
II
Transmission, Identification and Common

Randomness Capacities for Wire-Tape Channels

with Secure Feedback from the Decoder

R. Ahlswede and N. Cai

Abstract. We analyze wire-tape channels with secure feedback from the
legitimate receiver. We present a lower bound on the transmission capacity
(Theorem 1), which we conjecture to be tight and which is proved to be
tight (Corollary 1) for Wyner’s original (degraded) wire-tape channel and
also for the reversely degraded wire-tape channel for which the legitimate
receiver gets a degraded version from the enemy (Corollary 2).

Somewhat surprisingly we completely determine the capacities of se-
cure common randomness (Theorem 2) and secure identification (Theo-
rem 3 and Corollary 3). Unlike for the DMC, these quantities are different
here, because identification is linked to non-secure common randomness.

1 Introduction

The main results are mentioned in the abstract.
After having given standard concepts in Section 2 and known results and

techniques for the wire-tape channel in Section 3, we state and prove Theorem
1 in Section 4. Our code construction relies upon a lemma for balanced coloring
from [2], which has proved already useful for secrecy problems in [3].

The transmission capacities for the two kinds of degraded wire-tape channels are
derived in Section 5. Particularly interesting is an example of a reversely degraded
channel,where the channelW ′

1 : X → Z for thewiretapper is noiseless (for instance
with binary alphabets) and the channel W ′

2 : Z → Y for the legal receiver is a
noisy binary symmetric channel with crossover probability p ∈ (0, 1/2). Here the
wiretapper is in a better position than the legal user and therefore the capacity is
zero, if there is no feedback. However, by our Corollary the capacity is positive,
because the feedback serves as a secure key shared by sender and receiver.

In Section 6 a discussion based on the construction for transmission in Sec-
tion 4 and known results and constructions for identification [8], [9], [15], and
common randomness [9], [7], and all other references builds up the intuition for
our solutions of the capacity problems for common randomness and identification
in Section 7 and 8.

2 Notation and Definitions

Throughout the paper U , X , Y and Z are finite sets and their elements are
written as corresponding lower letters e.g. u, x, y, and z. The letters U , X , Y ,
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Z etc. will be used for random variables with values in the corresponding sets,
U , . . . . T n

X , T n
Y |X(xn), T n

XY Z , etc. are sets of n-typical, conditional typical and
joint typical sequences, and sets of δ-typical, conditional typical and joint typical
sequences are written as T n

X,δ, T n
Y |X,δ(x

n), T n
XY Z,δ, etc.

Then a (discrete memoryless) wire-tape channel is specified by a stochastic
matrix W : X → Y×Z, where X serves as input alphabet, Y as output alphabet
of the legal receiver and Z as output alphabet of a wiretapper. The channel works
as follows: the legal receiver receives an output sequence yn and the wiretapper
receives an output sequence zn with probability

Wn(ynzn|xn) =
n∏

t=1

W (ytzt|xt).

In the case of transmission the sender’s goal is to send to the receiver a message
U uniformly distributed on an as large as possible set of messages with vanishing
probability of error such that the wiretapper almost knows nothing about the
message. Randomization at the sender side is allowed. The wiretapper, who
knows the coding scheme, but not the message, tries to learn about the message
as much as possible.

For given λ, μ > 0, a (λ, μ)-code of length n with a set of messages M is
a system {(Qm : Dm) : m ∈ M}, where the Qm’s for m ∈ M are probabili-
ty distributions on Xn, and the Dm’s are pairwise disjoint subsets of Yn, such
that

|M|−1
∑

m∈M

∑

xn∈Xn

Qm(xn)
∑

zn∈Zn

Wn(Dm, zn|xn) > 1 − λ, (2.1)

and
1
n

I(U ; Zn) < μ, (2.2)

if Zn is the random output sequence generated by the message U through the
channel. The transmission capacity of the wire-tape channel is the maximal non-
negative number Cwt such that for M, λ, μ, ε > 0 and all sufficiently large length
n, there exists a (λ, μ)-code with rate 1

n log |M| > Cwt−ε. The security criterion
(2.2) is strengthened in [11] to

I(U ; Z) < μ. (2.3)

In the current paper we assume the output yt at time t is completely and im-
mediately feedback to the sender via a secure noiseless channel such that the
wiretapper has no knowledge about the feedback (except his own output zn).
Then for λ, μ > 0, a (λ, μ)-code of length n for the wire-tape channel with secure
feedback is a system {(Q,Dm) : m ∈ M} where Dm, m ∈ M, are pairwise dis-
joint subsets of Yn as before and Q is a stochastic matrix Q : M×Yn−1 → Xn

with

Q(xn|m, yn−1) =
n∏

t=1

Q(xt|m, yt−1)
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for xn ∈ X , yn−1 ∈ Yn−1, and m ∈ M, such that

|M|−1
∑

m∈M

∑

xn∈X

∑

zn∈Zn

∑

yn∈Dm

Q(xn|m, yn−1)Wn(yn, zn|xn) > 1 − λ (2.4)

and (2.2) holds. The transmission capacity is defined analogously and denoted
by Cwtf . In Theorem 1 in Section 4 we shall prove our (direct) coding theorem
with the stronger security criterion (2.3).

3 Previous and Auxiliary Results

Our code construction is based on a coding lemma and a code for wire-tape
channel without feedback. A balanced coloring lemma originally was introduced
by R. Ahlswede [2] and we need its following variation.

