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1 Introduction

We begin with

I. The identifiable parent property and some first results about it
If C is a q–ary code of length n and an and bn are two codewords, then cn is called
a descendant of an and bn if ct ∈ {at, bt} for t = 1, . . . , n. We are interested in
codes C with the property that, given any descendant cn, one can always identify
at least one of the ‘parent’ codewords in C. We study bounds on F (n, q), the
maximal cardinality of a code C with this property, which we call the identifiable
parent property. Such codes play a role in schemes that protect against piracy of
software.

They have been introduced by Hollmann, van Lint, Linnartz and Tolhuizen
[9]. We repeat first their concepts, basic examples and results.

Consider a code C of length n over an alphabet Q with |Q| = q (i.e., C ⊂ Qn).
For any two words an, bn in Qn we define the set of descendants D(an, bn) by

D(an, bn) := {xn ∈ Qn|xt ∈ {at, bt}, t = 1, 2, . . . , n}. (1.1)

Note that among the descendants of an and bn we also find an and bn them-
selves. For a code C we define the descendant code C∗ by

C∗ :=
⋃

an∈C,bn∈C
D(an, bn). (1.2)

For example, if C is the binary repetition code, then C∗ = Fn
2 . Similarly, if C

is the ternary Hamming code of length 4, then C∗ = F 4
3 , since it is obvious that

all words in a ball of radius 1 around a codeword are descendants of some pair
containing that codeword.

If cn ∈ C∗ is an element of D(an, bn), with an ∈ C, bn ∈ C, then we call an

and bn parents of cn. In general, an element of C∗ has several pairs of parents.
A trivial example are words of C themselves. We say that C has the “identifiable
parent property” (IPP) if, for every descendant in C∗, at least one of the parents
can be identified. In other words, for each cn ∈ C∗ there is a codeword π(cn) in
C such that each parent pair of cn must contain π(c).

Example: Consider the ternary Hamming code C of length 4, which has size 9.
Since every pair of distinct codewords has distance 3, any descendant cn in C∗

has distance ≤ 1 to exactly one of the parents in a parent pair. There cannot be
two codewords with distance 1 to cn, so the unique codeword with distance ≤ 1
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to cn is the identifiable parent. For the other parent there are then three choices
if cn /∈ C (and of course eight choices if cn ∈ C).

We are interested in the maximal size of a code with the identifiable parent
property. We define

F (n, q) := max{|C| | C ⊆ Qn, C has IPP, |Q| = q}.

Trivially, a code of cardinality 2 has IPP. If q = 2, a code of cardinality ≥ 3 does
not have IPP. To see this, consider three binary words u1, u2, u3. For i = 1, 2, 3,
the i–th coordinate of cn is determined by a majority vote over the corresponding
coordinates of the three given words. Then cn is clearly a descendant of any pair
taken from the three words uj. So from now on we assume q ≥ 3.

As trivial cases we have F (1, q) = q, F (2, q) = q. (If xt, t = 1, 2, is a symbol
that occurs twice as t–th coordinate, then (x1, x2) has no identifiable parent.)

Theorem HLLT 1. F (3, q) ≤ 3q − 1
For certain classes of codes, it is easy to see that IPP holds. We start with
equidistant codes.

Theorem HLLT 2. If C is an equidistant code of length n over an alphabet of
size q and with distance d, then C has the identifiable parent property if d is odd
or if d is even and n < 3

2d.

Theorem HLLT 3. Let q be a prime power. If q ≥ n − 1 then a (short-
ened, extended, or doubly extended) Reed–Solomon code over Fq with parameters[
n,

⌈
n
4

⌉
, n −

⌈
n
4

⌉
+ 1

]
has IPP.

Corollary. If q ≥ n − 1 and q is a prime power, then F (n, q) ≥ q�n
4 �.

Theorem HLLT 4. We have F (n, q) ≤ 3q�n
3 �.

Theorem HLLT 5. There is a constant c such that F (n, q) ≥ c
(

q
4

)n
3 .

From the calculations it follows that we could take c = 0.4. For large q, Theorem
5 is better than the Corollary.

We expand here the model in the following direction.

II. Men and women model
Here we consider two sets of codewords U ,V ⊂ Qn referred to as sets of men
and of women. Naturally we define the descendant code C∗(U ,V) by

C∗(U ,V) =
⋃

u∈U ,v∈V
D(u, v).

