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Abstract

We consider codes over the alphabet Q = {0, 1, . . . , q − 1} intended for the control
of unidirectional errors of level ℓ. That is, the transmission channel is such that the
received word cannot contain both a component larger than the transmitted one and
a component smaller than the transmitted one. Moreover, the absolute value of the
difference between a transmitted component and its received version is at most ℓ.

We introduce and study q-ary codes capable of correcting all unidirectional errors
of level ℓ. Lower and upper bounds for the maximal size of those codes are presented.

We also study codes for this aim that are defined by a single equation on the
codeword coordinates (similar to the Varshamov-Tenengolts codes for correcting binary
asymmetric errors). We finally consider the problem of detecting all unidirectional
errors of level ℓ.
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1 Introduction

An extensive theory of error control coding has been developed (cf. [26],[20],[19]) under the
assumption of symmetric errors in the data bits; i.e. errors of type 0 → 1 and 1 → 0 can
occur simultaneously in a codeword.

However in many digital systems such as fiber optical communications and optical disks
the ratio between probability of errors of type 1 → 0 and 0 → 1 can be large. Practically
we can assume that only one type of errors can occur in those systems. These errors are
called asymmetric. Thus the binary asymmetric channel, also called Z-channel (shown in
Figure. 1),

0 0

1 1

����������

Figure 1: the Z-channel

has the property that a transmitted 1 is always received correctly but a transmitted 0 may
be received as a 0 or 1.

Unidirectional errors slightly differ from asymmetric type of errors: both 1 → 0 and 0 → 1
type of errors are possible, but in any particular word all the errors are of the same type.
The statistics shows that in some of LSI/VLSI ROM and RAM memories the most likely
faults are of the unidirectional type. The problem of protection against unidirectional errors
arises also in designing of fault-tolerant sequential machines, in write-once memory system,
in asynchronous systems etc.

Clearly any code capable of correcting (detecting) t-symmetric errors can be also used to cor-
rect (to detect) t-unidirectional or t-asymmetric errors. Obviously also any t-unidirectional
error correcting (detecting) code is capable of correcting (detecting) t-asymmetric errors.
Note that there are t-asymmetric error correcting codes with higher information rate than
that of t-symmetric error correcting codes ([33],[8],[15]). For constructions of codes correct-
ing unidirectional errors see [34] and [12]. It can be shown that the detection problems
for asymmetric and unidirectional errors are equivalent (see [5]) i.e. any t-error detecting
asymmetric code is also a t-error detecting unidirectional code.

First results on asymmetric error correcting codes are due to Kim and Freiman [16], and
Varshamov [28],[29]. In [28] Varshamov introduced a metric for asymmetric errors and
obtained bounds for codes correcting asymmetric errors. In [29] Varshamov ( and later
Weber et al. [34]) proved that linear codes capable of correcting t-asymmetric errors are also
capable of correcting t-symmetric errors. Thus only non-linear constructions may go beyond
symmetric error correcting codes.

In 1965 Varshamov and Tennengolts gave the first construction of nonlinear codes correcting
asymmetric errors [31].
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The idea behind these codes (which we call VT-codes) is surprisingly simple. Given n ∈ N

and an integer a the VT-code C(n, a) is defined by

C(n, a) =

{

(x1, . . . , xn) ∈ {0, 1}n :

n
∑

i=1

ixi ≡ a ( mod m)

}

(1.1)

where m ≥ n+ 1 is an integer.

Varshamov and Tennengolts showed that the code C(n, a) is capable of correcting any single
asymmetric error. Moreover taking m = n + 1 there exists an a ∈ {0, . . . , n} so that

|C(n, a)| ≥ 2n

n + 1
. (1.2)

Recall that for the maximum size of binary single symmetric error correcting codes we have

A(n, 1) ≤ 2n

n+ 1
. (1.3)

Varshamov [30] showed that |C(n, 0)| ≥ |C(n, a)|.
A number theoretical result due to von Sterneck (1902) [10, p. 87] allows to determine the
weight distribution of VT-codes. This result and its special cases were rediscovered many
times (see [14],[22],[23],[27]). From a practical point of view VT-codes have the advantage
of a very simple decoding algorithm. For systematic encoding of VT-codes see [1] and [6].

In general we call a code of length n, correcting t-asymmetric errors a VT-code if it is given
by the set of solutions (x1, . . . , xn) ∈ {0, 1}n of a congruence (or several congruences) of the
type

n
∑

i=1

f(i)xi ≡ a( mod M) (1.4)

where f : [n] → Z is an injection, a and M are integers.
We note that there are deep relationships between VT-codes and some difficult problems in
Additive Number Theory [33], [11].

The idea of VT-codes was further developed by Constantin and Rao [8], (see also Helleseth
and Kløve [15]) by constructing group-theoretical codes based on Abelian Groups.
Levenshtein noticed that VT-codes can also be used to correct single insertion/deletion errors
[18].

Modifications of VT-codes where used to construct new codes correcting t-asymmetric errors
[33], [24], [13], [7] and bursts of errors [25], [32] (see also [6], [9], [12] for other constructions).
For an excellent survey on the results in this direction see Kløve [17].
Very few constructions are known for codes correcting unidirectional errors (for more infor-
mation see [4]). Note that VT-codes (1.1) and its known modifications are not capable of
correcting unidirectional errors.

In 1973 Varshamov introduced a q-ary asymmetric channel [33].
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The inputs and outputs of the channel are n-sequences over the q-ary alphabetQ = {0, 1, . . . , q−
1}. If the symbol i is transmitted then the only symbols which the receiver can get are
{i, i + 1, . . . , q − 1}. Thus for any transmitted vector (x1, . . . , xn) the received vector is of
the form (x1 + e1, . . . , xn + en) where ei ∈ Q and

xi + ei ≤ q − 1, i = 1, . . . , n. (1.5)

Then it is said that t-errors have occurred if e1 + · · · + en = t. Generalizing the idea of
VT-codes, Varshamov [33] presented several constructions of t-error correcting codes for the
defined channel. These codes have been shown in [21] to have larger cardinality than BCH
codes correcting t errors for q ≥ 2 and for large n.

