
Appendix: On Common Information and

Related Characteristics of Correlated
Information Sources

R. Ahlswede and J. Körner

Abstract. This is a literal copy of a manuscript from 1974. References
have been updated. It contains a critical discussion of in those days recent
concepts of “common information” and suggests also alternative defini-
tions. (Compare pages 402–405 in the book by I. Csiszár, J. Körner “In-
formation Theory: Coding Theorems for Discrete Memoryless Systems”,
Akademiai Kiado, Budapest 1981.) One of our definitions gave rise to
the now well–known source coding problem for two helpers (formulated
in 2.) on page 7).

More importantly, an extension of one concept to “common informa-
tion with list knowledge” has recently (R. Ahlswede and V. Balakirsky
“Identification under Random Processes” invited paper in honor of Mark
Pinsker, Sept. 1995) turned out to play a key role in analyzing the contri-
bution of a correlated source to the identification capacity of a channel.

Thus the old ideas have led now to concepts of operational significance
and therefore are made accessible here.

1 Introduction

Let
{
(Xi, Yi)

}∞
i=1

be a sequence of pairs of random variables which are inde-
pendent, identically distributed and take finitely many different values. {Xi}∞i=1

and {Yi}∞i=1 are to be viewed as two correlated discrete memoryless stationary
information sources (DCMSS).

In [1] a notion of “common information” was introduced for those sources.
It was meant as the maximal common part of the total amount of information
contained individually in each of the two sources {Xi} and {Yi} and which can
therefore be encoded separately by any of them without knowing the actual out-
comes of the other source. It was shown in [1] that common codes of a DCMSS
can use only deterministic interdependence of the sources and no further corre-
lation can be exploited in this manner. This result was sharpened later by H.S.
Witsenhausen [2]. 1

At a first glance the results may seem unsatisfactory because the common
information thus defined depends only on the zeroes of the joint pr. d. matrix
and does not involve its actual values. It is therefore natural to look for other
notions of common information. Motivated by the work of Gray and Wyner [3],
Wyner proposed another notion of common information in [4]. He expresses the
believe that he has found the right notion of common information and that the
1 His result was again significantly improved in [12].
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earlier one of Gács and Körner is not the right notion, because of the properties
mentioned above. The quantity introduced by Wyner seems to be indeed an
interesting characteristic of correlated sources. However, the present authors
take the position that his notion does not reflect at all what we would mean
intuitively by “common information”.

In this paper some arguments are provided which substantiate this position.
It is therefore natural to look again for other notions of common information.
We proceed systematically and investigate several coding schemes. It will become
clear in our discussion that all notions introduced heavily depend on the network
used for connecting encoders and decoders. Therefore it seems to us that a
question as “what is the right notion of common information of {Xi} and {Yi} ?”
is meaningless. However, we shall introduce some concepts which we believe to
be natural, because they relate to some basic source coding problems.

The main aim of the present contribution is to stimulate further discussions
on the subject.

A word about notation. Throughout the paper “code” shall always mean
deterministic block codes and the r.v. X̃n will be said to ε−reproduce Xn if
P (X̃n �= Xn) < ε. All the r.v.’s have finite ranges. The unexplained basic
notation is that of Gallager [9]. For the random variables (r.v) X and Y , H(X)
stands for the entropy of X , ‖X‖ denotes the cardinality of the (finite) range
of X , H(X |Y ) is the average conditional entropy of X given Y and I(X ∧ Y )
denotes the mutual information of X and Y . Exp’s and log’s are to the base 2,
h(ε) = −ε log ε − (1 − ε) log(1 − ε), for 0 < ε < 1.

