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Identification for Sources

R. Ahlswede, B. Balkenhol, and C. Kleinewächter

1 Introduction

1.1 Pioneering Model

The classical transmission problem deals with the question how many possible
messages can we transmit over a noisy channel? Transmission means there is
an answer to the question “What is the actual message?” In the identification
problem we deal with the question how many possible messages the receiver
of a noisy channel can identify? Identification means there is an answer to the
question “Is the actual message u?” Here u can be any member of the set of
possible messages.

Allowing randomized encoding the optimal code size grows double exponen-
tially in the blocklength and somewhat surprisingly the second order capacity
equals Shannon’s first order transmission capacity (see [3]).

Thus Shannon’s Channel Coding Theorem for Transmission is paralleled by
a Channel Coding Theorem for Identification. It seems natural to look for such
a parallel for sources, in particular for noiseless coding. This was suggested by
Ahlswede in [4].

Let (U , P ) be a source, where U = {1, 2, . . . , N}, P = (P1, . . . , PN ), and let
C = {c1, . . . , cN} be a binary prefix code (PC) for this source with ‖cu‖ as length
of cu. Introduce the RV U with Prob (U = u) = pu for u = 1, 2, . . . , N and the
RV C with C = cu = (cu1 , cu2 , . . . , cu‖cu‖) if U = u.

We use the PC for noiseless identification, that is user u wants to know
whether the source output equals u, that is, whether C equals cu or not. He
iteratively checks whether C = (C1, C2, . . . ) coincides with cu in the first, sec-
ond, etc. letter and stops when the first different letter occurs or when C = cu.

What is the expected number LC(P, u) of checkings?
In order to calculate this quantity we introduce for the binary tree TC , whose

leaves are the codewords c1, . . . , cN , the sets of leaves Cik(1 ≤ i ≤ N ; 1 ≤ k),
where Cik = {c ∈ C : c coincides with ci exactly until the k’th letter of ci}. If C
takes a value in Cuk, 0 ≤ k ≤ ‖cu‖− 1, the answers are k times “Yes” and 1 time
“No”. For C = cu the answers are ‖cu‖ times “Yes”. Thus

LC(P, u) =
∑‖cu‖−1

k=0 P (C ∈ Cuk)(k + 1) + ‖cu‖Pu. 1

1 Probability distributions and codes depend on N , but are mostly written without
an index N .
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For code C LC(P ) = max
1≤u≤N

LC(P, u) is the expected number of checkings in the

worst case and L(P ) = min
C

LC(P ) is this number for a best code.

Analogously, if C̃ is a randomized coding, LC̃(P, u), LC̃(P ) and L̃(P ) were also
introduced in [4].

What are the properties of L(P ) and L̃(P )? In analogy to the role of entropy
H(P ) in Shannon’s Noiseless Source Coding Theorem they can be viewed as
approximations to a kind of “identification entropy” functional HI .

Their investigation is left to future research. We quickly report now two sim-
pler pioneering questions and partial answers from [4]. They shed some light on
the idea that in contrast to classical entropy H , which takes values between 0
and ∞, the right functional HI shall have 2 as maximal value.

Let us start with PN =
(

1
N , . . . , 1

N

)
and set f(N) = L(PN ).

1. What is sup
N

f(N) or lim
N→∞

f(N)?

Starting with an identification code for N = 2k−1 a new one for 2k users
is constructed by adding for half of all users a 1 as prefix to the codewords
and a 0 for the other half. Obviously we are getting an identification code
with twice as many codewords in this way. Now user u has to read the first
bit. With probability 1

2 he then stops and with probability 1
2 he needs only

an expected number of f(2k−1) many further checkings. Now an optimal
identification code is at least as good as the constructed one and we get the
recursion

f(2k) ≤ 1 +
1
2
f(2k−1), f(2) = 1

and therefore
f(2k) ≤ 2 − 2−(k−1).

On the other hand it can be verified that f(9) = 1 + 10
9 > 2 and more

generally f(2k + 1) > 2.
2. Is L̃(P ) ≤ 2?