We continue here the work started in [2]. We consider a special type of asymmetric

errors in a q-ary channel, where the magnitude of each component of e satisfies 0 ≤ ei ≤ ℓ
for i = 1, . . . , n. We refer to ℓ as level.

Correspondingly we say that an unidirectional error of level ℓ has occurred, if the
output is either x + e or x - e (in the latter case, it is of course required that xi ≥ ei for all
i).

If the error vector e has Hamming weight dH(e) = t, then we say that t errors of level ℓ have
occured.

Thus the general problem is the following.

Given n, ℓ, t, q construct q-ary codes of length n capable of correcting t errors of level ℓ. Of
course we wish the size of a code to be as big as possible.

Note the difference between the channel described above and Varshamov’s channel when
q > 2. This is shown for q = 3, l = 1, t ≥ 2 in Figure 2.
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Figure 2:

Asymmetric errors with level 1 Varshamov’s channel

In this paper we consider q-ary codes correcting all asymmetric errors of given level ℓ, (that
is t = n) for which we use the abbreviation ℓ-AEC code, and ℓ-UEC codes that correct all
unidirectional errors of level ℓ. As above our alphabet is Q , {0, 1, . . . , q − 1}.
In Section 2 we define distances that capture the capabilities of a code to correct all asym-
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metric or unidirectional errors of level ℓ.

For given ℓ, let Aa(n, ℓ)q and Au(n, ℓ)q denote the maximum number of words in a q-ary
AEC code, or UEC code respectively, of length n. Clearly Au(n, ℓ)q ≤ Aa(n, ℓ)q.

In Section 3 we determine Aa(n, ℓ)q exactly for all n, ℓ and q.

In Section 4 we give upper and lower bounds on Au(n, ℓ)q, which imply that for fixed q and
ℓ the asymptotic growth rate for Au(n, ℓ)q equals that of Aa(n, ℓ).

In Section 5 we study ℓ-AEC and ℓ-UEC codes of VT-type. It is shown that any ℓ-AEC
code of VT-type can be transformed into an ℓ-UEC code of VT-type of equal length and
cardinality. Upper and lower bounds on the maximum number of codewords in a q-ary ℓ-
UEC code of length n of VT-type are derived. For certain pairs (ℓ, q) we give a construction
of optimal ℓ-UEC codes.

In Section 6 we consider the problem of detecting all errors of level ℓ.

2 Distances and error-correcting capabilities

In this section we introduce two distances that capture the capabilities of a code for correcting
all symmetrical and unidirectional errors of a certain level. Throughout this section we write
L for [0, ℓ] (where for integers a < b we use the abbreviation [a, b] , {a, a+ 1, . . . , b}).

Definition 1 For x = (x1, x2, . . . , xn) ∈ Qn and y = (y1, y2, . . . , yn) ∈ Qn,

dmax(x,y) = max{|xi − yi| : i = 1, 2, . . . , n}

du(x,y) =

{

dmax(x,y) if x ≥ y or y ≥ x,
2dmax(x,y) if x and y are incomparable,

where x ≥ y means that xi ≥ yi for all i.

Later on for short we will write d(x,y) for dmax(x,y).

Note that du does not define a metric: take x=(0,2), y=(1,0) and z=(1,2). Then du(x,y) =
4 > 1 + 2 = du(x, z) + du(z,y).

Lemma 1 Let x,y ∈ Qn. The two following assertions are equivalent:
(i) d(x,y) ≤ ℓ
(ii) there exist e ∈ Ln, f ∈ Ln such that x + e = y + f ∈ Qn.

Proof. Suppose that (i) holds. We define e and f as

ei = max(0, yi − xi) and fi = max(0, xi − yi), i = 1, 2, . . . , n.

As d(x,y) ≤ ℓ, the vectors e and f are in Ln, and for each i, we have that xi + ei = yi + fi =
max(xi, yi) ∈ Q. That is (ii) holds.
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Conversely, suppose that (ii) holds, then for each i we have that |xi − yi| = |fi − ei| ≤
max(fi, ei) ≤ ℓ, where the first inequality holds since ei and fi both are non-negative. �

The following proposition readily follows from Lemma 1.

Proposition 1 A code C ⊂ Qn is an ℓ-AEC code if and only if d(x,y) ≥ ℓ + 1 for all
distinct x,y in C.

Note that Proposition 1 and the definition of d(x,y) imply that for ℓ ≥ q−1, an ℓ-AEC code
(and therefore also an ℓ-UEC code) contains at most a single codeword. For this reason,

we assume in the remainder of the paper that ℓ ≤ q − 2.

Lemma 2 Let x,y ∈ Qn. The two following assertions are equivalent.
(i) y ≥ x and d(x,y) ≤ 2ℓ,
(ii) there exist e ∈ Ln, f ∈ Ln such that x + e = y − f ∈ Qn.

Proof. Suppose that (i) holds. We define e and f as

ei = ⌈1

2
(yi − xi)⌉ and fi = ⌊1

2
(yi − xi)⌋, i = 1, 2, . . . , n.

As y ≥ x, both e and f have only non-negative components and for each i, we have that
fi ≤ ei ≤ ⌈1

2
(2l)⌉ = ℓ; moreover, we obviously have that e+ f = y−x. Finally, for each i we

have that xi + ei = yi − fi ≤ yi ≤ q− 1, so x+ e = y− f ∈ Qn. We conclude that (ii) holds.
Conversely suppose that (ii) holds. Then y − x = e + f and so y ≥ x, and for each i we
have that |yi − xi| = yi − xi = ei + fi ≤ ℓ+ ℓ = 2ℓ. That is (i) holds. �

Combination of Lemma 1 and Lemma 2 yields the following

Proposition 2 A code C ⊂ Qn is an ℓ-UEC code if and only if du(x,y) ≥ 2ℓ + 1 for all
distinct x, y in C.

3 ℓ-AEC codes

It turns out that Aa(n, ℓ)q can be determined exactly for all integers n and each ℓ ∈ Q.