In order to fix ideas let us first take a new look at a one–decoder scheme for{
(Xi, Yi)

}∞
i=1

and derive some consequences of the Slepian–Wolf theorem [6].
We shall say that a triple of positive reals (Rx, Rxy, Ry) is an element of the
rate region R0 iff for every ε > 0, δ > 0 and sufficiently large n there exists an
ε−reproduction (X̃n, Ỹ n) of (Xn, Y n) (Xn = X1 . . . Xn, Y n = Y1 . . . Yn) such
that for some deterministic functions fn of Xn, gn of Y n, tn of (Xn, Y n) and a
“decoding function” Vn we have

(1) (X̃n, Ỹ n) = Vn

(
fn(Xn), tn(Xn, Y n)gn(Y n)

)

(2) ‖fn(Xn)‖ ≤ exp
{
n(Rx + δ)

}

‖tn(Xn, Y n)‖ ≤ exp
{
n(Rxy + δ)

}

‖gn(Y n)‖ ≤ exp
{
n(Ry + δ)

}
.

Consider the quantities

(1) A1(X, Y ) = sup Rxy

Rxy + Rx ≤ H(X)
Rxy + Ry ≤ H(Y )
(Rx, Rxy, Ry) ∈ R0

and

(2) B1(X, Y ) = inf Rxy

Rx + Rxy + Ry ≤ H(X, Y )
(Rx, Rxy, Ry) ∈ R0.
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It is an immediate consequence of the Slepian–Wolf theorem that A1(X, Y ) =
I(X ∧ Y ), the mutual information, and that B1(X, Y ) = 0. A1(X, Y ) somehow
measures how much knowledge about (X, Y ) is simultaneously of interest for
decoding X and Y in a lossless manner. Thus we arrived at a coding theoret-
ic interpretation of mutual information, which allows us to view this quantity
as a kind of “common information” for a one–decoder network. The fact that
B1(X, Y ) = 0 allows a simple and convincing interpretation. It means that the
total entropy H(X, Y ) can be fully decomposed into two rates on the “sidelines”,
and it therefore makes sense to call B1(X, Y ) the indecomposable entropy for a
one decoder network. The two notions A1(X, Y ) and B1(X, Y ) are mathemati-
cally not very sophisticated; however, they help us in build up the right heuristic
for two–decoder networks. Passing from the one–decoder to any two–decoder net-
work (discussed below) the rate region decreases and therefore quantities defined
with a “sup” decrease and those defined with an “inf” increase. It is therefore
also clear that any possible reasonable notion of “common information” should
lead to values not exceeding A1(X, Y ) = I(X ∧ Y ). Let us now begin with a
short description of the two–decoder networks we shall deal with. Consider a
DMCSS

{
(Xi, Yi)

}∞
i=1

.

Xi

Ey

Dx

Dy

Ex Xi

Exy

Yi Yi

Fig. 1.

In our first network (Fig. 1) the sources {Xi}∞i=1 and {Yi}∞i=1 are to be repro-
duced by two separate decoders, one for each of the sources. Similarly, there is
one separate encoder for each of the sources, e.g. the encoder Ex can observe on-
ly {Xi}∞i=1 and the block code he produces is available for the decoder Dx alone.
However, there is a third encoder which allows us to exploit the correlation,
since Exy can observe both sources and its code is available for both individual
decoders Dx and Dy. This is a modified version of a coding scheme of Gray and
Wyner [3]. In their model all the three encoders can observe both sources (see
Fig. 2).
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Ey

Exy

Dx

Dy

Xi Ex Xi

YiYi

Fig. 2.

Finally, we introduce a coding scheme with four encoders (Fig. 3). The only
difference between this and the coding scheme mentioned first (Fig. 1) is that
the code exploiting the correlation is now supplied by two separate encoders, one
for each of the sources. These codes are available for both individual decoders.

Ex Dx

Ey Dy

Ex

Ey

Xi Xi

Yi Yi

Fig. 3.