This is the case under the stronger assumption that encoder and decoder
have access to a random experiment with unlimited capacity of common
randomness (see [5]).

For P = (P1, . . . , PN ), N ≤ 2n write P (n) = (P1, . . . , PN , 0, . . . , 0) with
2n components. Use a binary regular tree of depth n with leaves 1, 2, . . . , 2n

represented in binary expansions.
The common random experiment with 2n outcomes can be used to use 2n

cyclic permutations of 1, 2, . . . , 2n for 2n deterministic codes. For each u we
get equally often 0 and 1 in its representation and an expected word length
≤ 2 − 1

2n−1 ≤ 2. The error probability is 0.

Remark 1. Note that the same tree TC can be used by all users in order to
answer their question (“Is it me or not?”).

1.2 Further Models and Definitions

The model of identification for sources described can be extended (as for channels
in the spirit of [4]) to generalized identification (GI) as follows.
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There is now a set of users V (not necessarily equal to U), where user v ∈ V
has a set Uv ⊂ U of source outputs of his interest, that is, he wants to know
whether the source output u is in Uv or not.

Furthermore we speak of generalized identification with decoding (GID), if user
v not only finds out whether the output is in Uv, but also identifies it if it is
in Uv.

Obviously the two models coincide if |Uv| = 1 for v ∈ V . Also, they specialize
to the original model in 1.1, if V = U and Uv = {v} for v ∈ U .

For our analysis we use the following definition. We denote by D(x) the set
of all proper prefixes of x ∈ {0, 1}∗, i.e.

D(x) � {y ∈ {0, 1}∗ : y is prefix of x and ‖y‖ < ‖x‖}. (1.1)

e stands for the empty word in {0, 1}∗. For a set A ⊂ {0, 1}∗ we extend this
notion to

D(A) �
⋃

x∈A

D(x). (1.2)

{0, 1}∗ can be viewed as a binary, regular infinite tree with root e. A code C
corresponds to the subtree TC with root e and leaves c1, . . . , cN .

In the sequel we use a specific example of a code for illustrations of concepts
and ideas.

Example 1. Let C be the set of all words of length 3. Notice that D(010) =
{e, 0, 01} and D({001, 010}) = {e, 0, 00, 01}.

The set Cv = {cu : u ∈ Uv} is a code for user v. For GID its codewords have
to be uniquely decodable by user v in order to identify the source output. For
this he uses the set of stop sequences

Sv =
{
y1 . . . yk : y1 . . . yk−1 ∈ D(Cv) and y1 . . . yk /∈ D(Cv)

}
. (1.3)

By definition of D Cv is contained in Sv. We can also write

Sv =
{
xy : x ∈ {0, 1}∗, y ∈ {0, 1} with x ∈ D(Cv) and xy /∈ D(Cv)

}
. (1.4)

(For k = 1 y1 . . . yk−1 describes the empty word e or the root of the code tree
which is element of each set D(Cv).)

Example 2. For the code of Example 1 we have for Cv = {010} Sv =
{1, 00, 011, 010} and we have for Cv = {001, 010} Sv = {1, 000, 001, 010, 011}.

With the families of sets of stop sequences Sv we derive first in Section 2
general lower bounds on the number of checkings for both models. In Section 3 we
consider a uniform source and show that lim

N→∞
f(N) = 2. Then, in Section 4, we

derive bounds on the maximal individual (average) identification length, which
is introduced in Section 2 C.

Finally, in Section 5, we introduce an average identification length for the case
V = U , Uv = {v} for v ∈ V and derive asymptotic results.
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2 A Probabilistic Tool for Generalized Identification

General supposition. We consider here prefix codes C, which satisfy the Kraft
inequality with equality, that is,

∑

u∈U
2−‖cu‖ = 1. (2.1)

We call them saturated, because they cannot be enlarged.

A. GID

For all x ∈ {0, 1}∗ let qC(P, x) =

⎧
⎪⎨

⎪⎩

0, if x /∈ D(C) ∪ C
Pu, if x = cu

qC(P, x0) + qC(P, x1), if x ∈ D(C).

