary result.
In the second step we apply the wringing technique to our codebook to obtain

a subcode whose uniform distribution PX̃nỸ is nearly componentwise indepen-
dent (i.e. PX̃tỸt

(x, y) is arbitrarily close to PX̃t
(x)PỸt

(y) for all x ∈ X , y ∈ Y).
Finally we finish our proof in the third step by calculation based on continuity

of von Neumann entropy.
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4 A Strong Converse for Classical Quantum
Non–stationary Channels

We begin with our proof to Theorem 1 with a lemma which can be considered
as a quantum analogue of Lemma 1 in [3].

Let U be a finite index set and let
{
ρ(u) : u ∈ U} (4.1)

be a set of states labelled by indices in U in a given complex Hilbert space HH
of finite dimension d. Further let σ be a state in HH . For a given real number
r(u) we denote the projector of HH onto subspace

ρ(u) − 2r(u)σ ≥ 0 (4.2)

by P+
(
u, σ, r(u)

)
. That is, P+(u, σ, r) is the projector with

P+
(
u, σ, r(u)

)
=

∑

αj(u)≥0

|ej(u) >< ej(u)| (4.3)

if ρ(u) − 2r(u)σ is diagonalized as

ρ(u) − 2r(u)σ =
d−1∑

j=0

αj(u)|ej(u) >< ej(u)|. (4.4)

Then we have

Lemma 1. Let U ,
{
ρ(u) : u ∈ U}, σ, and P+

(
u, σ, r(u)

)
be defined as above

and let {Du : u ∈ U} be a measurement in HH (i.e., 0 ≤ Du ≤ I for all u ∈ U ,∑

u∈Du

Du = I, and Du corresponds to the outcome “u”, where I is the identity

operator in HH) such that for a positive real number δ

trρ(u)Du − trρ(u)P+
(
u, σ, r(u)

) ≥ δ (4.5)

for all u ∈ U . Then

|U| ≤ δ−12
|U|−1 ∑

u∈U
r(u)

. (4.6)

Proof: For all u ∈ U , by (4.3), (4.4) and (4.5),

2r(u)trσDu = trρ(u)Du − tr
[
ρ(u) − 2r(u)σ

]Du

≥ trρ(u)Du − tr
[
ρ(u) − 2r(u)σ

]P+
(
u, σ, r(u)

)

≥ trρ(u)Du − trρ(u)P+
(
u, σ, r(u)

) ≥ δ, (4.7)

where the first inequality follows from (4.3), (4.4), and the fact that for any oper-

ator π with diagonlization π =
d−1∑

i=0

pi|ei >< ei|, the projector P+
π =

∑

pi≥0

|ei ><

ei| maximizes tr(πτ) among the operators τ with 0 ≤ τ ≤ I, and the last
inequality holds by condition (4.5).
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Next notice that δ2
−|U|−1 ∑

u∈U
r(u)

=
[
∏

u∈U
δ2−r(u)

] 1
|U|

. Then (4.7) is followed

by

δ2
−|U|−1 ∑

u∈U
r(u)

≤
[
∏

u∈U
tr(σDu)

] 1
|U|

. (4.8)

However geometric means may not exceed arithmetic means and so we can
continue to bound (4.8) by

δ2
−|U|−1 ∑

u∈U
r(u)

≤ 1
|U|
∑

u∈U
tr(σDu)= |U|−1tr

(

σ
∑

u∈U
Du‖!

)

= |U|−1tr(σI)= |U|−1.

That is (4.6). �

To apply Lemma 1 in the proof of Theorem 1 we have to estimate
[
trρP+

(ρ, σ, r)
]

for projector

P+(ρ, σ, r) =
∑

αj≥0

|ej >< ej| (4.9)

onto the subspace ρ−2rσ ≥ 0, where σ and ρ are states and the diagonalization
of ρ − 2rσ is

ρ − 2rσ =
d−1∑

j=0

αj |ej >< ej|. (4.10)

For j = 0, 1, 2, . . . , d− 1, let P (j) = 〈ej |ρ|ej〉 and Q(j) = 〈ej |σ|ej〉. Then P and
Q are probability distributions on {0, 1, . . . , d−1} since ρ and σ are states: Thus
by (4.9) and (4.10) one may rewrite

trρP+(ρ, σ, r) =
∑

j:P (j)−2rQ(j)≥0

P (j) =
∑

j:log P (j)
Q(j)≥r

P (j). (4.11)

A natural way to estimate
[
trρP+(ρ, σ, r)

]
is applying Chebyshev’s inequality

to (4.11). But it will lead us to an estimation in terms of Shannon information
quantities, which is not what we want to have.

Based on the works [20], [21] by Petz, T. Ogawa and H. Nagaoka provided an
estimation in [19].

Lemma ON ([19]). For all s ∈ [0, 1)

log
[
trρP+(ρ, σ, r)

] ≤ 2−rstr(ρ1+sσ−s). (4.12)

It can be shown that

1
s
trρ1+sσ−s → D(ρ‖σ) as s → 0, (4.13)
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which was used by M. Hayashi and H. Nagaoka to obtain a strong converse
theorem for stationary memoryless c − q channels in terms of optimal input
distributions.