Lemma 1. For all δ, η > 0, sufficiently large n, all n-type PXY and all xn ∈ T n
X ,

there exists a γ-coloring c : T n
Y |X(xn) → {0, 1, 2, . . . , γ − 1} of T n

Y |X(xn) such that
for all joint n-type PXY Z with marginal distribution PXY and γ−1|T n

Y |XZ(xn, zn)|
> 2nη, xn, zn ∈ T n

XZ ,

|c−1(k)| ≤ γ−1|T n
Y |XZ(xn, zn)|(1 + δ), (3.1)

for k = 0, 1, . . . , γ − 1, where c−1 is the inverse image of c.

Proof: Let us randomly and independently color yn ∈ T n
Y |X(xn) with γ colors

and uniform distribution over T n
Y |X(xn). Let for k = 0, 1, . . . , γ − 1

Sk(yn) =

{
1 if yn is colored by k

0 else.
(3.2)

Then for a joint type PXZY and zn ∈ T n
Z|X(xn), by Chernoff bound,

Pr

⎧
⎨

⎩
∑

yn∈T n
Y |XZ(xn,zn)

Sk(yn) > γ−1|T n
Y |XZ(xn, yn)|(1 + δ)

⎫
⎬

⎭

≤ e−
δ
2 γ−1|T n

Y |XZ(xn,zn)|(1+δ)
∏

yn∈T n
Y |XZ

(xn,zn)

E e
δ
2 Sk(yn)

= c−
δ
2 γ−1|T n

Y |XZ(xn,zn)|(1+δ)
[
(1 − γ−1) + γ−1e

δ
2

]|T n
Y |XZ (xn,zn)|

= e−
δ
2 γ−1|T n

Y |XZ(xn,zn)|(1+δ)
[
1 + (e

δ
2 − 1)γ−1

]|T n
Y |XZ(xn,zn)|

≤ e−
δ
2 γ−1|T n

Y |XZ(xn,zn)|(1+δ)

[
1 + γ−1(

δ

2
+

δ2

8
e)

]|T n
Y |XZ(xn,zn)|
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≤ expe

{
− δ

2
γ−1|T n

Y |XZ(xn, zn)|(1 + δ) + γ−1

(
δ

2
+

δ2

8
e

)
|T n

Y |XZ(xn, zn)|
}

= expe

{
− δ

2
γ−1|T n

Y |XZ(xn, zn)|
(
1 − e

4

)
δ

}

≤ e−
eδ2
24 γ−1|T n

Y |XZ (xn,zn))|

≤ e−
eδ2
24 2nη

, (3.3)

if γ−1|T n
Y |XZ(xn, zn)| > 2nη and δ

2 ≤ 1.
Here, to obtain the 2nd and 3rd inequalities, we use for x ∈ [0, 1] the inequalities
ex ≤ 1 + x + e

2x2 and 1 + x ≤ ex respectively.
(3.1) follows from (3.3) because the numbers of sequences zn and n-types in-

crease exponentially and polynomially respectively as the length increases. �

To prove (the direct part of) the coding theorem for the wire-tape channel (with-
out feedback) [11] Csiszár and Körner used a special code, Ahlswede’s partition
of typical input sequences into sets of code words, obtained by iterative maximal
coding [1]. An easier proof appears in [2], part II, as consequence of the “link”.
We shall use its following improvement obtained with a Balanced Coloring Lem-
ma of [2] and presented in [10].

For a given wire-tape channel such that for an input random variable X and its
output random variables Y and Z for the legal user and wiretapper respectively

I(X ; Y ) − I(X ; Z) > 0 (3.4)

all λ′, μ′ > 0 0 < ε′ < I(X ; Y ) − I(X ; Z) and sufficiently large n, there exists a
set of codewords

{um,� : m = 0, 1, 2, . . . , M − 1, � = 0, 1, 2, . . . , L − 1}

in T n
X having the following properties.

I(X ; Y ) − I(X ; Z) − ε′ <
1
n

log M ≤ I(X ; Y ) − I(X ; Z) − ε′

2
(3.5)

I(X ; Z) +
ε′

8
≤ 1

n
log L < I(X ; Z) +

ε′

4
. (3.6)

For a set of properly chosen decoding sets {Dm,�},

{(um,�,Dm,�) : m = 0, 1, 2, . . . , M − 1, � = 0, 1, 2, . . . , L − 1}
is a λ-code for the legal user.

Let V, Z̃ be random variables taking values in M×Zn, where M = {0, 1, . . . ,
M − 1}, with probability for (m, zn) ∈ M×Zn

Pr{V, Z̃) = (m, zn)) =
L−1∑

�=0

L−1Pn
Z|X(zn|um,�).
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Then
I(V ; Z̃) < μ′. (3.7)

4 The Coding Theorem for Transmission and Its Proof

Let Q be the set of quadruples of random variables (U, X, Y, Z) taking values in
U × X × Y × Z for a finite set U with probability

Pr((U, X, Y, Z) = (u, x, y, z)) = PUX(ux)W (yz|x) (4.1)

for (u, x, y, z) ∈ U × X × Y × Z.
Then

Theorem 1. The capacity of a wire-tape channel with feedback satisfies

Cwtf ≥ max
(U,X,Y,Z)∈Q

min[|I(U ; Y ) − I(U ; Z)|+ + H(Y |U, Z), I(U ; Y )]. (4.2)

Proof: For a (U, X, Y, Z) ∈ Q, to show the achievability, one may introduce an
auxiliary channel PX|U and construct a code for the channel

W ′(y, z|u) =
∑

x

PX|U (x|u)W (y, z|x).

