
On Partitions of a Rectangle into Rectangles

with Restricted Number of Cross Sections

R. Ahlswede and A.A. Yudin�

Abstract. Consider partitions of a rectangle into rectangles with re-
stricted number of cross sections. The problem has an information the-
oretic flavor (in the spirit of [3]): richness of two dimensional pictures
under 1–dimensional restrictions of from local information to global in-
formation.

We present two approaches to upper bound the cardinality of such
partitions: a combinatorial recursion and harmonic analysis.

1 The Problem

Given a partition of a rectangle into rectangles, such that any line parallel to a
side of the initial rectangle intersects at most n rectangles of the partition. The
task is to estimate the maximal number of rectangles of the partition. We make
now our concept of partition precise and consider a more general problem.

Definition 1. We say that a family of rectangles S gives a partition of the
rectangle F , if ⋃

A∈S
A = F (1.1)

and for ∀A, B ∈ S, A �= B the intersection of A and B contains at most boundary
points.

Definition 2. We say that the partition SF has the property (m, n), if any line
parallel to the base of the rectangle F intersects at most m rectangles of the
partition, and perpendicular to the base — at most n rectangles.

The problem is to find

f(m, n) = sup card(SF ) = sup |SF |, (1.2)

where the supremum is taken over all partitions SF with property (m, n).
It is evident that f(m, n) = f(n, m). In case m = n one readily sees that

f(n, n) ≥ 2 f(n − 1, n − 1) + 2 ≥ 2n for n ≥ 2. (1.3)

It seems natural to conjecture that the first inequality is actually an equality.
By successively improving our methods we derive here a decreasing sequence of
upper bounds on f(m, n) and finally come close to the conjectured bound.
� Recently we learnt that a paper on such problems appeared already in 1993: D.J.

Kleitman “Partitioning a rectangle into many sub-rectangles so that a line can meet
only a few”, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Volume 9, 95-107, 1993.

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 941–954, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



942 R. Ahlswede and A.A. Yudin

2 A Crude Estimate

Let us look at

A

B

Fig. 1.

We associate with the partition SF a graph GS . Every A ∈ SF corresponds to
a vertex of GS . For all A, B ∈ SF , A �= B, there is an edge that connects them,
iff A and B have common boundary, different from a point.

A A

B
B

�

Fig. 2.
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Fig. 3.

Now we state some properties of the graph GS .

1) We establish an upper bound for degrees of the vertices of this graph.
A vertex A is incident to as many edges as the number of rectangles which

have a common boundary with the rectangle A. It is evident that along any
horizontal side there are at most m of such rectangles, and along any vertical
side there are at most n of them, and thus around the rectangle A there are
at most 2(m + n) rectangles.

We have, therefore that for every vertex v ∈ GS

deg v ≤ 2(m + n). (2.1)

2) Now we find an upper bound for the diameter of the graph GS .
Given 2 vertices A and B (see Figure 4), let the vertex X correspond to

the rectangle that contains the point of intersection of the lines �1 and �2,
A ∈ �1 and �1‖αδ, B ∈ �2 and �2‖γδ.
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Fig. 4.

By definition, �1 intersects at most m rectangles of the partition, and �2

intersects at most n rectangles, hence the vertices A and X are connected
by at most m edges, and X and B by at most n edges.

Therefore the diameter d(GS) ≤ m + n. Thus we have

1) ∀v ∈ GS deg v ≤ 2(m + n)
2) d(GS) ≤ m + n.

By inequality (1) on page 171 of [1]

f(m, n) ≤ 1 + 2(m + n)
(2(m + n) − 1)m+n − 1

2(m + n) − 2
≤ (2(m + n)

)m+n+1
. (2.2)

3 A Sharper Estimate

Choose on the side αβ a rectangle P with the biggest height h.

Fig. 5.

Then partition the rectangle αβγδ by line α1β1 in two rectangles P1 on the
left side and P2 on the right side of α1β1.
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Fig. 6.

Adjust the rectangle P1 by throwing away the rectangle P , and joining to-
gether the resulting two ones in the following way:

We get a new rectangle P ∗
1 .

Now we find the parameters (m′, n′) of the rectangles P ∗
1 and P2.