Let us denote by Ri the rate region of the coding problems described in figure
i (i = 1, 2, 3). Replacing in definition (1) and (2) R0 by R1 the situation changes
dramatically. Denoting an arbitrary element of R1 by (Rx, Rxy, Ry) where Rx is
the rate of the code produced by Ex; Rxy that of Exy and Ry the rate of encoder
Ey, we define the quantities



668 R. Ahlswede and J. Körner

(3) A2(X, Y ) = sup Rxy

1. (Rx, Rxy, Ry) ∈ R1

Rx + Rxy ≤ H(X)
Ry + Rxy ≤ H(Y )
and

(4) B2(X, Y ) = inf Rxy

(Rx, Rxy, Ry) ∈ R1

Rx + Ry + Rxy ≤ H(X, Y ).

Again we refer to the first quantity defined as “common information”, because
it measures how much knowledge about (X, Y ) is simultaneously of interest for
decoding X and Y is a lossless manner. Since X and Y are decoded separately
now, this quantity seems to be a natural measure. However, we prove (Corol-
lary 1, Section 2) that A2(X, Y ), which is by definition not smaller than the
common information of [1], is actually equal to that quantity.

The quantity B2(X, Y ) is in some sense a dual to A2(X, Y ). B2(X, Y ) is
that minimal portion of the joint entropy H(X, Y ) of the DMCSS

{
(Xi, Yi)

}∞
i=1

which one has to encode by a joint encoder observing both sources; otherwise
the coding scheme of Fig. 1 would not be optimal. In other words this entropy
can not be encoded by separate encoders without a loss in the total rate, and
therefore it is indecomposable.

Wyner [4] has earlier introduced the quantity

C(X, Y ) = inf Rxy

(Rx, Rxy, Ry) ∈ R2

Rx + Ry + Rxy ≤ H(X, Y ).

He has independently [10] also introduced the quantity B2(X, Y ) and observed
that C(X, Y ) = B2(X, Y ).

He calls C(X, Y ) the common information. However we believe that this would
be a misleading name not only because of the large variety of analogous no-
tions which can be obtained using different coding schemes but also and more
importantly because it suggests a wrong heuristic. We have explained earlier
that a quantity called common information should not exceed the mutual in-
formation I(X ∧ Y ). However, one easily sees that I(X ∧ Y ) ≤ B2(X, Y ) ≤
min

{
H(X), H(Y )

}
.

A single letter characterization of the region R2 is known [3], [4]. We give
such a characterization for R1 (Theorem 2, Section 2) and therefore also for
the quantities A2(X, Y ) and B2(X, Y ). Our method is that of [5], which proves
to be quite general and easily adaptable to various source coding problems.
The identity R1 = R2 follows as a byproduct. During the preparation of this
manuscript we learnt that in an independent paper and by a different method
Wyner [10] also obtained Theorem 2.

In Section 3, Corollary 2, we prove the somewhat surprising fact that

B2(X, Y ) = I(X ∧ Y ) iff I(X ∧ Y ) = A2(X, Y ).



Appendix: On Common Information and Related Characteristics 669

The determination of the rate region R3 corresponding to the coding scheme
of Fig. 3 is still unsolved. Stating the problem here serves three purposes:

1.) It shows the relativity of any notion of common information.

2.) The two basic coding theorems for correlated sources, that is, the Slepian–
Wolf theorem and the source coding theorem in case of side information [5],
[10] do not provide all the tools to deal successfully with somewhat more
complex networks.
Probably the “most canonical” network of this kind, which is intimately
related to the one above, is obtained by considering a correlated source{
(Xi, Yi, Zi)

}∞
i=1

with three separate encoders for each source and one de-
coder, who wants to reproduce {Xi} and gets side information from {Xi} as
well as from {Zi}.

3.) Similarly to B2(X, Y ) we shall introduce the quantity
B∗

2(X, Y ) = inf R∗
x + R∗

y

R∗
x + Rx + R∗

y + Ry ≤ H(X, Y )
(Rx, Ry, R∗

x, R∗
y) ∈ R3

and call it the strong indecomposable entropy of the DMCSS
{
(Xi, Yi)

}∞
i=1

.

Whereas B2(X, Y ) equals C(X, Y ), B∗
2 (X, Y ) seems to be a new correlation

measure.