However the convergence in (4.13) is not sufficient for us to obtain a strong
converse theorem for non–stationary channel and, roughly saying, we need that

1
s

log
[
tr(ρt(u)1+sσ−s

t )
]→ D

(
ρt(u)‖σt

)
as s → 0 (4.14)

uniformly in t for sets
{
ρt(u) : u ∈ U} and σt, t = 1, 2, . . . , n as states. Precisely

our estimation is done by the following lemma.

Lemma 2. For a given positive real number w there exists a positive a = a(w)
such that for all states ρ whose minimum positive eigenvalue is not smaller than
w, all states σ, and all s ∈ [0, 1

2

)

D(ρ‖σ)s ≤ log[trρ1+sσ−s] ≤ D(ρ‖σ)s + d
1
2
[
a + tr(ρσ−1)

]
s2, (4.15)

where d is the dimension of the Hilbert space HH.

Proof: Let ρ and σ have diagonalizations

ρ =
∑

j

W (j)|j〉〈j| (4.16)

and
σ =

∑

y

Q(y)|y〉〈y|, (4.17)

respectively. We may assume that the support of ρ contains the support of σ,
because otherwise all terms in (4.15) are infinity and we need to do nothing. So
in the following we assume all summations run over positive eigenvalues of σ
and do not worry about “zero denominators”. Then by (4.15) and (4.16)

trρ1+sσ−s =
∑

j

∑

y

tr

[
W (j)

(
W (j)
Q(y)

)s

|j〉〈j||y〉〈y|
]

=
∑

j

∑

y

W (j)
(

W (j)
Q(y)

)s

|〈j|y〉|2. (4.18)

Let f(s) = tr(ρ1+sσ−s) and g(s) = log f(s). Then by Taylor expansion we
have for s ∈ [0, 1

2

)
the estimate

g(s) = g(0) + g′(0)s + g′′(s0)s2 (4.19)

for some s0 ∈ [0, s]. Next we have to calculate the derivations of g. By simple
calculation we obtain from (4.18)

f ′(s) =
∑

j

∑

y

W (j)|〈j|y〉|2
(

W (j)
Q(y)

)s

�n
W (j)
Q(y)

, (4.20)
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and

f ′′(s) =
∑

j

∑

y

W (j)|〈j|y〉|2
(

W (j)
Q(y)

)s (
�n

W (j)
Q(y)

)2

. (4.21)

Next we substitute f(s) = tr(ρ1+sσ−s) and (4.20) into

g′(s) =
f ′(s)
f(s)

· log e, (4.22)

and f(s) = tr(ρ1+sσ−s), (4.20) and (4.21) into

g′′(s) =
[
f ′′(s)
f(s)

− (f ′(s))2

f2(s)

]
log e, (4.23)

respectively.
Then we obtain

g′(s) =

∑

j

∑

y
W (j)|〈j|y〉|2

(
W (j)
Q(y)

)s

log W (j)
Q(y)

tr(ρ1+sσ−s)
(4.24)

and

g′′(s) =

⎡

⎢
⎢
⎣

∑

j

∑

y
W (j)|〈j|y〉|2

(
W (j)
Q(y)

)s (
�nW (j)

Q(y)

)2

tr(ρ1+sσ−s)

−

⎛

⎜
⎜
⎝

∑

j

∑

y
W (j)|〈j|y〉|2

(
W (j)
Q(y)

)s

�nW (j)
Q(y)

tr(ρ1+sσ−s)

⎞

⎟
⎟
⎠

2
⎤

⎥
⎥
⎥
⎦

log e. (4.25)

We are ready to see from (4.25) that for all s

g′′(s) ≥ 0. (4.26)

Indeed by (4.18), Qs =
{

Qs(j, y) =
W (j)|〈j|y〉|2(W (j)

Q(y) )s

tr(ρ1+sσ−s)

}

(j,y)

is a probability

distribution. So we may define a random variable Z(s) taking value W (j)
Q(y) with

probability Qs(j, y) and rewrite (4.25) as g′′(s) = Var
[
�nZ(s)

]
log e. Moreover

by (4.24), (4.16), and (4.17) we have that

g′(0) =
∑

j

∑

y

W (j)|〈j|y〉|2 log W (j) −
∑

j

∑

y

W (j)|〈j|y〉|2 log Q(y)

= tr(ρ log ρ) − tr(ρ log σ) = D(ρ‖σ), (4.27)

Which with (4.19) and (4.26) and g(0) = 0 yields the first inequality in (4.15).
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To obtain the second inequality in (4.15), we have to choose a at the right

hand side of (4.15) according to w. We observe that lim
x→∞

x
1
2 (	n x2) log e

x = 0 and

so there exists an A > 1 such that for all s ∈ [0, 1
2

]
, x ∈ [A,∞)

xs(�n x)2 log e ≤ x
1
2 (�n x)2 log e ≤ x, (4.28)

We choose

a = max
{

max
x∈[w,1]

(�n x)2 log e, max
x∈[1,A]

x
1
2 (�n x)2 log e

}

and then for all s ∈ [0, 1
2

]
, x ∈ [w, A],

xs(�n x)2 log e ≤ a. (4.29)

By (4.28) and (4.29) we upperbound

xs(�n x)2 log e ≤ x + a (4.30)

for s ∈ [0, 1
2

]
and x ∈ [w,∞). Notice that by our assumption that for all j

w ≤ W (j), for all j, y, W (j)
Q(y) ∈ [w,∞).