The general supposition implies that for any set of stopping sequences Sv

we have Sv ⊂ D(C) ∪ C and the probability for user v to stop in x ∈ Sv equals
qc(P, x). After stopping in x user v has read ‖x‖ many bits. Therefore the average
identification length of user v is

LC(P, v) =
∑

x∈Sv

qC(P, x)‖x‖. (2.2)

By definition of qC we get

LC(P, v) =
∑

x∈D(Cv)

qC(P, x). (2.3)

By construction Sv forms a prefix code. Each codeword has to be uniquely
decoded by user v. Furthermore the probabilities qC(P, x), x ∈ Sv, define a
probability distribution on Sv by

PC,v(x) � qC(P, x) for all x ∈ Sv. (2.4)

By the Noiseless Coding Theorem LC(P, v) can be lower bounded by the
entropy H(PC,v). More directly, using the grouping axiom we get

H(PC,v) =
∑

x∈D(Cv)

qC(P, x)h
(

qC(P, x1)
qC(P, x)

)

, (2.5)

where h is the binary entropy function, and thus

LC(P, v) − H(PC,v) =
∑

x∈D(Cv)

qC(P, x)
(

1 − h

(
qC(P, x1)
qC(P, x)

))

. (2.6)

Suppose Pu > 0 for all 1 ≤ u ≤ N , then

qC(P, x) > 0 and with
(

qC(P, x1)
qC(P, x)

)

≤ 1 for all x ∈ D(C)
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it follows under the general supposition (2.1) for every user v ∈ V the average
identification length satisfies

Theorem 1

LC(P, v) ≥ H(PC,v) with “=” iff
qC(P, x1)
qC(P, x)

=
1
2

for all x ∈ D(Cv). (2.7)

Since P is fixed we write now LC(v) for LC(P, v).

B. GI
Suppose we have a node x and a user v with the properties

(a) all codewords having x as prefix are all elements of Cv or (b) they are all
not in Cv.

In this case user v can stop in x and decide whether v occurred or not. By
construction of the stop sequences Sv in (1.3) only case (a) can occur. Therefore
we have to start the following algorithm to generate modified sets Sv.

1. If Cv contains two codewords different only in the last position, say
x1 . . . xk0 and x1 . . . xk1 then
(a) remove these two codewords from Cv and insert x1 . . . xk. This new code-

word has the probability qC(P, x1 . . . xk).
(b) repeat step 1. Else continue with 2.

2. With the modified sets Cv construct the sets Sv as defined in (1.3).

The definition of LC(P, v), PC,v and H(PC,v) are as in (2.2), (2.4) and (2.5). Also
the formulas (2.6) and (2.7) hold.

Example 3. Let Cv = {000, 001, 010}. After step 1 of the algorithm we get Cv =
{00, 010}. With step 2 we define D(Cv)={∅, 0, 01} and Sv ={1, 00, 010, 011}.
C. Maximal individual (expected) identification length L(P )
For a given probability distribution P and a given code C user v has uniquely to
decode the codewords in Cv.

Using (2.7) we can lower bound L(P ) as follows:

(i) Take the set of pairs M = {(Cv, v) : L(P ) = LC(P, v)}.
(ii) Define

Hmax(P ) = max
(Cv ,v)∈M

H(PC,v).

Then
L(P ) ≥ Hmax(P ).

Remark 2. Note that

1.
∑

x∈D(C)

qC(P, x) =
N∑

u=1

Pu‖cu‖.
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2. Using the grouping axiom it holds

∑

x∈D(C)

qC(P, x)h
(

qC(P, x1)
qC(P, x)

)

= H(P )

for all codes C.
3. If for each code C there exists a set Cv (in case B after modification) such that

D(Cv) = D(C), then L(P ) =
N∑

u=1
Pu‖cu‖ where the code C is the Huffman–

code for the probability distribution P .

Example 4. Suppose that |V| =
(

N
K

)
, K ≥ N

2 , and {Uv : v ∈ V} =
(
[N ]
K

)
.