2 Auxiliary Results

This section is analogous to Section 1, Part I of [5] as far as we shall prove some
convexity properties of the functions we have to deal with in the sequel. The
ideas are those of Ahlswede–Körner [7], Section 4, where entropy inequalities
for multiple–access channels (see [8]) were derived. Our aim is to generalize
Lemmas 1 and 2 of [5].

We introduce the notation X1→X2→X3→X4 for saying that the r.v.’s X1,
X2, X3 and X4 form a Markov chain in this order. For an arbitrary sequence
{Zi}i∈N of r.v.’s we put

Zn = Z1Z2 . . . Zn.

Let us be given a sequence of independent and identically distributed triples{
(Si, Xi, Yi)

}
i∈N

. For any positive real c we put:

Definition 1. τn(c) =
{
(Rx, Ry) : Rx ≥ 1

nH(Xn|U), Ry ≥ 1
nH(Y n|U);

U→Sn→(Xn, Y n); H(Sn|U) ≥ c
}

We shall write τ(c) = τ1(c).

This is a natural generalization of the functions Tn(c) defined in [5]. We shall
write (b1, b2) ≤ (b′1, b

′
2) iff b1 ≤ b′1 and b2 ≤ b′2.
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Lemma 1. a) τ(c′) ⊂ τ(c) for c ≤ c′ (monotonicity)
b) For any 0 ≤ α ≤ 1 and c = αc1 + (1 − α)c2

ατ(c1) ⊕ (1 − α)τ(c2) ⊂ τ(x),
where
ατ(c1)⊕(1−α)τ(c2) =

{
αb1+(1−α)b2 : b1 ∈ τ(c1); b2 ∈ τ(c2)

}
(convexity).

Proof
a) is an immediate consequence of Definition 1. In order to prove b) we assume
that (R1

x, R1
y) ∈ τ(c1) and (R2

x, R2
y) ∈ τ(c2), i.e. for suitable U (i) (i = 1, 2) we

have
H(S|U (i)) ≥ ci (1)

and
(
H(X |U (i)), H(Y |U (i))

) ≤ (R(i)
x , R

(i)
y ) where U (i)→S→(X, Y ). We intro-

duce now the new quadruple of r.v.’s Ũ , S̃, X̃, Ỹ such that

Pr(Ũ , S̃, X̃, Ỹ = U (1), S(1), X(1), Y (1)) = α

and
Pr(Ũ , S̃, X̃, Ỹ = U (2), S(2), X(2), Y (2)) = 1 − α

and furthermore, a r.v. I ranging over the set {1, 2} with Pr(I = 1) = α and
such that (I, Ũ)→S̃→(X̃, Ỹ ).

We have H(S̃|Ũ , I) = αc1 + (1 − α)c2 = c. Hence
(
H(H̃ |Ũ , I), H(Ỹ |Ũ , I)

) ∈ τ(c).

On the other hand

(
H(X̃|Ũ , I), H(Ỹ |Ũ , I)

)
=α

(
H(X|U (1)), H(Y |U (1))

)
+(1−α)·(H(X|U (2)), H(Y |U (2))

)

and the statement of b) follows.

Remark 1. It follows by a usual argument (see e.g. Lemma 3 of [5]) that the set
τ(c) remains the same if in Definition 1 we limit ourselves to r.v.’s U satisfying
the bound

‖U‖ ≤ ‖S‖ + 2.

Lemma 2. For all n ∈ N and c ≥ 0

τn(c) = τ(c) (stationarity). (2)

Proof
Let (U, Sn, Xn, Y n) be a quadruple of r.v.’s satisfying U→Sn→(Xn, Y n).

We can write

H(Xn|U) =
n∑

i=1

H(Xi|U, X i−1) ≥
n∑

i=1

H(Xi|U, X i−1, Si−1)

=
n∑

i=1

H(Xi|U, Si−1) (3)
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where the last identity follows by the fact that U→Sn→(Xn, Y n) and the triples
(Si, Xi, Yi) are independent.