For P ∗
1 it is evident that m′ ≤ m and n′ ≤ n − 1. For P2 it is evident that

m′ ≤ m − 1, n′ ≤ n.
Thus we get

f(m, n) ≤ 1 + f(m, n− 1) + f(m − 1, n). (3.1)

By adding 1 to both sides of this inequality and denoting f(m, n) + 1 by
g(m, n), we get

g(m, n) ≤ g(m, n− 1) + g(m − 1, n). (3.2)

By induction on m + n we prove that

g(m, n) ≤
(

m + n

n

)
. (3.3)

Indeed,

g(n, 1) = g(1, n) = n + 1 ≤
(

1 + n

n

)

and finally by (3.2) and the induction hypothesis

g(m, n) ≤
(

m + n − 1
n − 1

)
+
(

m + n − 1
n

)
=
(

m + n

n

)
.

In the case m = n we get

f(n, n) ≤
(

2n

n

)
− 1 ∼ c

4n

√
n

. (3.4)

4 A Still Sharper Estimate

The beginning is the same as in Section 3. Let us examine the estimate there
more carefully.
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Fig. 7.

Let a horizontal line �1 intersect m rectangles of the rectangle P1. Then there
exists a rectangle H of the partition from the side γδ reaching the line �2. The
parameters of rectangles P1 and P2, after the reconstruction satisfy

m′(P ∗
1 ) ≤ m and n′(P ∗

1 ) ≤ n − 1

m′(P ∗
2 ) ≤ m − s and n′(P ∗

2 ) ≤ n − 1.

So in this case the following inequality holds

f(m, n) ≤ f(m, n − 1) + f(m − 1, n− 1) + 1.

Again, by adding 1 to both sides of this inequality and denoting f(m, n) + 1
by g(m, n), we obtain

g(m, n) ≤ g(m, n − 1) + g(m − 1, n − 1). (4.1)

Thus if there exists a line �1, which intersects m rectangles of the rectangle
P1, then the inequality (4.1) holds.

Assume now that there is no such a line �1, then the parameters m′ and n′

for P ∗
1 and P ∗

2 are

m′(P ∗
1 ) ≤ m − 1 and n′(P ∗

1 ) ≤ n − 1,

m′(P ∗
2 ) ≤ m − 1 and n′(P ∗

2 ) ≤ n.

Thus the following inequality holds

g(m, n) ≤ g(m − 1, n − 1) + g(m − 1, n). (4.2)

Combining (4.1) and (4.2) we get the following inequalities

g(m, n) ≤
{

g(m − 1, n− 1) + g(m − 1, n)
g(m, n− 1) + g(m − 1, n − 1)

(4.3)

We search for an estimate of the form

g(m, n) ≤ c λ(m+n), (4.4)

where the constants c and λ are not known yet. We will determine them later.
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We get the estimate by induction. First let us determine λ. We have

g(m, n) ≤ max
{
g(m − 1, n− 1) + g(m − 1, n), g(m, n− 1) + g(m − 1, n− 1)

}

≤ max
{
cλm+n−2 + cλm+n−1, cλm+n−1 + cλm+n−2

}

≤ c(λm+n−2 + λm+n−1) = cλm+n

(
1
λ2

+
1
λ

)
.

To be able to perform induction we need

1
λ2

+
1
λ
≤ 1,

from which after calculations we find that we can set λ0 =
√

5+1
2 .

The constant c in (4.4) is determined from the initial step of the induction:

g(1, n) = n + 1 ≤ c

(√
5 + 1
2

)n+1

, and thus c = sup
n

n + 1
(√

5+1
2

)n2 ≤ 1.

Then we get

g(m, n) ≤
(√

5 + 1
2

)m+n

. (4.5)

In the case m = n this implies

f(n, n) ≤
(√

5 + 1
2

)2n

− 1 < (1, 62)2n, (4.6)

which is of course better than 4n√
n

in (3.4), but much worse than the expected 2n.

5 The Best Estimate Found so far by the Method of
Recursion

First we give some concepts.

Fig. 8.
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Again, given a rectangle F and a partition S of it, we call a sequence of
rectangles P1, P2, . . . , Pk (Pi �= Pj , i �= j) a chain from the side (αβ) to the side
(γδ) if any line �‖(αβ) which intersects F , intersects at least one of P1, . . . , Pk.