1. In case A there exists for each code C a set Cv such that D(Cv) = D(C).
2. In case B with K = N

2 there exists for each code C a set Cv such that
D(Cv) = D(C).

3. In case B if K = N and thus V = {v1},Uv1 = [N ], then after modifying Cv1

the set D(Cv1) contains only the root of the tree which means the user v1

has to read nothing from the received codeword (because he knows already
the answer).

Remark 3. Example 4 is motivated by K–identification for channels!

3 The Uniform Distribution

Now we return to the original model of 1.1 with V = U and Cv = {cv} for each
v ∈ V . Let P = ( 1

N , . . . , 1
N ). We construct a prefix code C in the following way.

In each node (starting at the root) we split the number of remaining codewords
in proportion as close as possible to (1

2 , 1
2 ).

1. Suppose N = 2k. By construction our code C contains all binary sequences
of length k. It follows that

qC(P, x) =
1
N

N

2‖x‖ = 2−‖x‖ (3.1)

and by (2.3)

LC(P ) =
∑

x∈D(Cv)

qC(P, x) =
k−1∑

i=0

2−i = 2 − 2−k+1 = 2 − 2
N

. (3.2)

2. Suppose 2k−1 < N < 2k. By construction the remaining code contains only
the codeword lengths k − 1 and k.

By (2.3) we add the weights (qC(P, x)) of all nodes of a path from the root
to a codeword (leave). Therefore in the worst case, N is odd and we have to
add the larger weight.
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At the root we split (N−1
2 , N−1

2 + 1). Now we split again the larger one
and in the worst case this number is again odd. It follows in general that

qC(P, x) ≤ 1
N

(
N − 1
2‖x‖ + 1

)

. (3.3)

Therefore

LC(P ) ≤
k−1∑

i=0

1
N

(
N − 1

2i
+ 1

)

=
k−1∑

i=0

2−i − 1
N

k−1∑

i=0

2−i +
1
N

k−1∑

i=0

1

= 2 − 1
N

− 2
N

+
2

N2
+

k

N
= 2 +

k − 3
N

+
2

N2
. (3.4)

With k = 	log2(N)
 it follows

Theorem 2. For P =
(

1
N , . . . , 1

N

)

lim
N→∞

LC(P ) = 2. (3.5)

4 Bounds on L(P ) for General P = (P1, . . . , PN)

A. An upper bound
We will now give an inductive construction for identification codes to derive an
upper bound on L(P ). Let P = (P1, . . . , PN ) be the probability distribution.
W.l.o.g. we can assume that Pi ≥ Pj for all i < j. For N = 2 of course we assign
0 and 1 as codewords. Now let N > 2. We have to consider two cases:

1. P1 ≥ 1/2. In this case we assign 0 as codeword to message 1. We set P ′′
i =

Pi∑
N
j=2 Pj

for i = 2, . . . , N . By induction we can construct a code for the

probability distribution P ′′ = (P ′′
2 , . . . , P ′′

N ) and messages 2 to N get the
corresponding codewords for P ′′ but prefixed with a 1.

2. P1 < 1/2. Choose � such that δ� = | 12−
∑�

i=1 Pi| is minimal. Set P ′
i = Pi∑ �

j=1 Pj

for i = 1, . . . , � and P ′′
i = Pi∑

N
j=�+1 Pj

for i = � + 1, . . . , N . Analogous to the

first case we construct codes for the distributions P ′ = (P ′
1, . . . , P

′
�) (called

the left side) and P ′′ = (P ′′
�+1, . . . , P

′′
N ) (called the right side). We get the

code for P by prefixing the codewords from the left side with 0 and the
codewords from the right side with 1.

Trivially this procedure yields a prefix code.

Theorem 3. Let N ∈ N and let P = (P1, . . . , PN ). The previous construction
yields a prefix code with L(P ) ≤ 3.

Proof. The case N = 2 is trivial. Now let N ≥ 3.