Similarly, one deduces that

H(Y n|U) ≥
n∑

i=1

H(Yi|U, Si−1). (4)

By the definition of τ(c) we have
(
H(Xi|U, Si−1 = si−1), H(Yi|U, Si−1 =

si−1)
) ∈ τ(c) for c = H(Si|U, Si−1 = si−1) and hence by the convexity of

τ(c) averaging over all the possible values of Si−1, yields for the corresponding
expected values (

H(Xi|U, Si−1), H(Yi|U, Si−1)
) ∈ τ(ci) (5)

where ci = H(Si|U, Si−1).
This, 2, 4, and the monotonicity of τ(·) yield

(
H(Xn|U), H(Y n|U)

) ∈
n∑

i=1

τ(ci), (6)

where
n∑

i=1

τ(ci) =
{

b : b =
n∑

i=1

bi, bi ∈ τ(ci)
}

.

From 6 and the convexity of τ(·) it follows that

(
1
n

H(Xn|U),
1
n

H(Y n|U)
)

∈ τ

(
1
n

n∑

i=1

ci

)

= τ(c∗)

where c∗ = 1
nH(Sn|U).

Hence τn(c) ⊂ τ(c), whereas τn(c) ⊃ τ(c) is trivial. This completes the proof.

3 Common Information

We begin with two definitions.

Definition 2. A triple of positive reals (Rx, Rxy, Ry) is an element of the rate
region R1 iff for every ε > 0; δ > 0 and sufficiently large n

(
n > n0(ε, δ)

)
there

exists an ε−reproduction (X̃n, Ỹ n) of (Xn, Y n) satisfying the following condi-
tions:

There exist some deterministic functions fn of Xn, gn of Y n, tn of (Xn, Y n),
and two decoding functions Vn and Wn with

(i) X̃n = Vn

(
fn(Xn), tn(Xn, Y n)

)

Ỹ n = Wn

(
gn(Y n), tn(Xn, Y n)

)

(ii) ‖fn(Xn)‖ ≤ exp
{
n(Rx + δ)

}

‖tn(Xn, Y n)‖ ≤ exp
{
n(Rxy + δ)

}

‖gn(Y n)‖ ≤ exp
{
n(Ry + δ)

}
.
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Definition 3. A2(X, Y ) = sup Rxy

Rxy + Rx ≤ H(X)
Rxy + Ry ≤ H(Y )
(Rx, Rxy, Ry) ∈ R1

is called the “common information” of the DMCSS
{
(Xi, Yi)

}∞
i=1

.

After deriving from Theorems 1 in [5] and Lemmas 1 and 2 a single–letter de-
scription of R1, we shall prove that A2(X, Y ) equals the common information
in the sense of Gács and Körner [1]. Especially, for an X and Y having an in-
decomposable joint distribution (e.g.: ∀ x ∈ X , y ∈ Y Pr(X = x, Y = y) > 0) it
will follow that A2(X, Y ) = 0.

Theorem 1. Let
{
(Xi, Yi)

}
i∈N

be a discrete memoryless correlated source with
finite alphabets. The rate region R1 (as defined by Definition 2.1) satisfies

R1 =
{(

1
n

H
(
Xn|tn(Xn, Y n)

)
,
1
n

H
(
tn(Xn, Y n)

)
,

1
n

H
(
Y n|tn(Xn, Y n)

)
)

n ∈ N ; tn : Xn × Yn + N

}
.

The proof is based on the simple observation that the coding scheme of Fig. 1
can be considered as a simultaneous “source coding with side information” for
the DMCSS’s

{
(X∗

i , Y ∗
i )

}
i∈N

and
{
(X∗∗

i , Y ∗∗
i )

}
i∈N

where (using the notation
of Theorem 1 and 2 of [5])

X∗
i = X∗∗

i = (Xi, Yi); Y ∗
i = Xi; Y ∗∗

i = Yi

and where the same code has to be used for {X∗
i } = {X∗∗

i } =
{
(Xi, Yi)

}
, serving

in both cases as side information.
Now the proof of Theorem 1 in [5] literally applies and gives the assertion of

the theorem.
As in [5] we shall give a single–letter description of R1 by rewriting our former

description by means of the convexity arguments of Section 1.