Then it is sufficient to show that |I(X ; Y )−I(X ; Z)|++H(Y |XZ) is achievable.
Let us fix λ, μ, ε > 0 and construct a (λ, μ)-code with rate

|I(X ; Y ) − I(X, Z)|+ + H(Y |XZ) − ε. (4.3)

To this end, let λ′, μ′, ε′ be positive small real numbers specified later.
Let U = {um,� : m = 0, 1, 2, . . . , M − 1, � = 0, 1, 2, . . . , L− 1} be the codebook

if in the previous section for a sufficiently large n (3.4) holds i.e., I(X ; Y ) −
I(X ; Z) > 0.

In the case that (3.4) does not hold we choose M = 1 and take a codebook of
an arbitrary λ′-code for the legal user, with rate I(X ; Y ) − ε′ < R � 1

n log L ≤
I(X ; Y ) − ε′

2 as our codebook:

U = {u0,� : � = 0, 1, 2, . . . , L − 1}.

Our code consists of N blocks of length n and sends a message (U ′
1, U

′
2U

′′
2 , . . . ,

U ′
NU ′′

N) uniformly distributed on M′ × (M′ ×M′′)N−1, where

M′ = {0, 1, 2, . . . , M − 1},M′′ = {0, 1, . . . , L′′ − 1}, (4.4)

and L′′ = min{L, 2n(H(Y |XZ)− 3
4 )}.

In particular M = 1, M′ is a dummy message set. Then the rate of the
messages is

R∗ =
1
n

log M +
1
n

log L′′ − 1
nN

log L′′ ≥ 1
n

log M +
1
n

log L′′ − 1
N

log |Y|.
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That is by (3.5), (3.6)

R∗ ≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I(X ; Y )−I(X ; Z)−ε′+min
[
I(X ; Z)+ ε′

8 , H(Y |XZ) − ε
4

]
− 1

N log |Y|
if I(X ; Y ) − I(X ; Z(> 0

min
[
I(X ; Y ) − ε′

2 , H(Y |XZ) − ε
4

]
− 1

N log |Y|
else.

(4.5)
By choosing ε′ < ε

2 and N > 2ε−1 log |Y| in (4.5) we have

R∗ > min[|I(X ; Y ) − I(X ; Z)|+ + H(Y |XZ), I(X ; Y )] − ε (4.6)

our desired rate.
In each block, we use a codebook

U = {um,� : m = 0, 1, . . . , M − 1, � = 0, 1, 2, . . . , L − 1}

defined as above. Suppose the sender wants to send a message (m′
1, m

′
2m

′′
2 , . . . ,

m′
Nm′′

N ) to the receiver. Then our code consists of the following components.

1. In the first block the sender randomly chooses a um′
1,� from the codebook

with uniform distribution on {um′
1
, j : j = 0, 1, . . . , L − 1} and sends the

codeword to the receiver. Then by choosing a proper decoder the receiver
can decode um′

1,� and therefore m′
1 correctly with probability 1 − λ′.

2. From the first to the N − 1st blocks, for all um,� ∈ U , color all T n
Ȳ |X̄(um,�) ⊂

T n
Y |X,δ1

(um,�) with L′′ colors such that for a suitably small δ2 > 0 all n-joint
type PX̄Ȳ Z with PX̄ = PX and

∑

yz

|PȲ Z̄X̄(y, z|x) − PY Z|X(yz|x)| < δ2. (4.7)

T n
Ȳ |X̄Z̄

(um,�, z
n) is properly colored in the sense of Lemma 1.

3. For j = 1, 2, . . . , N − 1 after the sender receives output yn of the jth block,
he gives up if yn /∈ T n

Y |X,δ1
(u(j)), where u(j) is the input sequence in Xn sent

by the sender in the jth block. Then the probability for giving up at the jth
block is exponentially small in n. In the case yn ∈ T n

Y |X,δ1
(u(j)), yn receives

a coloring cu(j)(yn) ∈ {0, 1, . . . , L′′−1} in the coloring for T n
Ȳ |X̄(u(j)), where

PX̄Ȳ is the joint type of (u(j), Y n).
3.1. In the case L ≤ 2[H(Y |XZ)− 3

4 ] i.e., L′′ = L, the sender sends
Um′

j+1m′′
j+1

⊕ cm(j)(yn) � u(j +1) in the codebook U in the j +1st block,
where ⊕ is the addition modulo L′′.

3.2. In the case L > 2n[H(Y |XZ)− 3
4 ], without loss of generality, we assume

L′′|L. Then the sender partitions {0, 1, . . . , L − 1} into L′′ segments of
equal size. He randomly chooses an �′′j+1 in the m′′

j+1⊕cu(j)(yn) segment
with equal probability and sends um′

j+1,�′′j+1
in the codebook in the j+1st

block.
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4. For j = 1, 2, . . . , N in the jth block the receiver decode separately by using
a proper decoder and obtains a ū(j) in the jth block. Thus ū(j) = u(j)
with probability λ′ for a given j. Let λ′ < M−1λ, then ū(j) = u(j) with
probability larger than 1 − λ for all j. The receiver declares m′

1 = m̄′
1 if

ū(1) = um̄′
1,� for some �. The receiver declares m′

jm
′′
j = m̄′

jm̄
′′
j for m̄′′

j =
�j � cū(j−1)(yn) if in the j − 1st block he receives yn and ū(j) = um̄′

j�j
in

the case L′′ = L and ū(j) = um̄′
j,�′j for an �′j in the �jth segment in the case

L′′ < L, for j = 2, 3, . . . , N . Obviously

(m̄′
1, m̄

′
2m̄

′′
2 , . . . , m̄′

Nm̄′′
N ) = (m′

1mm′
2m

′′
2 , . . . , m′

Nm′′
N )

if ū(j) = u(j) for all j.