Thus we may apply the upper bound in (4.30) with x = W (j)
Q(y) to (4.25). This

gives us that for all s ∈ [0, 1
2

]

g′′(s) ≤ 1
tr(ρ1+sσ−s)

∑

j

∑

y

|〈j|y〉|2
(

W (j)
Q(y)

)s (
�n

W (j)
Q(y)

)2

log e

≤ 1
tr(ρ1+sσ−s)

∑

j

∑

y

|〈j|y〉|2
(

W (j)
Q(y)

+ a

)
=

tr(ρσ−1) + a

tr(ρ1+sσ−s)
. (4.31)

Since for s > 0 σ−s ≥ I and x
3
2 is convex ∪, for s ∈ [0, 1

2

]

tr(ρ1+sσ−s) ≥ trρ1+s =
∑

j

W (j)1+s ≥
∑

j

W (j)
3
2 ≥ d

⎡

⎣
∑

j

1
d
W (j)

⎤

⎦

3
2

= d−
1
2 .

(4.32)

Finally the second inequality in (4.15) follows from (4.19), (4.27), (4.31), (4.32)
and g(0) = 0.

�
Proof of Theorem 1. To conclude the section we prove Theorem 1. Let {Φ}∞n=1

be a non–stationary c − q and let (U ,D) be an (n, M, λ)–code for it. Without
loss of generality, we assume it is a code for the maximum probability of error
because by Markov’s inequality one always may obtain an

(
n,
⌊

λ−λ̄
λ M

⌋
, λ
)
–

code for maximum probability of error from an (n, M, λ̄)–code with average
probability of error for all λ ∈ (λ̄, 1). So, we have for all un ∈ U that (2.3) holds.
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Let Xn = (X1, . . . , Xn) be the sequence of random variables uniformly dis-
tributed on the codebook U and for t = 1, 2, . . . , n

σt = Eϕt(Xt) =
∑

x∈X
PXt(x)ϕt(x) (4.33)

where ϕt(x) ∈ Φt =
{
ϕt(x) : x ∈ X}. Let

σ⊗n = σ1 ⊗ σ2 ⊗ · · · ⊗ σn. (4.34)

To prove the theorem, we should apply Lemma 1 to
{
ϕ⊗n(un) : un ∈ U} and

σ⊗n, where
ϕ⊗n(un) = ϕ1(u1) ⊗ ϕ2(u2) ⊗ · · · ⊗ ϕ1(un) (4.35)

for un = (u1, . . . , un). To this end we set for all un ∈ (u1, . . . , un) ∈ U

r(un) =
n∑

t=1

{

D
(
ϕt(ut)‖σt

)
+

d
1
2 [a + tr(ϕt(ut)σ−1

t )] + log 2
1−λ√

n

}

, (4.36)

where a is the constant in (4.15), Lemma 2 (defined in the proof). We have to
verify (4.5) for δ = 1−λ

2 , which will be done by applying Lemma ON and Lemma
2. By Lemma ON, we have that for all un ∈ U and s ∈ [0, 1)

tr
[(

ϕ⊗n(un)
)P+

(
un, σ⊗nr(un)

)] ≤ 2−r(un)str
([

ϕ⊗n(un)
]1+s[

σ⊗n
]−s)

= 2−r(un)s
n∏

t=1

tr
[
ϕ1+s

t (ut)σ−s
t

]

= 2−r(un)s2
n∑

t=1
log tr

[
ϕ1+s

t (ut)σ
−s
t

]

, (4.37)

where the first equality follows from (4.34) and (4.35). Next we bound

log tr
[
ϕ1+s

t (ut)σ−s
t

]

by the second inequality in (4.15), Lemma 2 and notice that by condition (2.5)
of Theorem 1, for all t, and all u ∈ X , the minimum positive eigenvalue of ϕt(u)
is not smaller than w.

Then by Lemma 2, we have that for all s ∈ [0, 1
2

)

log
[
trϕ1+s

t (ut)σ−s
t

] ≤ D
(
ϕt(ut)‖σt

)
s + d

1
2
[
a + tr

(
ϕt(ut)σ−1

t

)]
s2, (4.38)

By substitution of (4.38) into (4.37), we further bound tr
(
ϕ⊗n(un)P+

(
un, σ⊗n, r(un)

)
as follows:

tr
(
ϕ⊗n(un)P+

(
un, σ⊗n, r(un)

) ≤

exp2

{

−r(un)s +
n∑

t=1

[
D
(
ϕt(ut)‖σt

)
s + d

1
2
[
a + tr

(
ϕt(ut)σ−1

t

]
s2

}

(4.39)

for all s ∈ (0, 1
2

]
. We choose s = 1√

n
in (4.39) and then substitute (4.36) into it.
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Thus we obtain

tr
(
ϕ⊗n(un)P+

(
un, σ⊗nr(un)

)

≤ exp2

{
−1√

n

n∑

t=1

[

D
(
ϕt(ut)‖σt

)
+

d
1
2 [a + tr(ϕt(ut)σ−1

t )] + log 2
1−λ√

n

]}

+
1√
n

n∑

t=1

D
(
ϕt(ut)‖σt

)
+

1
n

n∑

t=1

d
1
2
[
a + tr

(
ϕt(ut)σ−1

t

)]