Theorem 1 For all integers n and each ℓ ∈ Q, Aa(n, ℓ)q =
⌈

q

ℓ+1

⌉n
.

Proof. Let C ⊂ Qn be an ℓ-AEC-code. Let ϕ : Q→
{

0, 1, . . .
⌊

q−1
ℓ+1

⌋}

, be defined as

ϕ(j) =

⌊

j

ℓ + 1

⌋

, j = 0, . . . , q − 1.
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For any codeword x = (x1, . . . , xn) ∈ C define ϕn(x) =
(

ϕ(x1), . . . , ϕ(xn)
)

. Clearly ϕn is
injective: if x,y ∈ C are such that ϕn(x) = ϕn(y), then |xi − yi| ≤ ℓ, (i = 1, . . . , n), that is,
d(x,y) ≤ ℓ and so x = y. This implies that |ϕn(C)| = |C| and since

⌊

q−1
ℓ+1

⌋

+ 1 =
⌈

q

ℓ+1

⌉

we
get

|C| ≤
⌈

q

ℓ+ 1

⌉n

. (3.1)

The code C defined as

C =
{

(x1, x2, . . . , xn) ∈ Qn : xi ≡ 0 mod (ℓ+ 1) for i = 1, 2, . . . , n
}

obviously is an ℓ-AEC code that achieves equality in (3.1). A received vector can be decoded
by component-wise rounding downwards to the nearest multiple of ℓ+1. �

4 ℓ-UEC codes

In this section, we study Au(n, ℓ)q, the maximum number of words in a q-ary ℓ-UEC code of
length n. As any ℓ-UEC code is an ℓ-AEC code, Theorem 1 implies that

Au(n, ℓ)q ≤ Aa(n, ℓ)q =

⌈

q

ℓ+ 1

⌉n

. (4.1)

In some special cases the upper bound (4.2) is met with equality.

Proposition 3 For all n and ℓ, Au(n, ℓ)2ℓ+2 = 2n.

Proof. By Proposition 2 the code {0, 2ℓ + 1}n meeting 2n has the desired property and
Au(n, ℓ)2ℓ+2 ≤ 2n by (4.1). �

In Section 5 we will construct q-ary ℓ-UEC codes of VT type. For various classes of pairs
(q, ℓ), (for example, if ℓ + 1 divides q), these codes have cardinality ⌈ q

ℓ+1
⌉n−1 and thus they

are below the upperbound (4.1) only by a multiplicative factor.

We continue the present section with two constructions for q-ary ℓ-UEC codes valid for all
pairs (q, ℓ). We denote by Qℓ+1 all integers in Q = [0, q− 1] that are multiples of ℓ+ 1, that
is

Qℓ+1 = {m ∈ {0, 1, . . . , q − 1} : m ≡ 0 (mod ℓ+ 1)} = {a(ℓ+ 1) : 0 ≤ a ≤ b− 1}, (4.2)

where

b = |Qℓ+1| =

⌈

q

ℓ+ 1

⌉

.

It is clear that d(x,y) ≥ ℓ + 1 for any two distinct words x,y in Qn
ℓ+1. In the subsequent

two subsections we use Qn
ℓ+1 to construct a code with minimum asymmetric distance ℓ+1 for

which any two codewords are incomparable. Thus we have created a code with undirectional
distance at least 2ℓ+ 2.
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4.1 Construction 1: taking a subset of Qn
ℓ+1

For each j let

C(j) = {(x1, x2, . . . , xn) ∈ Qn
ℓ+1 :

n
∑

i=1

xi

ℓ+ 1
= j}.

Any two distinct words from C(j) clearly are incomparable and so C(j) is an ℓ-UEC code.
It is clear that

|C(j)| = |{(y1, y2, . . . , yn) ∈ {0, 1, . . . , b− 1}n :

n
∑

i=1

yi = j}|.

It is known [3, Thm. 4.1.1] that |C(j)| is maximized for j = j∗ , ⌊1
2
n(b − 1)⌋. Moreover,

according to [3, Thm. 4.3.6], the following bounds are valid.

Proposition 4 There exist positive constants c1 and c2 (depending on b = ⌈ q

ℓ+1
⌉) such that

c1
1√
n
bn ≤ |C(j∗)| ≤ c2

1√
n
bn.

Proposition 4 implies the following theorem.

Theorem 2 For each integer q and ℓ ∈ Q, there is a constant c > 0 such that for each n,

Au(n, ℓ)q ≥ c
1√
n
⌈ q

ℓ + 1
⌉n .

Clearly, (4.2) and Theorem 2 imply that for fixed q and ℓ the asymptotic growth rate of
Au(n, ℓ)q is known.

Corollary 1 For each q and each ℓ ∈ [0, q − 1] limn→∞
n
√

Au(n, ℓ)q = ⌈ q

ℓ+1
⌉.

4.2 Construction 2: adding tails to words from Qn
ℓ+1

In order to formulate our second construction clearly, we cast it in the form of a proposition.
Later we take appropriate values for certain parameters in this construction to obtain a lower
bound on Au(n, ℓ)q.

Proposition 5 Let X ⊂ Qn be a ℓ-AEC code. For x ∈ X, let S(x) denote the sum of its
entries, and let s1, s2 be such that for each x ∈ X, s1 ≤ S(x) ≤ s2. Let φ : [s1, s2] → Qm be
such that for all a, b ∈ [s1, s2] with a > b, there is an i ∈ {1, 2, . . . , m} such that (φ(a))i <
(φ(b))i. Then C = {(x, φ(S(x)) : x ∈ X} ⊂ Qn+m is an ℓ-UEC code.

8



Proof. Let u = (x, φ(S(x))) and v = (y, φ(S(y))) be two distinct words in C. As
d(x,y) ≥ ℓ + 1, all we have to show is that u and v are incomparable. This is clear if
x and y are incomparable. Now suppose that x and y are comparable, say x ≥ y. Then
S(x) > S(y) and hence, by the property imposed on φ, uj < vj for some j ∈ [n+1, n+m]. �

We now apply the construction from Proposition 5. Given s1 and s2, we take m , ⌈logq(s2−
s1 +1)⌉, and define φ(s) as the m-symbols q-ary representation of s2 − s. We choose for X a
large subset of Qn

ℓ+1 such that s2 − s1 + 1 is small, so that m can be small. As shown below
we can invoke Chebyshev’s inequality to show the existence of a set X such that |X| > 3

4
bn,

while s2 − s1 + 1 < K1

√
n for some constant K1. As a consequence, m can be as small as

1
2
logq n +K2 for some constant K2.