Case 1. P1 ≥ 1/2 : In this case we have L(P ) ≤ 1 + max
{

P1, L(P ′′)
∑N

i=2 Pi

}
,

where L(P ′′) denotes the corresponding maximal identification length for prob-
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ability distribution P ′′. If the maximum is assumed for P1 we have L(P ) ≤ 2,
otherwise we get by induction L(P ) < 1 + 3 · 1/2 < 3.

Case 2. P1 < 1/2 for i = 1, . . . , N : In this case we have

L(P ) ≤ 1 + max

{

L(P ′) ·
�∑

i=1

Pi, L(P ′′) ·
N∑

i=�+1

Pi

}

.

Choose �′ such that
∑�′

i=1 Pi ≤ 1/2 <
∑�′+1

i=1 Pi. Obviously either � = �′ or
� = �′ + 1.

Subcase: � = �′. Suppose the maximum is assumed on the left side. Then
without changing the maximal identification length we can construct a new
probability distribution P ′′′ = (P ′′′

1 , . . . , P ′′′
�+1) by P ′′′

1 =
∑N

i=�+1 Pi and P ′′′
i =

Pi−1 for 2 ≤ i ≤ � + 1. Since P ′′′
1 ≥ 1/2 we are back in case 1. If the maximum

is assumed on the right side then let P ′′′
1 =

∑�
i=1 Pi and P ′′′

i = Pi+�−1 for all
2 ≤ i ≤ n−�+1. Notice that in this case P ′′′

1 ≥ 1/3 (because P ′′′
1 ≥ 1/2−P ′′′

2 /2 ≥
1/2 − P ′′′

1 /2). Thus by induction L(P ′′′) ≤ 1 + 3 · 2/3 ≤ 3.
Subcase: � = �′ + 1. If the maximum is on the right side we set P ′′′

1 =
∑�

i=1 Pi ≥ 1/2, P ′′′
i = Pi+�−1 for 2 ≤ i ≤ n − � + 1 and we are again back in

case 1. Now suppose the maximum is taken on the left side. Since
∑�

i=1 Pi −
1/2 ≤ 1/2 − ∑�′

i=1 Pi it follows that δ� ≤ P�/2. Because P�′ ≤ (2�′)−1 we have
δ� ≤ (4�′)−1 = (4(�−1))−1. Also note that � ≥ 2. The case � = 2 is again trivial.
Now let � > 2. Then L(P ) < 3 · (1/2 + 1

4(�−1)) ≤ 3 · (1/2 + 1/8) < 3.

5 An Average Identification Length

We consider here the case where not only the source outputs but also the users
occur at random. Thus in addition to the source (U , P ) and RV U , we are given
(V , Q), V ≡ U , with RV V independent of U and defined by Prob (V = v) = Qv

for v ∈ V . The source encoder knows the value u of U , but not that of V , which
chooses the user v with probability Qv. Again let C = {c1, . . . , cN} be a binary
prefix code and let LC(P, u) be the expected number of checkings on code C for
user u. Instead of LC(P ) = maxu∈U LC(P, u), the maximal number of expected
checkings for a user, we consider now the average number of expected checkings

LC(P, Q) =
∑

v∈V
QvLC(P, v) (5.1)

and the average number of expected checkings for a best code

L(P, Q) = min
C

LC(P, Q). (5.2)

(The models GI and GID can also be considered.)
We also call L(P, Q) the average identification length. LC(P, Q) can be calcu-

lated by the formula

LC(P, Q) =
∑

x∈D(C)

qC(Q, x)qC(P, x). (5.3)
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In the same way as (5.3) we get the conditional entropy

HC(P‖Q) =
∑

x∈D(C)

qC(Q, x)qC(P, x)h
(

qC(P, x1)
qC(P, x)

)

. (5.4)

5.1 Q Is the Uniform Distribution on V = U
We begin with |U| = N = 2k, choose C = {0, 1}k and note that

∑

x∈D(C)
‖x‖=i

qC(P, x) = 1 for all 0 ≤ i ≤ k. (5.5)

By (3.1) for all x ∈ {0, 1}∗ with ‖x‖ ≤ k

qC(Q, x) = 2−‖x‖ (5.6)

and thus by (5.3) and then by (5.5)