Theorem 2

R1 =
{

(Rx, Rxy, Ry) : Rx ≥ H(X |Z), Rxy ≥ I
(
(X, Y ) ∧ Z

)
, Ry ≥ H(Y |Z);

‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2
}
. (7)

Proof
We denote by R∗

1 the set defined by the right–hand side of 7. We show first that

R1 ⊂ R∗
1.

Suppose that for K = tn(Xn, Y n) we have

Rx =
1
n

H(Xn|K), Rxy =
1
n

H(K) and Ry =
1
n

H(Y n|K).
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We have to show that there exists a triple (X, Y, Z) such that the joint pr.d.
of (X, Y ) is that of the (Xi, Yi)′s, ‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2 and Rx ≥ H(X |Z),
Rxy ≥ I

(
(X, Y ) ∧ Z

)
and Ry ≥ H(Y |Z).

It is clear that

n · Rxy = H(K) ≥ I
(
K ∧ (Xn, Y n)

)
= H(Xn, Y n) − H(Xn, Y n|K). (8)

The independence of the (Xi, Yi)′s and 8 yield

1
n

H(Xn, Y n|K) ≥ H(X, Y ) − Rxy. (9)

We shall apply the Lemmas of Section 1 in the following set–up: Si = (Xi, Yi).
By the definition of τn(c) we know that

(
1
n

H(Xn|K),
1
n

H(Y n|K)
)

∈ τn

(
1
n

H(Xn, Y n|K)
)

.

By Lemma 2 this gives
(

1
n

H(Xn|K),
1
n

H(Y n|K)
)

∈ τ

(
1
n

H(Xn, Y n|K)
)

. (10)

Because of the monotonicity of the regions τ(·) (see Lemma 1) the inequalities
9 and 10 yield

(
1
n

H(Xn|K),
1
n

H(Y n|K)
)

∈ τ
(
H(X, Y ) − Rxy

)
. (11)

By the definition of the region τ
(
H(X, Y ) − Rxy

)
the last relation means that

there exists a triple (Z, X, Y ) such that

Rx = 1
nH(Xn|K) ≥ H(X |Z), Ry = 1

nH(Y n|K) ≥ H(Y |Z), and
‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2, (12)

whereas H(X, Y |Z) ≥ H(X, Y ) − Rxy. Rewriting the last inequality we get

Rxy ≥ I
(
(X, Y ) ∧ Z

)
. (13)

Now we show that R∗
1 ⊂ R1 by the approximation argument of [5], Section 4.

We have to prove that for every triple (Z, X, Y ) with ‖Z‖ ≤ ‖X‖ · ‖Y ‖+2 there
exists an n and a function tn of (Xn, Y n) such that

1
nH

(
Xn|tn(Xn, Y n)

) ≤ H(X |Z), 1
nH

(
Y n|tn(Xn, Y n)

) ≤ H(Y |Z) and
1
nH

(
tn(Xn, Y n)

) ≤ I
(
(X, Y ) ∧ Z

)
.