Example: P1, P2, P3 is a chain, G1, G2, G3, G4, G5, G6 is a chain.
We call a chain minimal if the number of rectangles in it is minimal. A minimal
chain is extremal, if the sum of the lengths along the side (αδ) of the rectangles
of this chain is maximal (that is among all minimal chains we take the chain of
maximum length).

It is straightforward to see that extremal chains exist.

F

�

Fig. 9.

Indeed, as � intersects no more than m rectangles of S, which evidently form
a chain, there are chains. Since the cardinality of S is a finite number, there
is a chain with minimal number of elements, that is a minimal chain. Now the
existence of extremal chains is evident, as the number of all chains, and so of
minimal ones, is finite.

We classify now a partition S of the rectangle F by the cardinality of its
horizontal and vertical minimal chains.

We begin the consideration with the chains of cardinality ≥ 2. Note that if
there is a chain of cardinality one, then the partition S has the form

or

Fig. 10.

and this case is trivial to handle.
First we prove the following result.

Theorem 1. Let a partition S with parameters m, n of a rectangle F have an
extremal chain of cardinality ≥ 5. Then

|S| ≤ 2f(m− 3, n − 1) + f(m − 2, n) + 2.
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Proof

Fig. 11.

Without loss of generality let the rectangles P1, P2, P3, P4 and P5 form an
extremal chain. Partition the rectangle F into three rectangles R�, R0, Rr (as in
Figure 11).

We estimate the parameters m′, n′ for the rectangles R�, R0, Rr. As after the
adjustment the rectangle P1 will be thrown away, we have

n′ for R� ≤ n − 1. (5.1)

Now notice that P3, P4, P5 cannot intersect R�. Indeed, assume that P3∩R� �=
∅. Then P1, P3, P4, P5 form a chain of cardinality 4, which is a contradiction,
since the chain P1, P2, P3, P4, P5 is extremal. Similarly P4 ∩ R� = R� ∩ P5 = ∅.

Now we show that any line �1 intersects at most m−3 rectangles of the parti-
tion S, which belong to rectangle R�. Assume to the opposite that �1 intersects
not less than m− 2 rectangles of R�. Denote by Q1 the right most one of them.
As there are no more than m rectangles lying on �1, there are at most 2 of them
that do not intersect R�. Denote them by Q2 and Q3. Again we come to a con-
tradiction, since P1, Q1, Q2, Q3 form a chain, while P1, P2, P3, P4, P5 is extremal.
Thus we showed that

m′ for R� ≤ m − 3. (5.2)
Similarly for Rr

m′ ≤ m − 3 and n′ ≤ n − 1. (5.3)
For R0 evidently

m′ ≤ m − 2 and n′ ≤ n. (5.4)
Combining (5.1), (5.2), (5.3) and (5.4) we get the claim of Theorem 1.

Corollary. If any partition S with parameters m and n has an extremal chain
of cardinality ≥ 5, then

f(m, n) ≤ 2
m+n

2 .

Indeed, if the condition is fulfilled, then by Theorem 1

g(m, n) ≤ 2g(m − 3, n − 1) + g(m − 2, n),

where g(m, n) = f(m, n) + 1. Assuming, that the following estimate

g(m, n) ≤ c · λm+n
2
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is correct for proper c and λ, we get that

g(m, n) ≤ 2cλ
m+n

2 ·λ−2 + cλ
m+n

2 ·λ−1 = cλ
m+n

2

(
2
λ2

+
1
λ

)
= c2

m+n
2 , for λ = 2.

As f(1, n) = n, the constant c can be found from the condition

1 ≤ n ≤ c · 2 n+1
2 for all n ∈ N.

It is evident that we can take c = 1.
From now on only partitions with extremal chains of cardinality ≤ 4 will be

considered.
First we consider partitions S with chains of length 2.

p1

p2

R�R0

Fig. 12.

Now we find all possible collections of parameter values for rectangles
R�, R0, Rr.