We have seen that the probability of error is smaller than λ and it is sufficient
for us to verify the security criterion.

Denote by X̃j, Ỹj and Z̃j , the random input and outputs in the jth block
generated by the code and the random message, (U ′

1, U
′
2U

′′
2 , . . . , U ′

NU ′′
N ) respec-

tively, for j = 1, 2, . . . , N . Notice here X̃j, Ỹj , and Z̃j are random sequences of
length n. Let Kj be the coloring of the random output sequences of the legal re-
ceiver in the jth block. Write U ′N = (U ′

1, U
′
2, . . . , U

′
N), U ′′N = (U ′′

1 , U ′′
2 , . . . , U ′′

N)
(where U ′

1 is a dummy constant), X̃N = (X̃1, . . . , X̃N ), Ỹ N = (Ỹ1, . . . , ỸN )
and Z̃N = (Z̃1, . . . , Z̃N). Then we are concerned about an upper bound to
I(U ′NU ′′N ; Z̃N).

At first we bound I(U ′N ; Z̃N ) with (3.7). Denote Z̃ j̄ = (Z̃1, Z̃2,
. . . , Z̃j−1, Z̃j+1, . . . , Z̃N ).

Then by symmetry, independent of Z̃ j̄ and U ′j−1, given U ′
j = m, the input of

the channel in the jth block is uniformly distributed on the sub-codebook

{um,� : � = 0, 1, . . . , L − 1}.

For j = 1 it immediately follows from the step 1 of the coding scheme. For j > 1,
it is sufficient for us to show that PU ′′

j ⊕Kj−1|U ′j−1Z̃ j̄ is uniform. Indeed, for all �,

u′j−1, and z j̄

Pr{U ′′
j ⊕ Kj−1 = �|U ′j−1 = u′j−1, Z̃ j̄ = z j̄}

=
L′′−1∑

m′′=0

L′′−1Pr{Kj−1 = � � m′′|U j−1 = u′j−1 ,̃Z j̄ = Z j̄} = L′′−1.

This means that for all j and (V, Z̃) in (3.7) we have

H(U ′
j |U ′j−1Z̃N ) = H(U ′

j|Z̃j , U
′j−1Z j̄) = H(U |Z̃)

and therefore by (3.7)
I(U ′

j; U
′j−1Z̃N ) < μ′

since U ′
j and V have the same distribution.
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Consequently

I(U ′N ; ZN ) =
N∑

j=1

I(Uj ; ZN |U j−1) ≤
N∑

j=1

I(Uj ; U ′j−1ZN ) ≤ Nμ′. (4.8)

Next we bound I(U ′′
j ; Z̃N |U ′NU ′′j−1). At first we observe that by our coding

scheme U ′′
j is independent of U ′NU ′′j−1Z̃i for all i < j and therefore

I(U ′′
j ; Z̃i|U ′NU ′′j−1Z̃i−1) = 0, or

I(U ′′
j ; Z̃N |U ′NU ′′j−1) =

j−1∑

i=1

I(U ′′
j ; Z̃i|U ′NU ′′j−1Z̃i−1)

+ I(U ′′
j ; Z̃j|U ′NU ′′j−1Z̃j−1) + I(U ′′

j ; Z̃N
j+1|U ′NU ′′j−1Z̃j)

= I(U ′′
j ; Z̃j |U ′NU ′′j−1Z̃j−1) + I(U ′′

j ; Z̃N
j+1|U ′NU ′′j−1Z̃j), (4.9)

where Z̃N
j+1 = (Z̃j+1, . . . , Z̃N).

Moreover by our coding scheme under the condition given U ′NU ′′j−1Z̃j−1

U ′′
j ⇔ U ′′

j ⊕ Kj−1 ⇔ Z̃j

form a Markov chain i.e., by the data processing inequality.

I(U ′′
j ; Z̃j |U ′′NU ′′j−1Zj−1) ≤ I(U ′′

j ; U ′′
j ⊕ Kj−1|U ′NU ′′j−1Zj−1)

= I(U ′′
j ; Kj−1|U ′NU ′′j−1Zj−1) ≤ I(U ′NU ′′jZj−1; Kj−1). (4.10)

However, because U ′NU ′′jZ̃j−1 ⇔ X̃j−1Z̃j−1 ⇔ Kj−1 forms a Markov chain,
(4.10) implies

I(U ′′
j ; Z̃j|U ′NU ′′jZj−1) ≤ I(X̃j−1Z̃j−1; Kj−1). (4.11)

For j − 1

Wj−1 =

{
0 if Ỹj−1 ∈ T n

Y |X,δ1
(X̃j−1)

1 else,

then recalling that the output of legal user is colored by Lemma 1 in the j − 1st
block, by AEP we have

Pr{Kj−1 = k|X̃j−1 = xn, Z̃j−1 = jnWj−1 = 0} ≤ L′′−1(1 + δ).