LC(P, Q) =
k−1∑

i=0

∑

x∈D(C)
‖x‖=i

2−iqC(P, x) (5.7)

=
k−1∑

i=0

2−i = 2 − 2−k+1 = 2 − 2
N

. (5.8)

We continue with the case 2k−1 < N < 2k and construct the code C again as
in Section 3. By (3.3)

qC(Q, x) ≤ 1
N

(
N − 1
2‖x‖ + 1

)

. (5.9)

Therefore

LC(P, Q) =
∑

x∈D(C)

qC(Q, x)qC(P, x) ≤ 1
N

∑

x∈D(C)

(
N − 1
2‖x‖ + 1)qC(P, x)

=
1
N

k−1∑

i=0

(
N − 1

2i
+ 1)

∑

x∈D(C)
‖x‖=i

qC(P, x) ≤ 1
N

k−1∑

i=0

(
N − 1

2i
+ 1) · 1

= 2 +
k − 3

N
+

2
N2

(see (3.4)). (5.10)

With k = 	log2(N)
 it follows that

Theorem 4. Let N ∈ N and P = (P1, . . . , PN ), then for Q =
(

1
N , . . . , 1

N

)

lim
N→∞

LC(P, Q) = 2. (5.11)
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Example 4 with average identification length for a uniform Q∗

We get now

LC(P, Q∗) =
∑

x∈D(C)

|{v : x ∈ D(Cv)}|
|V| qC(P, x) (5.12)

and for the entropy in (5.4)

HC(P‖Q∗) =
∑

x∈D(C)

|{v : x ∈ D(Cv)}|
|V| qC(P, x)h

(
qC(P, x1)
qC(P, x)

)

. (5.13)

Furthermore let C0 be the set of all codes C with LC(P, Q∗) = L(P, Q∗). We
define

H(P‖Q∗) = max
C∈C0

HC(P‖Q∗). (5.14)

Then

L(P, Q∗) ≥ H(P‖Q∗). (5.15)

Case N = 2n: We choose C = {0, 1}n and calculate |{v:x∈D(Cv)}|
|V| . Notice that

for any x ∈ D(C) we have 2n−‖x‖ many codewords with x as prefix.

Order this set. There are
(

N−1
K−1

)
(K − 1)–element subsets of C containing the

first codeword in this set. Now we take the second codeword and K − 1 others,
but not the first. In this case we get

(
N−2
K−1

)
further sets and so on.

Therefore |{v : x ∈ D(Cv)}| =
∑2n−‖x‖

j=1

(
2n−j
K−1

)
and (5.14) yields

LC(P, Q∗) =
1

(
N
K

)
∑

x∈D(C)

2n−‖x‖
∑

j=1

(
2n − j

K − 1

)

qC(P, x)

=
1

(
2n

K

)
n−1∑

i=0

⎛

⎝
2n−i
∑

j=1

(
2n − j

K − 1

)
⎞

⎠

⎛

⎜
⎜
⎝

∑

x∈D(C)
‖x‖=i

qC(P, x)

⎞

⎟
⎟
⎠

=
1

(
2n

K

)
n−1∑

i=0

⎛

⎝
2n−i
∑

j=1

(
2n − j

K − 1

)
⎞

⎠ (by (5.5)). (5.17)

Lets abbreviate this quantity as g(n, K). Its asymptotic behavior remains to be
analyzed.

Exact values are

g(n, 1) = 2 − 2
2n , g(n, 2) = 2

3
5·2−n−9+4·2n

2n−1

g(n, 3) = − 2
7

49·2n−70+32·2−n−11·4n

(2n−1)(2n−2)
, g(n, 4) = 4

105
−2220+908·2−n−705·4n+1925·2n+92·8n

(2n−1)(2n−2)(2n−3)
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We calculated the limits (n → ∞)

K 1 2 3 4 5 6 7 8 9
lim

n→∞ g(n, K) 2 8
3

22
7

368
105

2470
651

7880
1953

150266
35433

13315424
3011805

2350261538
513010785

This indicates that sup
K

lim
n→∞ g(n, K) = ∞.
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