R� Rr R0 Inequality Solutions ≤ √
2

N m′, n′ m′, n′ m′, n′

1 m − 1, n − 3 m − 1, n − 3 m, n − 2 2
λ4 + 1

λ2 ≤ 1 yes

2 m − 1, n − 2 m − 1, n − 3 m, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

3 m − 1, n − 3 m − 1, n − 2 m − 1, n − 2 2
λ3 + 1

λ4 ≤ 1 yes

4 m − 1, n − 2 m − 1, n − 2 m − 2, n − 2 2
λ3 + 1

λ4 ≤ 1 yes

5 m − 1, n − 3 m − 1, n − 2 m, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

6 m − 1, n − 2 m − 1, n − 2 m − 1, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

7 m − 1, n − 3 m − 1, n − 2 m − 1, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

8 m − 1, n − 2 m − 1, n − 1 m − 2, n − 3 1
λ2 + 1

λ3 + 1
λ5 ≤ 1 no

9 m − 1, n − 2 m − 1, n − 3 m, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

10 m − 1, n − 1 m − 1, n − 3 m − 1, n − 3 1
λ2 + 2

λ4 ≤ 1 yes

11 m − 1, n − 2 m − 1, n − 2 m − 1, n − 3 2
λ3 + 1

λ4 ≤ 1 yes

12 m − 1, n − 1 m − 1, n − 2 m − 2, n − 3 1
λ2 + 1

λ3 + 1
λ5 ≤ 1 no

13 m − 1, n − 2 m − 1, n − 2 m, n − 4 2
λ3 + 1

λ4 ≤ 1 yes

14 m − 1, n − 1 m − 1, n − 2 m − 1, n − 4 1
λ2 + 1

λ3 + 1
λ5 ≤ 1 no

15 m − 1, n − 2 m − 1, n − 1 m − 1, n − 4 1
λ3 + 1

λ2 + 1
λ5 ≤ 1 no

16 m − 1, n − 1 m − 1, n − 1 m − 2, n − 4 2
λ2 + 1

λ6 ≤ 1 no

Here a few words about the table. The general procedure of finding an upper
bound for f(m, n) is the same as earlier: for each row of the values we get a
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recursion for g(m, n) = f(m, n) + 1. Then we search for an upper bound of the
form g(m, n) ≤ c · λm+n with constants c and λ to be specified. The inequalities
in the 5-th column of the table guarantee that we can perform induction to prove
the upper bound. So, their solutions can be specified as appropriate values for
λ. The last column shows that in all cases (except those with entry “no”, which
are discussed below) one obtains the upper bound by setting λ =

√
2. The value

of c can be taken to be equal 1.
As it can be seen from the table we get only two inequalities that give solutions

>
√

2, namely
1
λ2

+
1
λ3

+
1
λ5

≤ 1 and
2
λ2

+
1
λ6

≤ 1.

But in these cases we can put λ = 1.5.
Now consider the case, when the partition S has an extremal chain of length

≥ 3.
As there are just a few cases, we discuss them all. The following 4 cases are

possible.

p1 R�

R0

m-21 1

p1 R�

R0

m-2

m-2

p2

1 1

a) b)

m-2 1 1

p1

m-2

p2

m-2

p1

m-2

p2

c) d)

Fig. 13.

In Figures a, b, c, d a rectangle with number x inside means that a line
intersecting it would intersect exactly x rectangles of partition S.

According to the four cases we obtain respectively:

a) g(m, n) ≤ g(m − 1, n− 1) + g(m − 1, n − 1) + g(m − 2, n − 2)
b) g(m, n) ≤ g(m − 2, n− 1) + g(m − 1, n − 1) + g(m − 2, n − 1)
c) g(m, n) ≤ g(m − 1, n− 1) + g(m − 2, n − 1) + g(m − 2, n − 1)
d) g(m, n) ≤ g(m − 2, n− 1) + g(m − 2, n − 1) + g(m − 2, n − 1)
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The calculations show that the worst case is a). We get the inequality 2
λ2 + 1

λ4 ≤
1 with solution λ =

√√
2 + 1.

Thus we proved

Theorem 2. For all m, n ≥ 1 we have f(m, n) ≤ (
√

2 + 1)
m+n

2 . Thus f(n, n) ≤
(2.414)n.

Remark 1. As it follows from Theorem 1, it is enough to examine partitions
with extremal chains of cardinality ≤ 4

2. So far we studied configurations only for chains in one dimension.
One can also consider pairs of chains. In that more general setting, the study of

the following cases (see Figure 14) would yield sharper upper bounds for f(m, n).

γ(�2) \ γ(�1) 2 3 4

2 (2,2) (2,3) (2,4)

3 (3,3) (3,4)

4 (4,4)

Let γ1 and γ2 be chains of cardinalities �(γ1) and �(γ2) resp.