It suffices to show that

infn inf(
1
n H

(
Xn|tn(Xn,Y n)

)
, 1

n H
(

Y n|tn(Xn,Y n)
))

≤(x1,x2)

1
nH

(
tn(Xn, Y n)

) ≤

inf(
H(X|Z),H(Y |Z)

)
≤(x1,x2)

I
(
(X, Y ) ∧ Z

)
. (14)
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From the independence of the (Xi, Yi)′s and the fact that

I
(
(Xn, Y n) ∧ tn(Xn, Y n)

)
= H

(
tn(Xn, Y n)

)

it follows that it is enough to show for tn = tn(Xn, Y n)

supn sup( 1
n H(Xn|tn), 1

n H(Y n|tn))≤(x1,x2)
1
nH

(
Xn, Y n|tn(Xn, Y n)

) ≥
sup(

H(X|Z),H(Y |Z)
)
≤(x1,x2)

H(X, Y |Z). (15)

Now we apply the construction of [5; Section 4] to the DMCSS’s {X∗
i , Y ∗

i }i∈N

and {X∗∗
i , Y ∗∗

i }i∈N and the r.v.’s U∗ and U∗∗ where as in the proof of Theorem 1

X∗
i = X∗∗

i = (Xi, Yi), Y ∗
i = Xi; Y ∗∗

i = Yi and U∗ = U∗∗ = Z.

Observing that the construction of [5] depends only on the joint pr. d. of
(U∗, X∗, Y ∗), it becomes clear that — using the notation of [5] — the choice
tn(Xn, Y n) � fn(X∗n) = fn(X∗∗n) actually establishes 15.

In what follows we shall use Theorem 1 to prove a generalization of Theorem
1, p. 151 of [1]. Actually, we prove that the common information A2(X, Y ) of
Definition 3, which is clearly not smaller than that of [1], is equal to it. We recall
from [1] the following

Definition 4. We suppose without loss of generality that for every x ∈ X and
y ∈ Y Pr(X1 = x) > 0 and Pr(Y1 = y) > 0. We consider the stochastic matrix of
the conditional probabilities

{
Pr(X = x|Y = y)

}
and its ergodic decomposition.

Clearly, the ergodic decompositions of the matrices
{
Pr(X = x|Y = y)

}
and{

Pr(Y = y|X = x)
}

coincide and form a partition

X × Y =
⋃

j

Xj × Yj

of X × Y where the Xj
′s and Yj

′s having different subscripts are disjoint. We
introduce the r.v. J such that

J = j ⇔ X ∈ Xj ⇔ Y ∈ Yj .

It is clear that J is a function of both X and Y . We shall prove that the common
information A2(X, Y ) equals the entropy of this common function of X and Y .

Corollary 1
A2(X, Y ) = H(J).

Proof
It follows from our Theorem 2 that

A2(X, Y ) = sup I
(
(X, Y ) ∧ Z

)

I
(
(X, Y ) ∧ Z

)
+ H(X |Z) ≤ H(X)



Appendix: On Common Information and Related Characteristics 675

I
(
(X, Y ) ∧ Z

)
+ H(Y |Z) ≤ H(Y )

‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2.

Looking at the constraint inequalities we find that from
H(X) ≥ I

(
(X, Y ) ∧ Z

)
+ H(X |Z) = H(X, Z) − H(Z|X, Y )

we get the inequality
H(Z|X, Y ) ≥ H(Z|X),

which gives Z→Y →X . Similarly, our other constraint gives Z→X→Y .
Now we shall analyze these conditions

Z→Y →X and Z→X→Y. (16)

It follows from 16 that

Pr(X=x, Y=y) > 0⇒Pr(Z=z|X=x, Y=y) = Pr(Z=z|X=x) = Pr(Z=z|Y=y).

Hence for any fixed value of Z and for every index j Pr(Z = z|X = ·, Y = ·) is

constant over Xj×Yj whenever it is defined. This means that Pr(Z=z|X=x, Y=

y) = Pr(Z= z|J= j) =
∑

Xj×Yj

Pr(Z= z|X= x̂, Y = ŷ) · Pr(X= x̂|Y = ŷ). The last

relation means that given any value of J the r.v. Z is conditionally independent
from (X, Y ), i.e. I

(
(X, Y ) ∧ Z|J)

= 0. However since J is a function of (X, Y )
we have

I
(
(X, Y ) ∧ Z

)
= I

(
(X, Y, J) ∧ Z

)
= I(J ∧ Z) + I

(
(X, Y ) ∧ Z|J)

(17)

where the last equality follows by a well–known identity (see e.g. Gallager [9],
formula (2.2.29) pn p. 22). Comparing the two extremities of 17 we get

I
(
(X, Y ) ∧ Z

) ≤ H(J) + I
(
(X, Y ) ∧ Z|J)

= H(J).