Theorem 3 For each q and ℓ, there exists a positive constant K such that for each n,

Au(n, ℓ)q ≥ Kbnn− 1

2
logq b, where b = ⌈ q

ℓ+ 1
⌉ .

Proof. We start with the well-known Chebyshev inequality.

Proposition 6 Let Y1, Y2, . . . , Yn be independent, identically distributed random variables,
each with average µ and variance σ2. For each ǫ > 0, we have that

prob(|
n

∑

i=1

Yi − nµ| > ǫ · n) ≤ σ2

nǫ2
.

We choose now ǫ = 2σ√
n

and get

Prob(|
n

∑

i=1

Yi − nµ| ≤ 2σ
√
n) ≥ 3

4
. (4.3)

In the above, we take each Yi uniformly distributed in Qℓ+1 = {a(ℓ+ 1) : 0 ≤ a ≤ b− 1}. It
follows from (4.3) that the set X defined as

X = {x ∈ Qn
ℓ+1 : nµ− 2σ

√
n ≤

n
∑

i=1

xi ≤ nµ+ 2σ
√
n}

has cardinality at least 3
4
bn.

As a consequence of this and Proposition 5, there exists a constant K2 such that for each n,
there is an ℓ-AUEC code of length at most n+ 1

2
logq n +K2.

Now let n be a positive integer. Choose n0 such that

n0 +
1

2
logq n0 +K2 ≤ n and (n0 + 1) +

1

2
logq(n0 + 1) +K2 ≥ n.
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Our construction shows the existence of an ℓ-AUEC code of length n with at least 3
4
bn0

words. The definition of n0 implies that

logq(n0 + 1) ≤ logq(n+ 1 − 1

2
logq n0 −K2) ≤ logq(n+ 1 −K2), and so

n0 ≥ n− 1 −K2 −
1

2
logq(n0 + 1) ≥ n− 1 −K2 −

1

2
logq(n+ 1 −K2).

From the final inequality, it follows that there exists a constant K3 such that n0 ≥ n −
1
2
logq n−K3. We conclude that

3

4
bn0 ≥ 3

4
bnn− 1

2
logq bb−K3 .

�

5 ℓ-UEC codes of Varshamov-Tennengolts type

In this section we study VT-type ℓ-UEC codes. Note however that unlike the VT-codes,
the codes we introduce here are defined by means of some linear equation (rather than a
congruence) over the real field. Namely given Q = [0, q− 1] ⊂ R and a0, . . . , an−1, a ∈ Z let

X = {(x0, . . . , xn−1) ∈ Qn :

n−1
∑

i=0

aixi = a}. (5.1)

Note that X defines an ℓ-UEC code if and only if for each distinct x,y ∈ X holds x − y /∈
[−ℓ, ℓ]n and x − y /∈ [0, 2ℓ]n.

Thus an obvious sufficient condition for the set of vectors X ⊂ Qn to be an ℓ-UEC code is
that the hyperplane H defined by

H =

{

(x0, . . . , xn−1) ∈ R
n :

n−1
∑

i=0

aixi = 0

}

does not contain vectors from [−ℓ, ℓ]n ∪ [0, 2ℓ]n, except for the zero vector.

An ℓ-UEC code of VT-type may have the advantage of a simple encoding and decoding
procedure.

In particular, let C be a code given by 5.1 where for i = 0, 1, . . . , n−1, ai = (ℓ+1)i. In view of
observation above C is an ℓ-AEC code. Suppose now for a received vector y = (y0, . . . , yn−1)
we have

n−1
∑

i=0

(ℓ+ 1)iyi = a′

with a′ ≥ a. Then the transmitted vector (x0, . . . , xn−1) = (y0 − e0, . . . , yn−1 − en−1), where
the error vector (e0, . . . , en−1) is just the (ℓ+ 1)-ary representation of the number a′ − a.
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Similarly, if a′ ≤ a, then (x0, . . . , xn−1) = (y0 − e0, . . . , yn−1 − en−1), where (e0, e1, . . . , en−1)
is the (ℓ+ 1)-ary representation of a− a′.

For given ℓ, q and n, we define LAu(n, ℓ)q = the maximum size of an ℓ-UEC code, over the
alphabet [0, q − 1], defined by a linear equation (5.1).
Correspondingly we use LAa(n, ℓ)q for ℓ-AEC codes.

Theorem 4 For all n, q and ℓ, LAa(n, ℓ)q = LAu(n, ℓ)q.

Proof. Suppose an ℓ-AEC code C is defined by (5.1), that is C = X. Suppose also w.l.o.g.
that a0, . . . , ak < 0 (k < n− 1), ak+1, ak+1, . . . an ≥ 0, and s , a0 + · · · + ak. Let C′ be the
code defined by the equation

−
k

∑

i=0

aiyi +
n−1
∑

j=k+1

ajyj = a− s(q − 1) (5.2)

Note that for each c = (co, . . . , cn−1) ∈ C the vector c′ = (q−1−c0, . . . , q−1−ck, ck+1, . . . , cn−1) ∈
Qn is a solution of (5.2), that is c′ ∈ C′. The opposite is also true. Hence we have |C| = |C′|.
Note further that the condition c−b /∈ [−ℓ, ℓ]n for each distinct c,b ∈ C (this we have since C
is an ℓ-AEC code) implies that for the corresponding c′,b′ ∈ C′ we also have c′−b′ /∈ [−ℓ, ℓ]n.
Moreover since −a0, . . . ,−ak, ak+1, . . . , an−1 > 0 we have c′ −b′ /∈ Qn, which implies that C′

is an ℓ-UEC code. Thus we have

LAa(n, ℓ)q ≤ LAu(n, ℓ)q.