= 2
− 1

n

n∑

t=1
log 2

1−λ = 2− log 2
1−λ =

1 − λ

2
, (4.40)

which with assumption (2.3) yields that (4.5) holds for ϕn(un), σn, r(un), un ∈
U , and δ = 1−λ

2 . That is, the conditions of Lemma 1 are satisfied, and thus (for{
ρ(u) : u ∈ U} =

{
ϕ⊗n(un) : u ∈ U}, σ = σ⊗n, u = un) get

log M ≤ −M−1
∑

un∈U
r(un) − log

1 − λ

2
. (4.41)

Finally we recall the definition of random variables Xn = (X1, . . . , Xn), the
definition of r(un) in (4.36) and treat r(un), D

(
ϕt(u)‖σt

)
and tr(ϕt(u)σ−1

t ) as
functions of un and u. Then it follows from (4.41), (4.36), (4.33), and (2.1) that

1
n

log M ≤ 1
n

∑

xn∈Xn

Pr(Xn = xn)r(xn)− 1
n

log
1 − λ

2
=

1
n

Er(Xn)− 1
n

log
1 − λ

2

=
1
n

n∑

t=1

E
[
D
(
ϕt(Xt)‖σt

)]
+ n− 3

2

n∑

t=1

d
1
2
[
a + E

[
tr
(
ϕt(Xt)σ−1

t

)]]

− log
1 − λ

2
(n−1 + n− 1

2 )

=
1
n

n∑

t=1

∑

x∈X
PXt(x)D

(
ϕt(x)‖σt

)
+ n− 3

2 s
1
2

n∑

t=1

[
a + tr

[
E
(
ϕt(Xt)

)
σ−1

t

]]

− log
1 − λ

2
(n−1 + n− 1

2 )

=
1
n

n∑

t=1

χ(PXt ; Φt) + n− 3
2 d

1
2

n∑

t=1

[
a + tr(σt · σ−1

t )
]

− log
1 − λ

2
(n−1 + n− 1

2 )

≤ 1
n

n∑

t=1

χ(PXt ; Φt) + n− 1
2 d

1
2 (a + d) − 2n− 1

2 log
1 − λ

2

=
n∑

t=1

1
n

χ(PXt ; Φt) +
1√
n

[
d

1
2 (a + d) − 2 log

1 − λ

2

]
. (4.42)
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Finally we complete our proof by choosing h(λ) = d
1
2 (a + d) − 2 log 1−λ

2 in
(4.42). �

5 The Proof of the Main Result

In previous section we have shown Theorem 1, which completed the first step of
the plan to prove Theorem 2. In this section we shall finish our proof according
to the plan in Section 3. The second step is to apply wringing technique Lemma
A and it directly follows from the Lemma the

Corollary A. For given finite sets X and Y, U ⊂ Xn and V ∈ Yn and a subset
A ⊂ U ×V with cardinality |A| ≥ β|U| × |V| for a β ∈ (0, 1), a γ ∈ (0, β−1 − 1),
and ε > 0 there exists t1, t2, . . . , tk ∈ {1, 2, . . . , n} and (xt1 , yt2), . . . , (xtk

, ytk
)

for a k ≤ β−1−1
γ such that the section of A at (xt1 , yt1), (xt2 , yt2), . . . , (xtk

, ytk
),

B =
{
(un, vn) ∈ A : (uti , vti) = (xti , yti), i = 1, 2, . . . , k

}

has the following properties.
|B| ≥ εk|A|, (5.1)

and for the pair (X̄n, Ȳ n) of sequences of random variables uniformly distributed
on B,

(1 + γ)Pr(X̄t = x)Pr(Ȳt = y) − γ − |X ||Y|ε
≤ Pr(X̄t = x, Ȳt = y) ≤ max

(
(1 + γ)Pr(X̄t = x)Pr(Ȳt = y), ε

)
(5.2)

for all x ∈ X , y ∈ Y and t = 1, 2, . . . , n.
The corollary is actually Corollary 2 in [3]. (The only difference is that we

now remove the assumption in [3] that U × V is a codebook for the MAC but
this is obviously not an essential assumption.) (5.1) and the first inequality in
(5.2) are a simple consequence of Lemma 1 with the choice of P as uniform
distribution on A and Q as uniform distribution of U ×V . The second inequality
in (5.2) follows the first inequality in (5.2) and the fact that

∑

(x,y)∈X×Y
Pr(X̄t =

x)Pr(Ȳt = y) = 1.
So we omit the details. Readers can make them by themselves or read [3].
Now let Φ be a c−q MAC. We have to find an h̃ such that for all (n, M, N, λ̄)–

codes and the channel (2.23) – (2.25) hold. Suppose that we are given an
(n, M, N, λ̄)–code (U ,V ,D) for the c − q MAC Φ. Let λ = 1+λ̄