Thus

H(Kj−1|X̃j−1Z̃j−1) ≥ (1 − 2−nθ)H(Kj−1|X̃j−1Z̃j−1Wj−1 = 0)

≥ (1 − 2−nθ)[log L′′ − log(1 + δ)],
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for a θ > 0 as Pr(Wj = 0) > 1− 2−nθ. Thus for a μ′′ > 0 with μ′′ → 0 as δ → 0,

I(X̃j−1Z̃j−1; Kj−1) = H(Kj−1) − log L′′ + μ′′ ≤ μ′′, (4.12)

for sufficiently large n. Similarly by the coding scheme under the condition given
U ′N

U ′′jZj ⇔ Kj ⇔ ZN
j+1

forms a Markov chain and therefore

I(U ′′
j ; ZN

j+1|U ′′NU ′′j−1) ≤ I(U ′′jZj ; Z̃N
j+1|U ′N ) ≤ I(U ′′jZj; Kj |U ′N ) ≤ I(U ′NU ′′jZ̃j; Kj).

(4.13)
However, by the coding scheme U ′NU ′′jZ̃j ⇔ X̃jZ̃j ⇔ Kj forms a Markov chain
and so we can continue to bound (4.13) as

I(U ′′
j ; ZN

j+1|U ′NU ′′j−1Zj) ≤ I(X̃jZ̃j ; Kj). (4.14)

By replacing j − 1 by j in (4.12) and applying it to (4.14) we have

I(U ′′
j ; ZN

j+1|U ′NU ′′j−1Zj) ≤ μ′′. (4.15)

Finally, we combine (4.8), (4.9), (4.10), (4.11), and (4.15), to obtain

I(U ′NU ′′N ; Z̃N )

= I(U ′N ; Z̃N) + I(U ′′N ; Z̃N |U ′N )

≤ Nμ′ +
N∑

j=2

I(U ′′
j ; Z̃N |U ′NU ′′j−1)

= Nμ′ +
N∑

j=2

[I(U ′′
j ; Z̃j|U ′NU ′′j−1Z̃j−1) + I(U ′′

j ; Z̃N
j+1|U ′NU ′′j−1Z̃j)]

≤ Nμ′ +
N∑

j=2

[I(X̃j−1Z̃j−1; Kj−1) + I(U ′′
j ; Z̃N

j+1|U ′NU ′′j−1Z̃j)]

≤ Nμ′ + 2(N − 1)μ′′ < μ,

for sufficiently small μ′ and μ′′. This completes our proof.

5 Capacity of Two Special Families of Wire-Tape
Channel

In this section we apply Theorem 1 to show the following upper bound of ca-
pacity, which is believed not to be tight in general, but is tight for wire-tape
channels with certain Markovities.
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Let Q′ be the set of triples of random variables (X, Y, Z) with joint distribution
PXY Z(x, y, z) = PX(x)W (y, z|x) for x ∈ X , y ∈ Y, and z ∈ Z.

Then

Lemma 2. For all wire-tape channels

Cwtf ≤ max
(X,Y,Z)∈Q′

min[H(Y |Z), I(X ; Y )]. (5.1)

Proof: For a given (λ, μ)-code for the wire-tape channel, let Xn, Y n, Zn be
the input and outputs generated by uniformly distributed messages U through
the code. Then in the same way to show the converse coding theorem of a (two
terminal) noisy channel with feedback, one obtains that

Cwtf ≤ 1
n

n∑

t=1

I(Xt; Yt) + ε′ (5.2)

where ε′ → 0 as λ → 0.
On the other hand, by the security condition and Fano’s inequality we have

Cwtf =
1
n

H(U) ≤ 1
n

H(U |Zn) + μ

≤ 1
n

H(U |Zn) − 1
n

H(H |Y n) + λ log |X | + 1
n

h(λ) + μ

≤ 1
n

H(U |Zn) − 1
n

H(U |Y nZn) + λ log |X | + 1
n

h(λ) + μ

=
1
n

I(U ; Y n|Zn) + ε′′ ≤ 1
n

H(Y n|Zn) + ε′′

=
1
n

n∑

t=1

H(Yt|ZnY t−1) + ε′′ ≤ 1
n

n∑

t=1

H(Yt|Zt) + ε′′, (5.3)

where h(λ) = −λ log λ − (1 − λ) log(1 − λ) and ε′′ = λ log |X | + 1
nh(λ) + μ → 0

as λ, μ → 0.
Let (UXY Z) be a quadruple of random variables with distribution

PUXY Z(t, z, y, z) =
1
n

n∑

t=1

PXtYtZt(x, y, z)

for t ∈ {1, 2, . . . , n}, x ∈ X , y ∈ Y, z ∈ Z. Then (XY Z) ∈ Q′ and by (5.2) and
(5.3) for ε = max(ε′, ε′′)

Cwtf ≤ min[H(Y |ZU), I(X ; Y |U)] + ε ≤ min[H(Y |Z), I(X ; Y )] + ε,

where ε → 0 as λ, μ → 0. That is, (5.1).

Corollary 1. For a wire-tape channel W such that there exist W1 : X → Y, and
W2 : Y → Z with

W (y, z|x) = W1(y|x)W2(z|y), (5.4)
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for all x ∈ X , y ∈ Y, and z ∈ Z Cwtf = max(X,Y,Z)∈Q′ , min[H(Y |Z), I(X ; Y )].

Proof: By Markov condition (5.4), we have that for all (X, Y, Z) ∈ Q′

I(X ; Y ) − I(X, Z) ≥ 0 (5.5)

and
I(X ; Z|Y ) = 0. (5.6)

Thus

|I(X ; Y ) − I(X ; Z)|+ + H(Y |XZ) = H(X |Z) − H(X |Y ) + H(Y |XZ)
= H(XY |Z) − H(X |Y )
= H(Y |Z) + H(X |Y Z) − H(X |Y )
= H(Y |Z) + I(X ; Z|Y )
= H(Y |Z).