This completes the proof since we also have the inverse inequality. �

For future reference, we note the obvious fact that for all n, ℓ, q and q′, we have

LAu(n, ℓ)q ≥ LAu(n, ℓ)q′ if q ≥ q′. (5.3)

Remark Given ℓ and q let a0, a1, . . . , an be nonzero integers such that the code C = X
defined by (5.1) is an ℓ-UEC code over the alphabet Q = [0, q − 1]. Then the following is
true.

Proposition 7 The code C∗ defined by

C∗ =

{

(z0, . . . , zn−1) ∈ Qn :

n−1
∑

i=0

aizi ≡ a (mod 2ℓS + 1)

}

,

where S , a0 + · · ·+ an−1 is an ℓ-UEC code.

Proof. If for two distinct z, z′ ∈ C∗ holds
n−1
∑

i=0

ai(zi − z′i) = 0 then z, z′ belong to some

translate of code C and hence du(z, z
′) ≥ 2ℓ+ 1. Conversely if

n−1
∑

i=0

ai(z − z′
i
) 6= 0 then there

11



exists j (by the pigeonhole principle) such that |zj − z′j | ≥ 2ℓ + 1. Therefore in both cases
du(z, z

′) ≥ 2ℓ+ 1. �

Thus we have |C∗| ≥ |C| which shows that in general the codes given by some congruence
could have better performance. Note however that by construction given above we cannot
have much gain as compared to the code given by (5.1). This is clear since |C| ≥ c|C∗| for

some constant c ≤ (q−1)S
2Sℓ+1

< q−1
2ℓ
.

5.1 Lower and upper bounds for LAu(n, ℓ)q

Theorem 5 For all integers q, n and ℓ satisfying q > ℓ+ 1 we have

ℓ

q − 1

(

q

ℓ+ 1

)n

≤ LAu(n, ℓ)q ≤ ⌈ q

ℓ+ 1
⌉n−1.

Proof. Consider the equation
n−1
∑

i=0

(ℓ+ 1)ixi = a, (5.4)

and let X be the set of vectors x ∈ Qn satisfying (5.4). As we have seen in the introduction
of this section, X is a q-ary ℓ-UEC code.

Note also that X = ∅ if a 6∈ I , [0, (q − 1) (ℓ+1)n−1
ℓ

]. Hence we infer that there exists an
a ∈ I such that

|X| ≥ |Qn|
|I| = qn/

(

(q − 1)
(ℓ+ 1)n − 1

ℓ
+ 1

)

≥
(

q

ℓ+ 1

)n

· ℓ

q − 1
.

This gives the lower bound for LAu(n, ℓ)q.
Let now X be a q-ary ℓ-UEC code defined by (5.1).

To prove the upper bound we consider the mapping ψ : Q → Zb, where b , ⌈ q

ℓ+1
⌉, defined

by
ψ(j) ≡ j (mod b); j = 0, . . . , q − 1.

Correspondingly for a codeword x = (x0, . . . , xn−1) ∈ X we define ψn(x) = (ψ(x0), . . . , ψ(xn−1).
Let us show that ψn is an injection on X. Suppose ψn(x) = ψn(x′) for two codewords
x,x′ ∈ X. By definition of ψ we have x− x′ = be, where e ∈ [−ℓ, ℓ]n. As x and x′ both are
in X we have

n−1
∑

i=0

aiei = 0. (5.5)

We define x∗ = x′ + (b − 1)e and claim that x∗ is in X. In view of (5.5), it is sufficient to
show that x∗ ∈ Qn. For 1 ≤ i ≤ n let now ei ≥ 0. Then x∗i = x′i + (b − 1)ei ≥ x′i ≥ 0 and
x∗i = xi − ei ≤ xi ≤ q − 1, so x∗i ∈ Q. In a similar way it is proved that x∗i ∈ Q if ei ≤ 0.
Since x − x∗ = e = [−ℓ, ℓ]n, and x and x∗ both are in X, we conclude that e=0, so x = x′.
Thus ψn is an injection, which implies that |X| = |ψn(X)|.

12



Define now

H ′ = {(y0, . . . , yn−1) ∈ Z
n
b :

n−1
∑

i=0

aiyi ≡ a(modb)}.

It is easy to see that ψn(X) ⊂ H ′. We can assume without loss of generality that
g.c.d.(a0, . . . , an−1) = 1, so (a0( mod b), . . . , an−1( mod b)) 6= (0, . . . , 0).

Thus H ′ ⊂ Z
n
b is a hyperplane over Zb and hence

|X| = |ψn(X)| ≤ |H ′| = bn−1.

�

5.2 Construction of optimal codes

We call a VT-type ℓ-UEC code VT-type optimal or shortly optimal if it attains the upper
bound in Theorem 5. In this section we construct, for various classes of pairs (ℓ, q), maximal
q-ary ℓ-UEC codes for each length n.
Given integers ℓ ∈ [1, q − 1], n, r we define

Cn(r) =

{

(x0, . . . , xn−1) ∈ Qn :

n−1
∑

i=0

(ℓ+ 1)ixi = αSn + r

}

, (5.6)

where Sn ,

n−1
∑

i=0

(ℓ+ 1)i =
(ℓ+ 1)n − 1

ℓ
, and α , ⌊q − 1

2
⌋. (5.7)

As we have seen before, Cn(r) is an ℓ-UEC code for all n and r.
For notational convenience, we denote the cardinality of Cn(r) by γn(r), that is,

γn(r) = |Cn(r)| . (5.8)

Proposition 8 For each n ≥ 2 and each r,

γn(r) =
∑

x0

γn−1 ((α + r − x0)/(ℓ+ 1)) ,

where the sum extends over all x0 ∈ Q satisfying x0 ≡ α + r (mod ℓ+ 1).