Fig. 14.

Such an analysis, even for the case (2,2), is rather complicated.

6 Harmonic Analysis

Given a partition S of a rectangle F .

Fig. 15.
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We identify the opposite sides of the rectangle, so that F becomes a torus and
consider our problem on the torus F .

We have a partition S of the torus into rectangles such that any coordinate
circle on F intersects S in the following way:

Each γx intersects at most m rectangles and each γy at most n rectangles of
the partition.

The problem is to estimate the number of rectangles in partition S, that is
|S|.

Without loss of generality we may assume that ABCD is a square with sides
of length 1.

Let Ly(ε) be a strip of width ε on the torus that is parallel to axis OX ,

�

or

Fig. 16.

where y is the OY coordinate of the center of that strip. Let

Φε(y) =
∑

P∈S and P∩Ly(ε) �=∅

1,

that is Φε(y) is equal to the number of rectangles of the partition S, which have
nonempty intersection with Ly(ε).

Write the Fourier series for Φε(y):

Φε(y) = c0 +
∑

m:m �=0

cm �(m, y).

By the identity of Parseval we get
∫ 1

0

Φ2
ε(y)dy = c2

0 +
∑

m:m �=0

c2
m and thus

∫ 1

0

Φ2
ε(y)dy ≥ c2

0.

Now find c0:

c0 =

∫ 1

0

⎛

⎝
∑

P∈S and P∩Ly(ε)�=∅

1

⎞

⎠ dy =
∑

P∈S

∫

{y:P∩Ly(ε)�=∅}
dy =

∑

P∈S

(μ(P )+2ε) =
∑

P∈S

μ(P )+2ε|S|,
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where μ(P ) is the length of the side of P parallel to axis OY . Let us now look at
the integral

∫ 1

0
Φε(y)dy from another point of view. Φε(y) is equal to the number

of rectangles of the partition, which intersect the boundary of the strip Ly(ε),
evidently if there are no rectangles that are completely contained in Ly(ε).

�� p �� �D

Fig. 17.

As the partition S has the property (m, n), we can estimate Φε(y) ≤ 2m, if
we don’t take into consideration the rectangles, for which μ(P ) < ε.

By restricting ourselves to the set of rectangles S(ε) = {P ∈ S : μ(P ) > ε},
we obtain
⎛

⎝
∑

P∈S(ε)

μ(P ) + 2ε|S(ε)|
⎞

⎠ · c0 ≤ c2
0 ≤

∫ 1

0

Φ2
ε(y)dy ≤ max

y
Φε(y)

∫ 1

0

Φε(y)dy ≤ 2m · c0

and hence ∑

P∈S(ε)

μ(P ) + 2ε|S(ε)| ≤ 2m.

Therefore

2ε|S(ε)| ≤ 2m −
∑

P∈S(ε)

μ(P ) implying |S(ε)| ≤ m

ε
.

Thus we proved that the number of rectangles of the partition S with height
≥ ε does not exceed m

ε . Dealing similarly with the other dimension, we get that
the number of rectangles of the partition S with length ≥ ε does not exceed n

ε .
In summary

Theorem 3. The number of rectangles of partition S with exception of those,
both sides of which have length less than ε, does not exceed

m

ε
+

n

ε
=

m + n

ε
.

Corollary. Given a square Kn on checked paper with the length of side 2n,
which is partitioned into rectangles (that consist of entire checks), so that any
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line parallel to a side of the square intersects at most n rectangles, then the
number of rectangles of the partition is ≤ 2n · 2n.

Proof: Apply to Kn homothety with coefficient 2−n, and take in the previous
claim

ε = 2−n.

Then we get that the number of rectangles of the partition which have at least
one dimension not less than ε = 2−n (and in the given case they all do satisfy
this condition) is

f(n, n) ≤ n + n

2−n
= 2n · 2N .

Recall that the lower bound for f(n, n), which is conjectured to be tight, is 2n.

Remark: The main difficulty for the analytic approach to this problem is the
tight interlacing of combinatorial and metrical — old structures of the partition.

It seems, that if there are “small” rectangles in the structure of the partition,
then the partition can be adjusted so that these small rectangles are removed,
while preserving the combinatorial structure. But we don’t know yet how to do
it.
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