Then corollary follows from Theorem 1 and Lemma 2.

Corollary 2. For a wire-tape channel such that there exist W ′
1 : X → Z and

W ′
2 : Z → Y with

W (y, z|x) = W ′
1(z|x)W ′

2(y|z) (5.7)

for x ∈ X , y ∈ Y, and z ∈ Z

Cwtf = max
(X,Y,Z)∈Q′

, min[H(Y |Z), I(X ; Y )].

Proof: The Markov condition (5.7) implies that

I(X ; Y ) − I(X ; Z) ≤ 0 (5.8)

and
H(Y |XZ) = H(Y |Z), (5.9)

which yield

|I(X ; Y ) − I(X ; Z)|+ + H(Y |XZ) = H(Y |XZ) = H(Y |Z). (5.10)

Thus the corollary follows from Theorem 1 and Lemma 2.

Example: An interesting example is a special channel for which W ′
1 is a noiseless

channel and W ′
2 is a noisy channel in Corollary 2 e.g., W1 is a noiseless binary

channel, W ′′
2 is a binary symmetric channel with crossover probability p ∈

(
0, 1

2

)
.

For this channel the wiretapper is in a better position than the legal user. So
the capacity is zero without feedback. The feedback makes the capacity positive
by our Corollary 2 as it serves as a secure key shared by sender and receiver.
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6 Discussion: Transmission, Building Common
Randomness and Identification

As goals of communications are considered transmission i.e., sending a given
message from a set of messages, building common randomness i.e., to provide a
random resource shared by users, and identification i.e., identifying whether an
event of interest to a particular user occurs ([3], [4], [5], [13]).

Roughly saying in a given communication system, the capacity of transmission
is upper bounded by the capacity of common randomness, since common ran-
domness shared by a sender and receiver can be built by transmission whereas the
capacity of identification is lower bounded by capacity of common randomness,
if the former is positive, which is shown by a scheme in [5] to build identification
codes by common randomness. That is,

capacity of transmission ≤ capacity of common randomness
≤ capacity of identification. (6.1)

However, in different communication systems equalities in (6.1) may or may not
hold. In this section we illustrate the variety in two-terminal channels and wire-
tape channels. More examples in more complicated communication systems can
be found e.g. in [3], [12], [15].

First of all, obviously the first inequality in (6.1) is always an equality for a
two terminal channel without feedback, because all information obtained by the
receiver is from the transmission via the channel. Moreover, it has been shown
in [4] that the second inequality is an equality and therefore the three quantities
in (6.1) are actually the same if the channel is discrete memoryless. A channel
with rapidly increasing alphabet (as the length of codes grows) for which the
capacity of identification is strictly larger than capacity of common randomness
was described in [6]. It was shown in [8] that under a certain condition the ca-
pacity of common randomness (which is equal to the capacity of transmission)
for Gaussian channels is finite whereas the capacity of identification is infinite in
the same communication system. We notice that Gaussian channels have con-
tinuous, or infinite alphabets. It is natural to expect that for a discrete channel
whose input alphabet “reasonably” increases the last two quantities, or conse-
quently the three quantities in (6.1) are equal. This was shown in [14] for all
channels whose input alphabets exponentially increase as the lengths of codes
linearly increase.

The situation of two terminal channels is different when feedback is present.
In this case the capacity of identification, which is equal to the capacity of com-
mon randomness, is strictly larger than the capacity of transmission for simplest
channels, namely discrete memoryless channels [5]. The reason is clear. On one
hand, it is well known, feedback does not increase the capacity of transmission
for discrete memoryless channels. On the other hand, the feedback provides a
random resource, shared by sender and receiver, the random output, whose rate,
roughly speaking, is input entropy. Obviously it increases common randomness
between sender and receiver and therefore capacity of identification.
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Next we turn to wire-tape channels without feedback. More precisely, we
mean secure common randomness shared by sender and receiver, about which
the wiretapper has (almost) no knowledge. By the same reason as for two termi-
nal channels without feedback, the capacity of (secure) common randomness is
not larger than the capacity of transmission over the wire-tape channel. In fact it
is shown in [3], that it may not be larger than the capacity of transmission even
in the case where a public forward channel with unbounded capacity is avail-
able to the sender and receiver. This intuitively is not surprising. R. Ahlswede
and Z. Zhang observed in [7] that to keep the message to be identified in se-
cret a secure common randomness with positive rate is sufficient and the major
part of common randomness between the legitimate communicator applied in the
identification code in [5] can be publically sent.

Based on this observation they show that the capacity of identification is
strictly larger than the capacity of secure common randomness. A more detailed
analysis in [9] shows that the amount of secure common randomness needed
only depends on the probability of second error and security criterion and is
independent of the rate of messages. For fixed criterion of error and security, a
constant amount – or zero-rate – of secure common randomness is sufficient, if
provided with sufficiently large public common randomness.

Let us return to our main topic wire-tape channels with secure feedback
and investigate (6.1) in this communication system. We immediately find that
the observation about wire-tape channels without feedback is still valid when
feedback is present, because there is nothing in the observation which links to
the existence of feedback. This means that the capacity of identification must be
the capacity of “public” common randomness between sender and receiver i.e.,
the maximum rate of common randomness shared by the sender and the receiver,
neglecting whether or how much the wiretapper knows about it once a positive
amount of secure common randomness is provided. But now the public common
randomness is the maximum output entropy for the channel W1 : X → Y defined
by

W1(y|x) =
∑

z∈Z
W (y, z|x) for all x ∈ X , y ∈ Y, (6.2)

or in other words max
(X,Y,Z)∈Q′

H(Y ), for Q′ as defined in Section 5. So we conclude

that in this case the capacity of identification is either zero or max
(X,Y,Z)∈Q′

, H(Y ).