Proof. By definition x = (x0, x1, . . . , xn−1) is in Cn(r) if and only if
∑n−1

i=0 (ℓ+1)ixi−αSn = r.
Using that Sn = (ℓ+ 1)Sn−1 + 1, the latter equality can also be written as

∑n−1
i=1 (ℓ+ 1)ixi −

αSn−1 = r − x0 + α. In other words x is in Cn(r) if and only if x0 ≡ r + α (mod ℓ+ 1) and
(x1, . . . , xn−1) is in Cn−1(r

′), where r′ = (r − x0 + α)/(ℓ+ 1). �

In the remainder of this section, we use the notation 〈x〉y to denote the integer in [0, y − 1]
that is equivalent to x modulo y. In other words, 〈x〉y = x− ⌊x

y
⌋ · y.

13



Lemma 3 Let e and f be integers such that 0 ≤ e ≤ f − 1. We have that

|{x ∈ Q : x ≡ e (modf)}| =

{ ⌈ q

f
⌉ if e < 〈q〉f

⌊ q

f
⌋ if e ≥ 〈q〉f

Proof. We obviously have that

{x ∈ Q : x ≡ e (modf)} = {e+ f, e+ 2f, . . . , e+mf},

where m is such that e +mf ≤ q − 1 and e + (m + 1)f ≥ q. In other words m = ⌊ q−1−e

f
⌋.

Writing q = λf + 〈q〉f , we have m− λ = ⌊ 〈q〉f−1−e

f
⌋, which equals 0 if 〈q〉f ≥ e+ 1, and −1

otherwise. This proves the lemma. �

Theorem 6 Let u1, u2, . . . and v1, v2, . . . be sequences of integers such that:
(1) 0 ≤ u1 + α ≤ v1 + α ≤ q − 1,
and for each n ≥ 2
(2) ⌈ 1

ℓ+1
(un + α− (q − 1))⌉ ≥ un−1,

(3) ⌊ 1
ℓ+1

(vn + α)⌋ ≤ vn−1, and
(4) ℓ+ 1 divides q, or for each r ∈ [un, vn], 〈α+ r〉ℓ+1 < 〈q〉ℓ+1.

Then for each n ≥ 1 and r ∈ [un, vn] we have γn(r) = ⌈ q

ℓ+1
⌉n−1.

Proof. We proceed by induction on n.
For n = 1 the assertion is true because of condition (1).
Now let n ≥ 2, and suppose the assertion is true for n − 1. Let r ∈ [un, vn]. According to
Proposition 8, we have that

γn(r) =
∑

x0

γn−1

(

r + α− x0

ℓ + 1

)

. (5.9)

According to condition (4), either ℓ + 1 divides q, or 〈α + r〉ℓ+1 < 〈q〉ℓ+1. In both cases
Lemma 3 implies that the sum in (5.9) has ⌈ q

ℓ+1
⌉ terms.

For each x0 ∈ Q we have that r+α−x0 ≤ r+α ≤ vn +α and r+α−x0 ≥ r+α− (q−1) ≥
un + α− (q − 1). That is, for each x0 ∈ Q

un + α− (q − 1) ≤ r + α− x0 ≤ vn + α. (5.10)

Combining (5.10) with conditions (2) and (3) we find that for each x0 in Q, such that
r + α− x0 is a multiple of ℓ+ 1, we have

r + α− x0

ℓ+ 1
∈ [un−1, vn−1].

The induction hypothesis implies that each term in the sum in (5.9) equals ⌈ q

ℓ+1
⌉n−2. �
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Theorem 7 Let ℓ and q be such that ℓ + 1 divides q. Let u1 = −α, v1 = α, and for n ≥ 2,
un = (ℓ + 1)un−1 + α and vn = (ℓ + 1)vn−1 − α. In other words, for n ≥ 1, vn = −un =
α
ℓ
[(ℓ− 1)(ℓ+ 1)n−1 + 1].

Then for each n ≥ 1 and r ∈ [un, vn], we have

γn(r) = LAu(n, ℓ)q =

(

q

ℓ+ 1

)n−1

.

Proof. We apply Theorem 6. It is immediately clear that conditions (1), (3) and (4) are
satisfied. Moreover, for each n ≥ 2, un+α−(q−1) = (ℓ+1)un−1+2α−(q−1) ≥ (ℓ+1)un−1−1,
so condition (3) is satisfied as well. �

Theorem 8 Let c ∈ [0, ℓ], δ ∈ {0, 1}, and m be such that

q = 2m(ℓ+ 1) + 2c+ 1 + δ and 2c+ δ 6= ℓ.

We define λ1 = 0, and for n ≥ 2,

λn = (ℓ+ 1)λn−1 − η, where η =

{

0 if 2c+ δ ≤ ℓ− 1,
⌈1

2
(ℓ− δ)⌉ if 2c+ δ ≥ ℓ+ 1.

Moreover, for n ≥ 1, we define

un = −c + λn(ℓ+ 1) and vn = −c + λn(ℓ+ 1) + 〈q〉ℓ+1 − 1.

If m ≤ c− 1 − ⌈1
2
(ℓ− δ)⌉ or 2c+ δ ≤ ℓ and m ≤ c, then for each integer n and r ∈ [un, vn],

γn(r) = LAu(n, ℓ)q = ⌈ q

ℓ + 1
⌉n−1.

Proof. We apply Theorem 6. Note that

α = ⌊q − 1

2
⌋ = m(ℓ+ 1) + c.

We first check condition (1): u1 + α = −c + α = m(ℓ + 1) ≥ 0 and u1 + α ≤ v1 + α =
m(ℓ+ 1) + 〈q〉ℓ+1 − 1 ≤ q − 1.
The definition of un and vn implies that for each n and each r ∈ [un, vn] we have that

r + α ∈ [un + α, vn + α] = [(λn +m)(ℓ+ 1), (λn +m)(ℓ + 1) + 〈q〉ℓ+1 − 1] ,

so condition (4) is satisfied.
For verifying Condition (2), we note that

⌈ 1

ℓ+ 1
(un + α− (q − 1))⌉ = ⌈ 1

ℓ + 1
(un − α− δ)⌉ = (λn −m) + ⌈−δ − 2c

ℓ+ 1
⌉.