2 and A ={
(un, vn) : tr

[
ϕ(un, vn)Dun,vn

]
> 1 − λ, un ∈ U , vn ∈ V}. Then we obtain

that

|A| >

(
1 − λ̄

λ

)
MN =

1 − λ̄

1 + λ̄
MN (5.3)

by applying Shannon’s well known approach to (2.8). By definition for all
(un, vn) ∈ A

tr
[
ϕ(un, vn)Dun,vn

]
> 1 − λ =

1 − λ̄

2
. (5.4)
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Let β = 1−λ̄
1+λ̄

γ = 1√
n
, and ε = 1√

n
. Then corollary A is followed by that there

exists a B ⊂ A in Corollary A such that for a k ≤ 2λ̄
1−λ̄

√
n,

|B| ≥ n− λ̄
1−λ̄

√
n|A| ≥ 1 − λ̄

1 + λ̄
n− λ̄

1−λ̄

√
nMN, (5.5)

where the last inequality follows from (5.3), and (5.2) holds for the pair of se-
quences of random variables (X̄n, Ȳ n) uniformly distributed on B. That is, for
all x ∈ X , y ∈ Y, and t = 1, 2, . . . , n,

1√
n

[
Pr(X̄t = x)Pr(Ȳt = y) − 1 − |X ||Y|]

≤ Pr(X̄t = x, Ȳt = y) − Pr(X̄t = x)Pr(Ȳt = y)

≤ 1√
n

[
Pr(X̄t = x)Pr(Ȳt = y) + 1

]
, (5.6)

where we use the assumption γ = ε = 1√
n

and to obtain the last inequality we
use the obvious inequality

max

{(
1 +

1√
n

)
Pr(X̄t = x)Pr(Ȳt = y),

1√
n

}
≤
(

1 +
1√
n

)
Pr(X̄t = x)Pr(Ȳt = y)+

1√
n

.

We first treat our c−q MAC channel as a stationary memoryless c−q channel
with input alphabet X × Y and it is obvious that (B,D) is an (n, |B|, λ)–code
for it, where λ = 1+λ̄

2 .
So we may apply Theorem 1 to it and obtain

|B| ≤
n∑

t=1

1
n

χ(PX̃tỸt
; Φ) +

1√
n

h(λ) =
1
n

n∑

t=1

χ(X̄t, Ȳt; Φ) +
1√
n

h(λ), (5.7)

which together with (5.5) implies

1
n

log M+
1
n

log N ≤ 1
n

n∑

t=1

χ(X̄t, Ȳt; Φ)+
1√
n

h(λ)+
1√
n

λ̄

1 − λ̄
log n+

1
n

log
1 + λ̄

1 − λ̄
.

(5.8)
Next we get for yn ∈ Yn

B(yn) =
{
(un, yn) : (un, yn) ∈ B}. (5.9)

Then by our definitions

B(yn) = φ if yn /∈ Vn, (5.10)

Pr(Ȳ n = yn) =
|B̄(yn)|
|B| , (5.11)
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and
{B(vn) : vn ∈ V ,B(vn) �= φ

}
is a partition of B. We partition V into two

parts according to PȲ n ,

V+ =
{
vn ∈ V : Pr(Ȳ n = vn) ≥ (nN)−1

}
(5.12)

and
V− =

{
vn ∈ V : Pr(Ȳ n = vn) < (nN)−1

}
. (5.13)

Then by (5.10) and (5.11)

1 = Pr(Ȳ n ∈ V) < Pr(Ȳ n ∈ V+) + (nN)−1|V| = Pr(Ȳ n ∈ V+) +
1
n

,

or

Pr(Ȳ n ∈ V+) > 1 − 1
n

. (5.14)

Now we combine (5.11) and (5.12) with (5.5) and obtain that for all vn ∈ V+

|B(vn)| ≥ (nN)−1|B| ≥ 1 − λ̄

1 + λ̄
n
−
(

λ̄
1−λ̄

√
n+1

)

M, (5.15)

which together with (5.14) yields

∑

vn∈Vn

Pr(Ȳ n = vn) log |B(vn)| ≥
∑

vn∈V+

Pr(Ȳ n = vn) log |B(vn)|

≥
(

1 − 1
n

)[
log M −

(
λ̄

1 − λ̄

√
n + 1

)
log n + log

1 − λ̄

1 + λ̄

]

≥
(

1 − 1
n

)[
log M −√

n log n

(
1

1 − λ̄
+ 1 + log

1 + λ̄

1 − λ̄

)]

≥ log M − 1
n

log |Xn| − √
n log n

(
1

1 − λ̄
+ 1 + log

1 + λ̄

1 − λ̄

)

≥ log M −√
n log n

(
2 − λ̄

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|X |
))

,

i.e.,

1
n

log M ≤ 1
n

∑

vn∈Vn

Pr(Ȳ n = vn) log |B(vn)| + log n√
n

(
2

1 − λ̄
+log

(
1 + λ̄

1 − λ̄
|X |
))

.

(5.16)

Here we use the convention “0 log 0 = 0”. For vn ∈ V , we let

UB(vn) =
{
un ∈ U : (un, vn) ∈ B(vn)

}
. (5.17)
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Then obviously by definition
(UB(vn),D) is an

(
n, |B(vn)|, λ)–code for non–

stationary memoryless c− q channel
{
Φt(·, vt)

}
t

where for vn = (v1, v2, . . . , vn),
Φ =

{
ϕ(x, y) = x ∈ X , y ∈ Y}, Φt(·, vt) =

{
ϕ(x, vt) : x ∈ X}, and PX̄n|Ȳ n(·|vn)

is the uniform distribution on B(vn). Denote by w(x, y), the minimum positive
eigenvalue of ϕ(x, y) and by w = min

x,y
w(x, y). Then w > 0 since |X ||Y| < ∞,

and (2.5) holds. Consequently by Theorem 1 we have that

1
n

log |B(vn)| ≤
n∑

t=1

1
n

[

S

(
∑

x∈X
PX̄t|Ȳ n

t
(x|vn)ϕ(x, vn)