The only problem left is to find suitable conditions for the positivity of the
capacity. We shall discuss this later.

To see the relation of the first pair of quantities in (6.1), we take a look at
our main result

Theorem 1. The information theoretical meaning of mutual information in
(4.2) is obvious. The capacity of transmission with security criterion can not
exceed that without it. So we expect this term could be removed in the formula
of capacity of common randomness. To investigate the remaining term in (4.2),
let us recall our coding scheme in Section 4.
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From the first block to the second last block, the transmission in each block
has two tasks, sending a secret message m′

j (in the jth block) with a rate ∼
|I(U ; Y ) − I(U ; Z)|; and generating a secure common randomness with a rate
∼ H(Y |UZ), which will be used as a private key to send message m′′

j+1 in the
next block. This gives us a secure common randomness with rate ∼ H(Y |UZ).
The reason for the fact that U occurs in the “condition” is that the key for the
j + 1st block has to be independent of the message sent in the jth block. For
secure common randomness itself this is not necessary. So we expect that the
capacity of common randomness is max

(X,Y,Z)∈Q′
H(Y |Z), which actually is shown

in the next section.
But before this we have a remaining problem, namely the positivity of the

capacity of identification, which should be discussed. First we notice that to have
positive capacity of identification, the capacity of the channel W1 in (6.2), where
we do not count wiretapper’s role, has to be positive. By counting wiretapper’s
role, we look for an input random variable X , the conditional entropy H(Y |Z)
for output random variable Y and Z has to be positive, because otherwise the
wiretapper would know everything known by the legal receiver. We shall show
that the two necessary conditions together are sufficient for the positivity.

7 The Secure Common Randomness Capacity in the
Presence of Secure Feedback

Let Jn = {0, 1, . . . , Jn−1} be a finite set (whose size depends on n), λ, μ > 0. An
(n, Jn, λ, μ)-common randomness for the wire-tape channel with secure feedback
is a pair of random variables (Kn, Ln) defined on the same domain Jn with the
following properties.

There exists a random variable U taking value in a finite set U and three
functions θn : U × Yn−1 → Xn, ϕ : U × Yn → Jn, and Ψ : Yn → Jn such that
for all u ∈ U and yn−1 ∈ Yn−1

θn(u, yn−1) = (θ1(u), θ2(u, y1), . . . , θn(u, yn−1)), (7.1)
Kn = ϕ(U, Y n) (7.2)

and Ln = Ψ(Y n), (7.3)

where Y n and Zn are output random variables for the legal receiver and the
wiretapper, respectively, generated by random variable U , encoding function θn,
and the channel W .

I.e.

Pr((Y n, Zn) = (yn, zn)) =
∑

u∈U
Pr(U = u)W (y1, z1|θ1(u))

n∏

t=2

W (yt, zt|θt(u, yt−1)).

(7.4)

Pr(Kn �= Ln) < λ, (7.5)
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1
n

H(Kn|Zn) >
1
n

log Jn − μ. (7.6)

1
n log Jn is called rate of the code and the capacity of the (secure) common
randomness, denoted by Cwtf−cr, is defined as the maximum achievable rate in
the standard way.

Theorem 2
Cwtf−cr = max

(X,Y,Z)∈Q′
H(Y |Z), (7.7)

in particular, the RHS of (7.7) is achievable if (7.6) is replaced by a stronger
condition

H(Kn|Zn) > log Jn − μ. (7.8)

Proof: The proofs to both, direct and converse parts, are straightforward. They
immediately follow from the proofs for Theorem 1 and Lemma 2, respectively.

Let (X ′, Y, Z) ∈ Q′ achieve the maximum at RHS (7.7). Apply Lemma 1
to color sets of typical remaining sequences T n

Y ′ ⊂ T n
Y,δ

1, then it follows from
the proof of Theorem 1 (the part to show (4.11)) that for any fixed μ > 0 and
sufficiently large n

H(K̃|Zn) > log Jn − μ,

where K̃ is the random Jn-coloring obtained from Lemma 1.
Choose Kn = Ln = K̃, then the proof of the direct part is done. To show the
converse part we apply Fano’s inequality to (7.5). Then

1
n

log Jn ≤ 1
n

H(Kn|Zn) + μ

≤ 1
n

H(Kn|Zn) − 1
n

H(Kn|Y n) + μ +
1
n

λ log Jn +
1
n

h(λ)

≤ 1
n

H(Kn|Zn) − 1
n

H(Kn|Y n, Zn) + μ +
1
n

λ log Jn +
1
n

h(λ)

≤ 1
n

I(Kn; Y n|Zn) + μ +
1
n

λ log Jn +
1
n

h(λ)

≤ 1
n

H(Y n|Zn) + μ +
1
n

λ log Jn +
1
n

h(λ).

Now the converse follows as in the proof for Lemma 2.