If cn ∈ C∗(U ,V) is an element of D(u, v), then we call u and v parents of cn.
We say now that (U ,V) has the identifiable parent property if for every de-

scendant in C∗ at least one of the parents can be identified. This means that for
every cn ∈ C∗ there is a codeword π(cn) in U ∪ V such that each parent pair
{u, v} of cn must contain π(cn).
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III. Semicodes for MAC
The previous model suggests to look at the structure in terms of multiple–access
channels (MAC) defined by a stochastic matrix W : X ×Y → Z. Then the IPP
naturally leads to the new concept of semi codes with a new Coding Theorem
determining the optimal rate C̄semi for the average error concept (Theorem 1).
The proof is by no means easy.

It has three basic ingredients: a wringing technique of [3], the blowing up
method of [6] and the identity for entropies of [10] in the form of [7]. We analyze
this model in Section 2. In Section 3 we mention directions of further research
on identifiability.

2 Semicodes for the MAC

Let W be a stochastic matrix X ×Y → Z. We call a system
(
{ui}M1

i=1, {vj}M2
j=1,

{Ei}M1
i=1, {Dj}M2

j=1

)
an (n, M1, M2, λ)–semi–code of MAC Wn, if ui ∈ Xn for

i = 1, . . . , M1, vj ∈ Yn for j = 1, . . . , M2, Ei ∩ Ei′ = ∅ for i �= i′, Dj ∩ Dj′ = ∅

for j �= j′, Ei ∩ Dj = ∅ for all i, j and

1
M1

1
M2

M1∑

i=1

M2∑

j=1

Wn(Ei ∪Dj |ui, vj) > 1 − λ. (2.1)

Denote by C̄semi(λ) the maximal real number such that, for all δ > 0 and
sufficiently large n there exists an (n, M1, M2, λ)–semi–code with 1

n log M1M2 >
C̄semi(λ) − δ. We shall determine C̄semi(λ) and show that it is independent of
λ ∈ (0, 1). The main issue is the (strong) converse theorem and our main idea
is very similar to that in [3]. The following result (Lemma 4 of [3]) will play an
important role.

Lemma A. Let P and Q be probability distributions on Xn such that for a
positive constant c

P (xn) ≤ (1 + c)Q(xn) for all xn ∈ X , (2.2)

then for any 0 < γ < c, 0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, . . . , n}, where
0 ≤ k ≤ c

γ such that for some x̄t1 , . . . , x̄tk

P (xt|x̄t1 , . . . , x̄tk
) ≤ max

(
(1 + γ)Q(xt|x̄t1 , . . . , x̄tk

), ε
)

(2.3)

for all xt ∈ X and all t = 1, 2, . . . , n and

P (x̄t1 , . . . , x̄tk
) ≥ εk. (2.4)

To apply it, we modify its consequence (Corollary 2 in [3]) slightly

Corollary. Let Un ⊂ Xn with |Un| = M1, Vn ⊂ Yn with |Vn| = M2, A ⊂ Un×Vn

with |A| ≥ (1−λ∗)M1M2 for some λ∗ ∈ (0, 1). Then for any 0 < γ < c � λ∗
1−λ∗ ,
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0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, . . . , n} where k ≤ λ∗
γ(1−λ∗) and some

(x̄t1 , ȳt1), . . . , (x̄tk
, ȳtk

) such that for Ā �
{
(xn, yn) ∈ A : xt�

= x̄t�
yt�

= ȳt�
, for

� = 1, . . . , k
}

(a) |Ā| ≥ εk|A|,
and

(b)
(
(1 + γ)Pr(X̄t = x)Pr(Ȳt = y) − γ − |X ||Y|ε

)
,

≤ Pr(X̄t = x, Ȳt = y) ≤ max
(
(1 + γ)Pr(X̄t = x)Pr(Ȳ = y), ε

)

for all x ∈ X , y ∈ Y, 1 ≤ t ≤ n,
where (X̄n, Ȳ n) is a pair of RV’s with uniform distribution on Ā.

Proof: The corollary is essentially the same as Corollary 2 of [3] and can be
shown in the same way. But we give the proof because it is short.