)

−
∑

x∈X
PX̄t|Ȳ n

t
(x|vn)S

(
ϕ(x, vt)

)
]

+
h(λ)√

n
. (5.18)

Notice that ϕ(xt, vt) depends on xn = (x1, . . . , xn) through xt for fixed v.
One may rewrite (5.18) as

1
n

log |B(vn)| ≤
n∑

t=1

1
n

[

S

(
∑

xn∈Xn

PX̄n
t |Ȳ n(xn|vn)ϕ(xt, vt)

)

−
∑

xn∈Xn

PX̄n
t |Ȳ n

t
(xn|vn)S

(
ϕ(xt, wt)

)
]

+
h(λ)√

n
. (5.19)

Next by the concavity (∩) of von Neumann entropy and Jensens inequality
we have

∑

yn∈Yn

PȲ n(yn)S

(
∑

xn∈Xn

PX̄n|Ȳ n(xn|yn)ϕ(xt, yt)

)

=
∑

yt∈Y
PȲt

(y)
∑

i�=t

∑

yi∈Y
Pr(Ỹi = yi, i �= t|Ỹt = yt)S

(
∑

xn∈Xn

PX̄n|Ȳ n(xn, yn)ϕ(xt, yt)

)

≤
∑

yt∈Y
PȲt

(yt)S

⎡

⎣
∑

i�=t

∑

yi∈Y
Pr(Ȳi − yi, i �= t|Ȳt = yt)

∑

xn∈Xn

Pr(X̄n = xn|Ȳ n = yn)ϕ(xt, yt)

⎤

⎦

=
∑

yt∈Y
PȲt

(yt)S

(
∑

xt∈X
PX̄t|Ȳt

(xt|yt)ϕ(xt, yt)

)

=
∑

y∈Y
PȲt

(y)S
(
σX̄tȲt,2(y)

)

(5.20)

for σX̄tȲt,2(y) =
∑

x∈X
PX̄t|Ȳt

(x|y)ϕ(x, y).
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This and the fact
∑

yn∈Yn

PȲ n(yn)
∑

xn∈X
PX̄n|Ȳ n(xn|yn)S

(
ϕ(xt, yt)

)

=
∑

y∈Y
PȲt

(y)
∑

x∈X
PX̄t|Ȳt

(x|y)S
(
ϕ(xt, yt)

)

together with (2.11) imply that

1
n

n∑

t=1

PȲ n(yn) log |B(yn)|

≤ 1
n

n∑

t=1

⎡

⎣
∑

y∈Y
PȲt

(y)

(

S
(
σX̄tȲt,2(y)

)−
∑

x∈X
PX̄t|Ȳt

(x|y)S
(
ϕ(xt, yt)

)
)⎤

⎦+
h(λ)√

n

=
1
n

n∑

t=1

χ(X̄t; Φ|Ȳt) +
h(λ)√

n
. (5.21)

Recalling that P (Ȳ n = yn) = 0, if yn /∈ Vn, by combining (5.16) with (5.21),
we have that

1
n

log M ≤ 1
n

n∑

t=1

χ(X̄t; Φ|Ȳt) +
log n√

n

(
2

1 − λ
+ log

(
1 + λ̄

1 − λ̄
|X |
))

+
h(λ)√

n

≤ 1
n

n∑

t=1

χ(X̄t; Φ|Ȳt) +
log n√

n

(
2

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|X |
)

+ h

(
1 + λ̄

2

))
,

(5.22)

where in the last step we use our choice λ = 1+λ̄
2 . By interchanging the roles of

X̄n and Ȳ n, we obtain in the same way that

1
n

log N ≤ 1
n

n∑

t=1

χ(Ȳt|X̄t) +
log n√

n

(
2

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|Y|
)

+ h

(
1 + λ̄

2

))
.

(5.23)
So for our proof has not been done and we only finished the second step of our
plan although (5.8), (5.22), and (5.23) have the same form as (2.23), (2.24), and
(2.25), because (X̄t, Ȳt) may not be independent. We have to replace (X̄t, Ȳt) by
a pair of random variables (X̃t, Ỹt) with distribution

PX̃tỸt
(x, y) = PX̄t

(x)PX̄t
(y) (5.24)

for x ∈ X , y ∈ Y, for t = 1, 2, . . . , n. This is finished in the last step.
In the calculation we need two basic inequalities from Quantum Information

Theory.