As λn = λn−1(ℓ+ 1) − η = un−1 + c− η condition (2) is satisfied if and only if

m ≤ c− η − ⌊δ + 2c

ℓ+ 1
⌋. (5.11)
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For verifying condition (3) we note that

⌊ 1

ℓ + 1
(vn + α)⌋ = ⌊ 1

ℓ+ 1
((λn +m)(ℓ+ 1) + 〈q〉ℓ+1)⌋ = λn +m.

As λn = (ℓ+ 1)λn−1 − η = vn−1 + c− 〈q〉ℓ+1 + 1 − η, condition (3) is satisfied if and only if

m ≤ 〈q〉ℓ+1 − 1 − c+ η (5.12)

We distinguish between two cases.
Case 1 2c+ δ ≤ ℓ− 1.
Then 〈q〉ℓ+1 = 2c+ δ+1, and ⌊ δ+2c

ℓ+1
⌋ = 0. That is, (5.11) reduces to the inequality m ≤ c−η

and (5.12) reduces to m ≤ c + δ + η. As η = 0, we see that (5.11) and (5.12) both are
satisfied if m ≤ c.
Case 2 2c+ δ ≥ ℓ+ 1.
Then 〈q〉ℓ+1 = 2c + δ − ℓ, and ⌊ δ+2c

ℓ+1
⌋ = 1. Consequently, (5.11) reduces to the inequality

m ≤ c− η − 1, and (5.12) reduces to m ≤ c + δ − ℓ− 1 + η. With our choice for η, we see
that (5.11) and (5.12) both are satisfied if m ≤ c− η − 1 = c− 1 − ⌈1

2
(ℓ− δ)⌉. �

Corollary 2 Let q = (b− 1)(ℓ+ 1) + d for integers 1 ≤ b− 1 < d ≤ ℓ. Then for each n

LAu(n, ℓ)q = bn−1 =

⌈

q

ℓ+ 1

⌉n−1

.

Proof. Suppose b− 1 is even. Then we can write

q = 2m(ℓ+ 1) + d = 2m(ℓ+ 1) + 2c+ 1 + δ,

where c = (d − 1 − δ)/2 and m = (b − 1)/2. The condition b − 1 < d ≤ ℓ implies that
2c+ δ ≤ ℓ− 1 and m ≤ c. Therefore by Theorem 8 we have

γn(r) = bn−1, where r ∈ [−c, c].

Suppose now b− 1 is odd. Then

q = (2m+ 1)(ℓ+ 1) + d = 2m(ℓ+ 1) + d+ ℓ+ 1 = 2m(ℓ+ 1) + 2c+ 1 + δ,

where c = (d+ ℓ− δ)/2 and m = (b− 2)/2.

Now the condition b − 1 < d implies m ≤ c − 1 −
⌈

1
2
(ℓ− δ)

⌉

and hence by Theorem 8 we
have

γn(r) = bn−1, where r ∈ [un, vn].

�

In conclusion of this section let us note that the determination of LAu(n, ℓ)q in general seems
to be a difficult problem. As was shown above codes defined by (5.6) are best possible for
certain parameters q and ℓ, mentioned in Theorems 6 and 7. However we do not know how
good these codes are for other parameters.
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An interesting open problem is to decide what is the max
r

|Cn(r)| for given ℓ and q. Note that

for some cases the code Cn(0) has the size bigger than the lower bound in Theorem 5. Let
for example ℓ = 2, q = 7. Then it is not hard to observe that the number of solutions cn of
(5.6) satisfies the recurrence cn = 2cn−1 + cn−2. This gives the bound |Cn(r)| ≥ K(2, 41)n,
where 2, 41 ≈ 1 +

√
2 is the largest root of the characteristic equation x2 − 2x − 1 = 0, K

is a constant. The same recurrence we obtain for any q = 2ℓ + 3, which implies that for
q = 2ℓ+ 3 and ℓ ≥ 2 one has |Cn(r)| ≥ K(2, 41)n > ℓ

q−1

(

q

ℓ+1

)n
(the lower bound in Theorem

5). Note however that this is not the case for ℓ = 1, q = 5.

One can also observe that for q = 7, ℓ = 1 we have |Cn(r)| ≥ K(3, 51)n. Without going into
detail we note that this can be derived from the recurrence cn = 4cn−1 −2cn−2 + cn−3 for the
number of solutions cn of (5.6) (with r = 0, q = 7, ℓ = 1).

One may use a generating functions approach to analize the problem.
Let f(x)=1+x+x2+ . . .+xq−1. We are interested in the largest coefficient of the polynomial
f(x)f(xℓ+1)f(x(ℓ+1)2)f(x(ℓ+1)3) · · ·f(x(ℓ+1)n−1

). If, for example, we take q = 5, ℓ = 1 and n =
4, the largest coefficient equals 20 (attained with x24, x28, x32 and x36), while the coefficient

of xa for a = ⌊ q−1
2
⌋ (ℓ+1)n−1

ℓ
= 30 only equals 17.

5.3 Asymptotic growth rate of ℓ-UEC codes of VT type

In the previous section we explicitly constructed maximal q-ary ℓ-UEC codes of VT type of
arbitrary length for some classes of pairs (ℓ, q) – but not for all.

In this section we state a less ambitious goal, namely, given ℓ and q, to determine the
asymptotic behaviour of n

√

LAu(n, ℓ)q. We will show that this quantity converges if n→ ∞.
As a preparation we need the following

Lemma 4 Let a, b, a0, a1, . . . , am−1, b0, b1, . . . , bn−1 be integers such that the codes A and B,
defined as

A = {(x0, x1, . . . , xm−1) ∈ Qm :
m−1
∑

i=0

aixi = a} and B = {(y0, y1, . . . , yn−1) ∈ Qn :
n−1
∑

j=0

bjyj = b}

both are non-empty ℓ-UEC codes. Let A× B ⊂ Qm+n be the direct product of A and B:

A× B = {(x;y) : x ∈ A,y ∈ B}.

Let M be an integer such that
∑n−1

i=0 |ai|(q − 1) < M , and define C as

C = {(z0, z1, . . . , zn+m−1) ∈ Qn+m :

n−1
∑

i=0

aizi +

n+m−1
∑

i=n

Mbi−nzi = a+Mb}.