8 The Secure Identification Capacity in the Presence of
Secure Feedback

In this section let us take a look at the coding theorem for identification codes.
First we have to formally define the codes and capacity. An (n, |M|, λ1, λ2, μ)-
1 More precisely, let X0 = {x0}, xn = (x0, x0, . . . , x0), and (X, X ′, Y, Z) be ran-

dom variables with joint distribution Pr((X, X ′, Y, Z) = (xn, x′n, yn, zn)) =
PX′Y Z(x′n, yn, zn) for all x′n, yn, zn and coloring for the “conditional” typical se-
quences T n

Y |X(xn) = T n
Y .
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identification code for a wire-tape channel with secure feedback is a system
{Q,Dm : m ∈ M} such that Q : M× Y n−1 → Xn is a stochastic matrix with

Q(xn|m, yn−1) = Q1(x1|m)
n∏

t=2

Qt(xt|m, yt−1)

for m ∈ M, yn−1 ∈ Yn−1, for all m ∈ M

∑

xn∈Xn

∑

yn∈Dm

Qn(x1|m)
n∏

t=2

Qt(xt|m, yt−1)W1(yt|xt) > 1 − λ1,

for m, m′ ∈ M with m �= m′

∑

xn∈Xn

∑

yn∈D′
m

Q1(x1|m)
n∏

t=2

Qt(xt|m, yt−1)W1(yt|xt) < λ2,

and for all m, m′ ∈ M, m �= m′ and V ⊂ Zn

∑

xn∈Xn

∑

yn∈Yn

Q1(x1|m′)
n∏

t=2

Qt(xt|m′, yt−1)W (yn,V|xn)

+
∑

xn∈Xn

∑

yn∈Yn

Q1(x1|m)
n∏

t=2

Qt(xt|m, yt−1)W (yn,Vc|xn) > 1 − μ.

Then capacity of identification is defined in the standard way and denoted by
Cwtf−id.

Cwtf−id is upper bounded by the RHS of (8.1), follows from the converse
of the coding theorem of identification with feedback for channel W1 [5]. In the
case that II holds, one can construct a code achieving H(Y ) asymptotically from
the code in [7] by replacing the ordinary code for W1 by a uniform partition of
output sequences for the legal receiver and a code for the wire-tape channel
without feedback by a code for the same channel but with feedback.

Furthermore the two conditions in III

Theorem 3. The following statements are equivalent.

I Cwtf−id = max
(X,Y,Z)∈Q′

H(Y ) (8.1)

II Cwtf > 0
III There exists an (X, Y, Z) ∈ Q′ such that

H(Y |Z) > 0

and the channel W1 has positive capacity.

Proof: The converse of the coding theorem i.e., Cwtf−id is upper bounded by
the right hand side of (8.1) follows from the converse of coding theorem of
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identification with feedback for channel W1 [4]. In the case that II holds, one
can construct a code achieving H(Y ) asymptotically from the code in [6] by
replacing the ordinary code for W1 by a uniform partition of output sequences
for the legal receiver and a code for the wiretape channel without feedback by a
code for the same channel but with feedback.

Furthermore the two conditions in III obviously are necessary for positivity of
Cwtf−id. The only thing left to be proved is that III implies II. Let (Xi, Yi, Zi) ∈
Q′ for i = 0, 1 such that H(Y0|Z0) > 0 and I(X1, Y1) > 0. By Theorem 1, it is
sufficient for us to find (U, X, Y, Z) ∈ Q such that I(U ; Y ) > 0 and H(Y |UZ) >
0. Obviously we are done, if I(X0; Y0) > 0 or H(Y1|U1, Z1) > 0. Otherwise
we have to construct a quadruple of random variables (U, X, Y, Z) ∈ Q from
(X0, Y0, Z0) and (X1, Y1, Z1) such that H(Y |UZ) > 0 and I(U ; Y ) > 0. To this
end, let U = X ∪{u0}, (where u0 is a special letter not in X ), and for all u ∈ U ,
x ∈ X , y ∈ Y and z ∈ Z, let (U, X, Y, Z) be a quadruple of random variables
such that

PUXY Z(u, x, y, z) =

⎧
⎪⎨

⎪⎩

1
2PX0Y0Z0(x, y, z) if u = u0

1
2PX1Y1Z1(x, y, z) if u ∈ X and u = x

0 otherwise.

Then (U, X, Y, Z) ∈ Q, PY Z|U (y|u0) = PY0Z0(yz) for all y ∈ Y and z ∈ Z.
P0(u0) = 1

2 and therefore

H(Y |UZ) =
∑

u∈U
PU (u)H(Y |U = uZ) ≥ 1

2
H(Y |U = u0Z) =

1
2
H(Y0|Z0) > 0.

On the other hand for

S =

{
0 if U = u0

1 otherwise,

for all u ∈ X , y ∈ Y

PUY |S(u, y|S = 1) = PX1Y1(u, y)

and Ps(1) = 1
2 and consequently

I(U ; Y ) = I(US; Y ) ≥ I(U ; Y |S) ≥ Ps(1)I(U ; Y |S = 1) =
1
2
I(X1; Y1) > 0.

That is, (U, X, Y, Z) is as desired. We conclude with the

Corollary 3

Cwtf−id =

⎧
⎨

⎩
max

(X,Y,Z)∈Q′
H(Y |Z)

0

and Cwtf−id = 0 iff for all (X, Y, Z) ∈ Q′ H(Y |Z) = 0 or the capacity of W1 is
zero.
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Proof: That for all (X, Y, Z) ∈ Q′, H(Y |Z) = 0 implies that the wiretapper
knows what the receiver receives with probability one no matter how the sender
chooses the input and that the capacity of W1 is zero means the sender may not
change the output distributions at the terminal for the legal receiver. So in both
cases Cwtf−id = 0. Thus the corollary follows from Theorem 3.
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