Strong Convexity of the Trace Distance (P. 407 [17])
Let {Pi} and {Qi} be two probability distributions and let {ρi} and {σi} be two
sets of states. Then
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tr

(∣∣
∣
∣
∣

∑

i

Piρi −
∑

i

Qiσi

∣
∣
∣
∣
∣

)

≤
∑

i

|Pi − Qi| +
∑

i

Pitr|ρi − σi|. (5.25)

Fanne’s Inequality (Continuity of von Neumann Entropy ([10] also P.
512 [17])
For two states ρ and σ

|S(ϕ) − S(σ)| ≤ 1
2
tr|ρ − σ| log

2d

tr|ρ − σ| . (5.26)

In the following let us denote by PQ+ =
{
z ∈ Z : P (z) ≥ Q(z)

}
for two

probability distributions P and Q on the same set Z. Then the second inequality
in (5.6) implies that

∑

x∈Xy∈Y
|PX̄tȲt

(x, y) − PX̄t
(x)PȲt

(y)|

≤ 2
∑

(x,y)∈PX̄tȲt
(PX̄t

PȲt
)

+PX̄tȲt
(x, y) − PX̄t

(x)PȲt
(y)

≤ 2√
n

(
1 + |X ||Y|). (5.27)

So by (5.25) and (5.27) we have

tr

⎛

⎝

∣
∣
∣
∣
∣∣

∑

x∈Xy∈Y
PX̄tȲt

(x, y)ϕ(x, y) −
∑

x∈Xy∈Y
PX̄t

(x)PȲt
(y)ϕ(x, y)

∣
∣
∣
∣
∣∣

⎞

⎠

≤
∑

x∈Xy∈Y
|PX̄tȲt

(x, y) − PX̄t
(x)PȲt

(y)|

≤ 2√
n

(
1 + |X ||Y|) (5.29)

Moreover, by (5.27)

∣
∣
∣
∣∣

∑

x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

) −
∑

x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)
∣
∣
∣
∣∣

≤
∑

x,y

|PX̄tȲt
(x, y) − PX̄t

(x)PȲt
(y)|S(ϕ(x, y)

)

≤ log d
∑

x,y

|PX̄tȲt
(x, y) − PX̄t

(x)PȲt
(y)|

≤ 2√
n

(
1 + |X ||Y|) log d. (5.30)
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Now (5.26) and (5.30) imply that

|χ(X̄t, Ȳt; Φ) − χ(X̃t, Ỹt; Φ)|

=

∣
∣
∣∣
∣

[

S

(
∑

x,y

PX̄tȲt
(x, y)ϕ(x, y)

)

−
∑

x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

)
]

−
[

S

(
∑

x,y

PX̄t
(x)PȲt

(y)ϕ(x, y)

)

−
∑

x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)
]∣∣
∣
∣
∣

≤
∣
∣
∣∣
∣
S

(
∑

x,y

PX̄tȲt
(x, y)ϕ(x, y)

)

− S

(
∑

x,y

PX̄t
(x)PȲt

(y)ϕ(x, y)

)∣∣
∣∣
∣

+

∣∣
∣
∣
∣

∑

x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

) −
∑

x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)
∣∣
∣
∣
∣

≤ 1√
n

(
1 + |X ||Y|) log

√
nd

1 + |X ||Y| +
2√
n

(
1 + |X ||Y|) log d

<
1√
n

(
1 + |X ||Y|) log

√
nd3

1 + |X ||Y|
<

1√
n

(
1 + |X ||Y|) log

√
nd3. (5.31)

Next let us turn to estimate the difference |χ(X̄t; Φ|Ȳt) − χ(X̃t; Φ|Ỹt)|. To

this end we have to upper bound the difference

∣
∣∣
∣
∣
∑

y∈Y
PȲt

(y)S
(
σX̄tȲt,2(y)

)− ∑

y∈Y

PȲt
(y)S

(
σX̃tỸt,2(y)

)∣∣
∣ for

σX̄tȲt,2(y) =
∑

x∈X
PX̄t|Ȳt

(x|y)ϕ(x, y) and σX̃tỸt,2
(y) =

∑

x∈X
PX̄t

(x)ϕ(x, y).

Since for all y
∑

x
PX̄tȲt

(x, y) =
∑

x
PX̄t

(x)PȲt
(y) = PȲt

(y), if PȲt
(y) �= 0,

by (5.6)

PȲt
(y)
∑

x∈X
|PX̄t|Ȳt

(y|x) − PX̄t
(x)| =

∑

x∈X
|PX̄tȲt

(x, y) − PX̄t
(x)PȲt

(y)|

= 2Σ+
(
PX̄tȲt

(x, y) − PX̄t
(x)PȲt

(y)
)

≤ 2√
n

(
PȲt

(y) + |X |)

≤ 2√
n

(
1 + |X |), (5.32)

where the sum Σ+ is taken over all x ∈ X with PX̄t|Ȳt
(x|y) ≥ PX̄t

(x).
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Thus by (5.26), (5.25), and (5.32), we have that
∣
∣
∣
∣∣

∑

y∈Y
PȲt

(y)S
(
σX̄t|Ȳt,2(y)

)−
∑

y∈Y
PȲt

(y)S
(
σX̃tỸt,2(y)

)
∣
∣
∣
∣∣

≤
∑

y∈Y
PȲt

(y)
∣∣S
(
σX̄tȲt,2(y)

)− S
(
σX̃tỸt,2(y)

)∣∣

≤
∑

y∈Y
PȲt

(y) · 1

2
tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)| log 2d

tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)|

≤ 1

2

∑

y∈Y
PX̄t

(y)tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)| log 2d

PX̄t
(y)tr|σX̄tȲt,2(y) − σX̃tỸt,2(y)|

≤ 1

2

∑

y∈Y
PȲt

(y)
∑

x∈X
|PX̄t|Ȳt

(x|y) − PX̄t
(x)| log 2d

PȲt
(y)
∑

x∈X
|PX̄t|Ȳt

(x|y) − PX̄t
(x)|ϕ(x, y)