Then C = A× B, and A× B is a q-ary ℓ-AUEC code.
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Proof. It is clear that A×B ⊂ C. Moreover, A×B is an ℓ-UEC code: a received word can
be decoded by decoding its m leftmost and n rightmost symbols to A and B, respectively.
All we are left with to show is that C ⊂ A × B. Therefore, let (z0, z1, . . . , zn+m−1) be in C.
By definition, we have that

a+Mb =
m−1
∑

i=0

aizi + M ·
m+n−1
∑

i=m

bi−mzi, (5.13)

and so

a−
m−1
∑

i=0

aizi ≡ 0 mod M. (5.14)

As A 6= ∅, there is an x ∈ Qm such that a =
∑m−1

i=0 aixi, and whence

|a−
m−1
∑

i=0

aizi| = |
m−1
∑

i=0

ai(xi − zi)| ≤
m−1
∑

i=0

|ai||xi − zi| ≤
m−1
∑

i=0

|ai|(q − 1) < M. (5.15)

From (5.14) and (5.15) we conclude that a =
∑m−1

i=0 aizi and so (z0, z1, . . . , zm−1) ∈ A. Fur-
thermore using (5.13) we find that (zm, zm+1, . . . , zm+n−1) is in B. �

Lemma 4 immediately implies that

LAu(ℓ,m+ n)q ≥ LAu(ℓ,m)q · LAu(ℓ, n)q. (5.16)

As LAu(ℓ, n)q ≤ ⌈ q

ℓ+1
⌉n−1 we can invoke Fekete’s lemma to derive the following result from

(5.16):

Proposition 9 For each q and ℓ ∈ Q, there exists a constant β(ℓ, q) ≤ ⌈ q

ℓ+1
⌉ such that

lim
n→∞

n

√

LAu(n, ℓ)q = β(ℓ, q).

Theorem 5 implies that for all ℓ and q,

q

ℓ+ 1
≤ β(ℓ, q) ≤ ⌈ q

ℓ+ 1
⌉.

In particular, β(ℓ, q) = q

ℓ+1
if ℓ + 1 divides q (of course, this is also implied by the much

stronger Theorem 7). Note also that for pairs (ℓ, q) for which the conditions from Theorem 8
applies, we have β(ℓ, q) = ⌈ q

ℓ+1
⌉.

Inequality (5.16) implies that for each n, β(ℓ, q) ≥ n
√

LAu(n, ℓ)q. For example, consider the
case that q = ℓ+ 2. The code

{(x0, x1, x2, x3) ∈ Q4 :
3

∑

i=0

(ℓ + 1)ixi = ℓ+ 1 + (ℓ+ 1)3}

has five words, viz. (1+ℓ,1+ℓ,ℓ,0), (1+ℓ,0,1+ℓ,0), (1+ℓ,0,0,1), (0,1,1+ℓ,0), and (0, 1, 0, 1).
That is, β(ℓ, ℓ + 2) ≥ 4

√
5 ≈ 1.495. Note that Theorem 5 only allows us to deduce that

β(ℓ, ℓ+ 2) ≥ ℓ+2
ℓ+1

.
Also note that Corollary 2 with b = 2 states that for ℓ ≥ 2 β(ℓ, ℓ+ 3) = 2.
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6 The error detection problem

We find it interesting to consider also the error detection problem, i.e. codes detecting
unconventional errors of a certain level. It is easy to see that codes detecting asymmetric
errors of level ℓ can be also used to detect unidirectional errors of level ℓ. For codes detecting
all asymmetric (unidirectional) errors of level ℓ we use the abbreviation ℓ-AED codes (or ℓ-
UED codes).
For integers ℓ, q, n satisfying 1 ≤ ℓ < q and n ≥ 1, we define

Pi = {(a1, . . . , an) ∈ Qn :

n
∑

j=1

aj = i}.

It is clear that Pi detect each unidirectional error pattern. Note that |Pi| is maximal for
i = i∗ = ⌊1

2
n(q − 1)⌋, see [3, Thm. 4.1.1]. For a ∈ [0, ℓn], let Ca ⊂ Qn be defined as

Ca =
⋃

i:i≡a( mod ℓn+1)

Pi (6.1)

Proposition 10 Ca is an ℓ-UED-code over the alphabet Q.

Proof. Clearly Ca is an ℓ-UED code iff for each x,y ∈ Ca either x and y are incomparable or
d(x,y) ≥ ℓ+ 1. Suppose that for some x = (x1, . . . , xn) and y = (y1, . . . , yn) we have x > y.
Then clearly by definition of C there exists a coordinate i ∈ [1, n] such that xi − yi ≥ ℓ + 1,
i.e. d(x,y) ≥ ℓ+ 1. �

This simple construction gives us a lower bound for the maximum size of an ℓ-UED code
over alphabet Q. However we don’t know whether it is possible to improve this bound, even
for the case ℓ = 1.

Remark 1. Asymptotically, taking the union of several Pi’s does not really help as the
largest Pi contains c 1√

n
qn words, while nearly all words in Qn are in the union of about

√
n

sets Pi with consecutive i’s.

Remark 2 The construction is not optimal in general. For example take ℓ=1 and q=n=3.
It can easily be checked that (|P0|, |P1|, . . . , |P6|) = (1,3,6,7,6,3,1). Therefore for each
a ∈ [0, ℓn] = [0, 3], |Ca| ≤ 7. The code consisting of (0,0,0), (2,2,2) and the six permu-
tations of (0,1,2) has eight words and is a 1-UED code.
Consider also two other small cases.
For ℓ = 1, q = 4 and n = 3 one easily checks that
(|P0|, |P1|, . . . , |P9|) = (1,3,6,10,12,10,6,3,1) and so |Ca|=16 for all a ∈ [0, ℓn] = [0, 3].
Similarly for ℓ=1, q=5 and n=3 one easily checks that
(|P0|, |P1|, . . . , |P12|) = (1,3,6,10,15,18,19,18,15,10,6,3,1). It follows that |C0| = 32 and
|C1| = |C2| = |C3| = 31. Note that C0, the largest of the four codes, does not contain
P6, the largest Pi.
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