Let P and Q be defined by P (xn, yn) = 1
|A| if (xn, yn) ∈ A and Q(xn, yn) =

P1(xn)P2(yn) for (xn, yn) ∈ Xn×Yn, where P1 and P2 are marginal distributions
of P , respectively. Then P (xn, yn) ≤ 1

1−λ∗ Q(xn, yn) and therefore one can apply
Lemma A to c = 1

1−λ∗ − 1 = λ∗
1−λ∗ to obtain (a) and the second inequality of

(b), which implies

Pr(X̄t = x, Ȳt = y) = 1 −
∑

(x′.y′) �=(x,y)

Pr(X̄t = x′, Ȳt = y′)

≥ 1 −
∑

(x′,y′) �=(x,y)

max
(
(1 + γ)Pr(X̄t = x′)Pr(Ȳt = y′), ε

)

≥ 1 − |X ||Y|ε − (1 + γ)(1 − Pr(X̄t = x)Pr(Ȳt = y)
)

= LHS of (b). �

Another main tool here is the Blowing Up Lemma of [5]. Let dH be Hamming
distance and for all B ⊂ Z ′n, Γ kB �

{
zn : there is a bn ∈ Bn with dH(zn, bn) ≤

k
}
, where Z ′ is a finite set. Then

Lemma AGK. (Blowing Up) For any finite sets X ′ and Z ′ and sequence
{εn}∞n=1 with εn → 0, there exist a sequence of positive integers {�n}∞n=1 with
�n/n → 0 and a sequence {ηn}∞n=1 with η → 1 such that for every stochastic
matrix V : X ′ → Z ′ and every n, xn ∈ X ′n, B ⊂ Z ′n

Wn(B|xn) ≥ exp{−nεn} implies Wn(Γ �nB|xn) ≥ ηn.

Remark: One can easily see that for a stochastic matrix W : X × Y → Z and
any yn ∈ Yn, the Blowing Up Lemma is still true for the channel Wn(·|·, yn) �
n∏

t=1
W (·|·, yt). We shall actually employ this version of the Blowing Up Lemma.

Theorem 1. For all λ ∈ (0, 1),

C̄semi(λ) = max
X,Y

max
{
I(X ∧ Z) + H(Y ), I(Y ∧ Z) + H(X)

}
, (2.5)
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where the first maximum is taken over all independent pairs of RV’s (X, Y ) with
values in X × Y, and Z is the corresponding output variable.

Proof

Converse: Let
(
{ui}M1

i=1, {vj}M2
j=1, {Ei}M1

i=1, {Dj}M2
j=1

)
be an (n, M1, M2, λ)–semi–

code. Then (2.1) implies that

1
M1

1
M2

M1∑

i=1

M2∑

j=1

Wn(Ei|ui, vj) >
1 − λ

2
(2.6)

or
1

M1

1
M2

M∑

i=1

M∑

j=1

Wn(Dj |ui, vj) >
1 − λ

2
, (2.7)

must hold. W.l.o.g. assume (2.6) holds and therefore there is a subcode A ⊂
{ui : 1 ≤ i ≤ M1} × {vj : 1 ≤ j ≤ M2} such that

|A| >
1 − λ − 2μ

2(1 − μ)
M1M2, (2.8)

and for all (ui, vj) ∈ A
Wn(Ei|ui, vj) > μ, (2.9)

where μ is any positive constant less than 1−λ
2 .

We apply the Corollary to A with λ∗ � 1 − 1−λ−2μ
2(1−μ) = 1+λ

2(1−μ) , ε = n−1 and

γ = n− 1
2 and then get t1, . . . , tk, (x̄t1 , ȳt1), . . . , (x̄tk

, ȳtk
), Ā and (X̄n, Ȳ n) in the

Corollary with

k ≤ λ∗

γ(1 − λ∗)
=

1 + λ

1 − λ − 2μ
n

1
2 (2.10)

and by (2.8) and (2.10)

|Ā| ≥ εk|A|≥(1−λ∗)M1M2ε
k≥ 1 − λ − 2μ

2(1 − μ)
M1M2 exp

{
− 1 + λ

1 − λ − 2μ
n

1
2 log n

}
.

(2.11)
Therefore

H(X̄n, Ȳ n) = log |Ā| ≥ log M1M2 + log
1 − λ − 2μ

2(1 − μ)
− 1 − λ

1 − λ − 2μ
n

1
2 log n.