≤ 1

2

∑

y∈Y

2√
n

(
1 + |X |) log

d
√

n

1 + |X |

=
1√
n

(
1 + |X |)|Y| log d

√
n

1 + |X |
≤ 1√

n

(
1 + |X |)|Y| log d

√
n (5.33)

where the second inequality holds by (5.26); the fourth inequality follows from
(5.25) and the monotonicity of z log 2d

z in the interval
[
0, 2d

e

]
; and the fifth in-

equality follows from (5.32).
Considering that by (2.11)

χ(X̄t; Φ|Ȳt) =
∑

y∈Y
PȲt

S
(
σX̄tȲt,2(y)

)−
∑

x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

)

and χ(X̃t; Φ|Ỹt) =
∑

y∈Y
PȲt

S
(
σX̃tỸt,2(y)

)−∑x,y PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)
, we add

up (5.30) and (5.33),

|χ(X̄t; Φ|Ȳt) − χ(X̃t; Φ|Ỹt)|

≤
∣
∣
∣
∣∣
∣

∑

y∈Y
PȲt

(y)S
(
σX̄tȲt,2(y)

)−
∑

y∈Y
PȲt

(y)S
(
σX̃tỸt,2

(y)
)
∣
∣
∣
∣∣
∣

+

∣
∣
∣
∣∣

∑

x,y

PX̄tȲt
(x, y)S

(
ϕ(x, y)

) −
∑

x,y

PX̄t
(x)PȲt

(y)S
(
ϕ(x, y)

)
∣
∣
∣
∣∣

≤ 1√
n

(
2 + |Y| + 3|X ||Y|) log d +

1
2
√

n

(
1 + |X |)|Y| log n. (5.34)

Next, we exchange the roles of X̄t and Ȳt in (5.34), in the same way we obtain
that

|χ(Ȳt; Φ|X̄t)−χ(Ỹt; Φ|X̃t)| ≤ 1√
n

(
2+|X |+3|X ||Y|) log d+

1
2
√

n

(
1+|Y|)|X | log n.

(5.35)
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Finally we set

h̃(λ̄) = h

(
1 + λ̄

2

)
+

2 + λ̄

1 − λ̄
+ log

(
1 + λ̄

1 − λ̄
|X ||Y|

)
+ (3 + 6|X ||Y|) log d

and combine (5.8) with (5.31), (5.22) with (5.34), and (5.23) with (5.35), respec-
tively. Then (2.23) – (2.25) follow. �
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7. U. Augustin, Gedächtnisfreie Kanäle für diskrete Zeit, Z. Wahrscheinlichkeitsthe-
orie u. verw. Gebiete, Vol. 6, 10–61, 1966.

8. G. Dueck, Maximal error capacity regions are smaller than average error capacity
regions for multi–user channels, Problems of Control and Information Theory, Vol.
7, 11–19, 1978.

9. G. Dueck, The strong converse to the coding theorem for the multiple–access chan-
nel, J. Comb. Inform. Syst. Sci., Vol. 6, 187–196, 1981.

10. M. Fannes, A continuity property of the entropy density for spin lattice systems,
Common. Math. Phys. 31, 291–294, 1973.

11. R.M. Fano, Class Notes for Transmission of Information, Course 6.574, MIT, Cam-
bridge, Mass., 1952.

12. A. Feinstein, A new basic theorem of information theory, IRE trans., Inform. The-
ory, Vol. 4, 2–22, 1954.

13. M. Hayashi and H. Nagaoka, General formulas for capacity of classical–quantum
channels, http//xxx.lanl.gov/abs/quant-ohy/0206186V1, 2002.

14. A.S. Holevo, Problems in the mathematical theory of quantum communication
channels, Rep. Math. Phys. 12, 2, 273–278, 1977.

15. A.S. Holevo, The capacity of the quantum channel with general signal states, IEEE
Trans. Inform Theory, Vol. 44, 269–273, 1998.

16. A.S. Holevo, Coding theorems for quantum channels, http://xxx.lanl.giv/abs/
quant–ph/9809023V1, 1998.

17. M.A. Nielsen and I. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, 2000.

18. T. Ogawa and H. Nagaoka, Strong converse to the quantum channel coding theo-
rem, IEEE Trans. Inform. Theory, Vol. 45, 2486–2489, 1999.

19. T. Ogawa and H. Nagaoka, Strong converse and Stein’s lemma in quantum hy-
pothesis testing, IEEE Trans. Inform. Theory, Vol. 46, 2428–2433, 2000.



A Strong Converse Theorem for Quantum Multiple Access Channels 485

20. D. Petz, Quasientropies for states of a von Neumann algebra, Publ. RIMS, Kyoto
Univ. Vol. 21, 787–800, 1985.

21. D. Petz, Quasientropies for finite quantum systems, Rep. Math. Phys., Vol. 23,
57–65, 1986.

22. B. Schumacher and M. Westmorelang, Sending classical information via noisy quan-
tum channel, Phys. Rev. A, Vol. 56, 1, 131–138, 1997.

23. C.E. Shannon, A mathematical theory of communication, Bell Sys. Tech. Journal,
Vol. 27, 379–423, 1948.

24. C.E. Shannon, Two–way communication channels, Proc. 4th Berkeley Symp. Math.
Statist. and Prob., Unvi. of Calif. Press, Berkeley, Vol. 1, 611–644, 1961.
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