Taking into account that J is a deterministic function of X and a deterministic

function of Y and thus it satisfies the constraints of our second definition of
A2(X, Y ), we conclude that A2(X, Y ) = H(J).

Remark 2. The quantity

A(X, Y ) = sup Ry

Rx + Ry ≤ H(X)
(Rx, 0, Ry) ∈ R0

is meaningful in a one–decoder situation. It says how much information about
X we can extract from Y in a “lossless manner”. It is easy to see that H(J) ≤
A(X, Y ) ≤ A2(X, Y ) and hence that also A(X, Y ) = H(J).
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4 Indecomposable Entropy

Definition 5. B2(X, Y ) = inf Rxy

(Rx, Rxy, Ry) ∈ R1

Rx + Rxy + Ry) ≤ H(X, Y )

is called the “indecomposable entropy” of the DMCSS
{
(Xi, Yi)

}
i∈N

. A justi-
fication for this terminology was given in the introduction. It is clear from the
foregoing that

B2(X, Y ) = inf
H(X|Z)+H(Y |Z)+I

(
(X,Y )∧Z

)
=H(X,Y )‖Z‖≤‖X‖·‖Y ‖+2

I
(
(X, Y ) ∧ Z

)

and
B2(X, Y ) ≥ I(X ∧ Y ) ≥ A2(X, Y ).

Looking into the constraint on the right hand side of 5 and taking into account
that H(X, Y |Z) + I

(
(X, Y ) ∧ Z

)
= (X, Y ) always holds we conclude that the

constraint is equivalent to H(X, Y |Z) = H(X |Z) + H(Y |Z). This allows us to
write

B2(X, Y ) = min
X→Z→Y

I
(
(X, Y ) ∧ Z

)

‖Z‖ ≤ ‖X‖ · ‖Y ‖ + 2.

We shall prove that

Corollary 2

B2(X, Y ) = I(X ∧ Y ) ⇔ I(X ∧ Y ) = A2(X, Y ).

Remark 3. Since A2(X, Y ) = H(J), the entropy of the ergodic class index
which is a common function of X and Y , the statement of Corollary 2 means
that B2(X, Y ) equals the mutual information iff all the correlation between X and
Y is of deterministic character. Especially if X and Y have an indecomposable
joint pr.d. the corollary says that B2(X, Y ) = I(X ∧ Y ) implies B2(X, Y ) = 0.

Proof
We suppose that for a r.v. Z satisfying the constraint of minimization we have

I
(
(X, Y ) ∧ Z

)
= I(X ∧ Y ).

Using the identity

H(X, Y ) = I(X ∧ Y ) + H(X |Y ) + H(Y |X) (18)

becomes equivalent to

H(X, Y |Z) = H(X |Y ) + H(Y |X). (19)
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Since by our supposition X→Z→Y we have

H(X, Y |Z) = H(X |Z) + H(Y |Z) = H(X |Z, Y ) + H(Y |Z, X). (20)

Comparing 19 and 20 we obtain that 18 is equivalent to the condition

H(X |Y ) + H(Y |X) = H(X |Z, Y ) + H(Y |Z, X).

Rewriting this we get

I(X ∧ Z|Y ) + I(Y ∧ Z|X) = 0. (21)

Since conditional mutual informations are non–negative, 21 is equivalent to

I(X ∧ Z|X) = 0 and I(Y ∧ Z|X) = 0.

Hence we get that
X→Y →Z and Z→X→Y.

Observing that this is just 16, the deduction consecutive to relation 16 in
Section 2 applies and we get that I

(
(X, Y ) ∧ Z

)
= H(J). This completes the

proof.
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