(2.12)
Let (Xt, Yt, Zt) be the triple of RV’s, for t = 1, . . . , n, with distribution Pr(Xt =
x, Yt = y, Zt = z) = Pr(X̄t = x)Pr(Ȳt = y)W (z|x, y), and let Z̄n be the output
of the channel Wn for the input (X̄n, Ȳ n). Then by (b) of the corollary and the
uniform continuity of information quantities,

|
(
I(Xt ∧ Zt) + H(Yt)

)
−

(
I(X̄t ∧ Z̄t) + H(Ȳt)

)
|< αn, (2.13)

for all t and some sequence (αn)∞n=1 with αn → 0 as n → ∞.
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Recalling Ā ⊂ A, we have (2.9) for all (ui, vj) ∈ Ā. Thus by applying the
Blowing Up Lemma to (ui, vj) ∈ Ā, we obtain, for all (ui, vj) ∈ Ā

Wn(Γ �nEi|ui, vj) ≥ ηn and ηn → 1,
�n

n
→ 0 as n → ∞ (2.14)

(c.f. the Remark after the Blowing Up Lemma).
Notice that zn ∈ Γ �nEi iff there is a z′n ∈ Ei with dH(zn, z′n) ≤ �n. We define

“the decoding list” of zn as L(zn) � {i : zn ∈ Γ �nEi}. Then

|L(zn)| ≤
�n∑

m=0

(
n

m

)
(|Z| − 1)m ≤ exp{nβn}, (say) (2.15)

with βn → 0 as n → ∞. Introduce a new RV J by setting J = 0 if X̄n ∈ L(Z̄n)
and J = 1 else. Then

H(X̄n|Z̄n) = H(X̄nJ |Z̄n) = H(X̄n|JZ̄n) + H(J |Z̄n) ≤ H(X̄n|JZ̄n) + H(J)
≤ Pr(J = 0)H(X̄n|J = 0, Z̄n) + Pr(J = 1)H(Xn|J = 1) + log 2
≤ Pr(J = 0)H(X̄n|J = 0, Z̄n) + (1 − ηn)n log |X | + log 2 (by (2.14))
≤ nβn + (1 − ηn)n log |X | + log 2 (by (2.15)). (2.16)

Next we employ a technique of [10] which appears in 3.3 of [7].
Write for all t ∈ {1, 2, . . . , n}

H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄n) − H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)

= H(Ȳ tZ̄t+1, . . . , Z̄n|X̄n) − H(Ȳ t−1Z̄t, . . . , Z̄n|X̄n), (2.17)

and obtain the following, by adding up both sides of (2.17) from 1 to n.
n∑

t=1

(
H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄n) − H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)

)

= H(Ȳ n|X̄n) − H(Z̄n|X̄n), (2.18)

In order to show
n∑

t=1

(
H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄

n) − H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)
)
≤

n∑

t=1

(
H(Ȳt) − H(Z̄t|X̄t)

)

(2.19)
we have to prove for all t

I(Z̄t ∧ X̄t−1X̄t+1, . . . , X̄nȲ t−1Z̄t+1, . . . , Z̄n|X̄t) ≤ I(Ȳt ∧ X̄nȲ t−1Z̄t+1, . . . , Z̄n).

It is sufficient to show

I(Z̄t ∧ X̄t−1X̄t+1, . . . , X̄nȲ t−1Z̄t+1, . . . , Z̄n|X̄t)

≤ I(Ȳt ∧ X̄t−1X̄t+1, . . . , X̄nȲ t−1Z̄t+1, . . . , Z̄n|X̄t). (2.20)
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Since H(Z̄t|X̄tȲt) = H(Z̄t|X̄tȲtX̄
t−1X̄t+1, . . . , X̄nȲ t−1Z̄t+1, . . . , Z̄n),

I(Z̄t ∧ X̄t−1X̄t+1, . . . , X̄nȲ t−1Z̄t+1, . . . , Z̄n|X̄tȲt) = 0. (2.21)

By adding (2.21) to LHS of (2.20), one obtains I(ȲtZ̄t ∧ X̄t−1X̄t+1, . . . ,
X̄nȲ t−1Z̄t+1, . . . , Z̄n|X̄t), which implies (2.20) and therefore (2.19) holds.

Finally, (2.12), (2.13), (2.16), (2.18) and (2.19) together yield

1
n

log M1M2 ≤ 1
n

H(X̄nȲ n) − 1
n

log
1 − λ − 2μ

2(1 − μ)
+

1 − λ

1 − λ − 2μ
n− 1

2 log n

≤ 1
n

(
H(X̄nȲ n) − H(X̄n|Z̄n)

)
+ βn + (1 − ηn) log |X |

+
1
n

log 2 − 1
n

log
1 − λ − 2μ

2(1 − μ)
+

1 − λ

1 − λ − 2μ
n− 1

2 log n

=
1
n

(
I(X̄n ∧ Z̄n) + H(Ȳ n|X̄n)

)
+ θn

=
1
n

(
H(Z̄n) + H(Ȳ n|X̄n) − H(Z̄n|X̄n)

)
+ θn

=
1
n

[
H(Z̄n) +

n∑

t=1

(
H(Ȳt|X̄nȲ t−1Z̄t+1, . . . , Z̄n) − H(Z̄t|X̄nȲ t−1Z̄t+1, . . . , Z̄n)

)]
+ θn

≤ 1
n

n∑

t=1

(
H(Z̄t) + H(Ȳt) − H(Z̄t|X̄t)

)
+ θn

=
1
n

n∑

t=1

(
I(X̄t ∧ Z̄t) + H(Ȳt)

)
+ θn

≤ 1
n

n∑

t=1

(
I(Xt ∧ Zt) + H(Yt)

)
+ αn + θn, (2.22)

where θn � βn +(1−ηn) log |X |+ 1
n log 2− 1

n log 1−λ−2μ
2(1−μ) + 1−λ

1−λ−2μn− 1
2 log n → 0

as n → ∞.
Thus we conclude our proof of the converse part by setting (XY Z) as the

triple achieving maxt

(
I(Xt ∧ Zt) + H(Yt)

)
and requiring n → ∞ in (2.22).

Direct Part: The proof of the direct part can be done in the now standard way.
It was actually first done in [1]. W.l.o.g. assume RHS of (2.5) is I(X∧Z)+H(Y )
and (X, Y, Z) is in the range of the maximum value. Then by letting {vj : 1 ≤
j ≤ M1} = T n

Y , Di = T n
Z|X,δ(ui)�

⋃
i′ �=i

T n
Z|X,δ(ui′) (δ is suitable) Ej = ∅ and

by independently randomly selecting ui, i = 1, 2, . . . , �2n(I(X∧Z)−δ′)� on T n
X one

can get the desired code. We omit the details. �
Remarks

1. Inspection of our results shows that we answered a basic question for the
interference channel. We found the capacity region if one of the two channels
is noiseless. Until now experts could not tell us whether this is known as a
special case of complicated characterizations using several auxiliary RV’s.
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3 Further Results and Perspectives

IV. Screening design of experiments
Motivated by the original parent concept with no distinction between men and
women we look at the special MAC with equal input alphabets X = Y = Q and
symmetric transmission probabilities

W (z|x, y) = W (z|y, x) for all z ∈ Z and x, y ∈ Q

and at the situation where the codes U and V are equal. This communication
situation came up for the first time in the theory of screening design of experi-
ments (see the survey [11]), but now we look at the semicodes analogue to the
above with Ei = Di for i = 1, . . . , M = M1 = M2 and obtain the analogue to
Theorem 1.

V. Semicodes for AVMAC
Next we tighten our models so that they give insight into the original problem.
We replace the MAC by the AVMAC, the arbitrarily varying MAC, defined by a
set of stochastic matrices W =

{
w(·|·, ·, s) : s ∈ S

}
where W (·|·, ·, s) : X×Y � Z

and s ∈ S.
We proved in [4] that its capacity region R(W) has the property:
R(W) = ∅ if and only if one of the following three conditions holds

(i) W is (X ,Y)–symmetrizable, that is for a stochastic σ : X × Y → S
∑

s

W (z|x, y, x)σ(s|x′, y′) =
∑

s

W (z|x′, y′, s)σ(s|x, y)

for all x, x′ ∈ X , y, y′ ∈ Y and z ∈ Z.
(ii) W is X–symmetrizable, that is for a stochastic σ1 : X → S

∑

s

W (z|x, y, s)σ1(s|x′) =
∑

s

W (z|x′, y, s)σ1(s|x)

for all x, x′ ∈ X , y ∈ U and z ∈ Z.
(iii) W is Y–symmetrizable, that is for a stochastic σ2 : Y → S

∑

s

W (z|x, y, s)σ2(s, y′) =
∑

s

W (z|x, y′, s)σ2(s|y)

for all x ∈ X , y, y′ ∈ Y and z ∈ Z.

VI. Robust screening design of experiments
We can establish the analogue for the one code-set (U = V) situation and of
course also the capacity formula.

VIII. For certain termites females can give birth to males without mating and
to females after mating. This gives another structure of relatedness, which can
be studied with respect to the identifiability property.
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