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Rudolf Ahlswede∗and Vladimir Blinovsky†

We prove that the average error capacity Cq of a quantum arbitrarily varying
channel (QAVC) equals 0 or else the random code capacity C̄ (Ahlswede’s di-
chotomy). We also establish a necessary and sufficient condition for Cq > 0.

I. Introduction and Results

We define the QAVC by the double indexed finite set of density operators ρx,s, x ∈
X , s ∈ S on C

d. X is the set of code symbols and S is the set of states of the
QAVC. As usual we consider the scheme of n uses of the channel. A code C
of cardinality N and length n is a set of pairs {(cn

i , Ii), i = 1, . . . N}, where

cn
i = (ci,1, . . . , ci,n), ci,j ∈ X and {Ii} is the resolution of the identity in

(

C
d
)

N

n
.

More precisely, the set {Ii} has the property that {I0 = I −
∑N

i=1 Ii, Ii} is the
resolution of identity. We omit this explanation later, and just say that {Ii} is the
resolution of identity. The probability Pe(C, sn) of the avarage decoding error of
the code C, when the state (sequence of states) of the QAVC is sn = (s1, . . . , sn),
is defined as follows:

Pe(C, sn) = 1 −
1

N

N
∑

i=1

Tr
(

ρcn
i ,snIi

)

. (1)

Here ρcn
i ,sn = ρci,1,s1

⊗

. . .
⊗

ρci,n,sn
.
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The QAVC includes the prototype in classical Information Theory. Classical
the arbitrarily varying channel (AVC) is defined by the set of double indexed
conditional probabilities on {W (y|x, s) : x ∈ X , s ∈ S} on finite set Y . Set S
is called the set of states of the AVC. Actually one should consider the n uses of
the AVC and the probability that the output of the AVC is yn = (y1, . . . , yn) ∈
Yn when xn = (x1, . . . , xn) ∈ X n was sent and the state of the AVC is sn =
(s1, . . . , sn) ∈ Sn:

W (yn|xn, sn) =
n

∏

i=1

W (yi|xi, si).

If one uses the (classical) code K = {(xn
i ,Di) : i = 1, . . . , N},

⋃N
i=1 Di = Yn,

Di

⋂

Dj = ∅, i 6= j, then the probability Pec(K, sn) of the average decoding error,
when the state of the AVC is sn is defined as follows

Pec(K, sn) =
1

N

N
∑

i=1

∑

yn 6∈Di

W (yn
i |x

n
i , sn).

Let for some R > 0, for every ǫ > 0, δ > 0 and sufficiently large n exist a code K
of cardinality N such that

log N

n
> R − δ, max

sn∈Sn
Pec(K, sn) < ǫ.

The supremum over all such R is called the capacity C of the AVC.

Classical AVC were studied for average errors in several papers. It suffices here
to refer to [3], [1], [6], and [5], where further references can be found. An AVC is
symmetrizable if there exists a parameterized set of distributions on S {U(s|x) :
x ∈ X} such that for all x, x′ ∈ X , y ∈ Y the following equalities are valid

∑

s∈S

W (y|x, s)U(s|x′) =
∑

s∈S

W (y|x′, s)U(s|x).

In [6] was proved that the capacity C of the AVC is 0 if it is symmetrizable and
if C > 0, then in [5] was proved

C = max
P

min
Q

IP,Q(X; Y ),

where

IP,Q(X; Y ) =
∑

x∈X , y∈Y

P (x)WQ(y|x)
WQ(y|x)

∑

x∈X P (x)WQ(y|x)
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and
WQ(y|x) =

∑

s∈S

Q(s)W (y|x, s),

P,Q are distributions on X and S respectively.

Now we return to the investigation of the QAVC. We define the capacity Cq of
the QAVC in the same way as in the classical case. Let there for some R > 0, for
every ǫ > 0, δ > 0 and sufficiently large n exist a quantum code C of cardinality
N such that

log N

n
> R − δ, max

sn∈Sn
Pe(C, sn) < ǫ.

The supremum over all such R is called the capacity Cq of the QAVC. We say that
the QAVC is symmetrizable if there exists a parameterized set of distributions
{U(s|x) : x ∈ X} on S such that for all x, x′ ∈ X the following equalities are
valid

∑

s∈S

U(s|x′)ρx,s =
∑

s∈S

U(s|x)ρx′,s.

The following simple fact is valid.

Statement 1 If QAVC is symmetrizable, then Cq = 0.

Proof. The proof is analogous to the proof in [6]. Let QAVC be symmetrizable
and

e(i, sn) = 1 − Tr(ρcn
i ,sn , Ii) =

∑

j 6=i

Tr(ρcn
i ,sn , Ij),

then

E(e(i, Sn
k ))

∆
=

∑

j 6=i

∑

sn∈Sn

U(sn|cn
k)Tr(ρcn

i ,sn , Ij)

=
∑

j 6=i

Tr

(

⊗

m=1,...,n

∑

sm∈S

U(sm, ck,m)ρci,m,sm
, Ij

)

=
∑

j 6=i

Tr

(

⊗

m=1,...,n

∑

sm∈S

U(sm, ci,m)ρck,m,sm
, Ij

)

=
∑

j 6=i

∑

sn∈Sn

U(sn|cn
i )Tr(ρcn

k
,sn , Ij).
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Note that E(e(cn, Sn
j )) is the mathematical expectation based on the distribution

of random variable Sn
j :

P (Sn
j = sn) =

n
∏

m=1

U(sm|cj,m).

Since
E(e(k, Sn

i )) =
∑

j 6=k

∑

sn∈Sn

U(sn|cn
i )Tr(ρcn

k
,sn , Ij)

we have for i 6= k
E(e(k, Sn

i )) + E(e(i, Sn
k )) ≥ 1.

Thus

1

N

N
∑

j=1

E(Pe(C, Sn
j ))

=
1

N2

N
∑

k,j=1

E(e(k, Sn
j )) ≥

1

N2

(

N

2

)

≥
1

4
.

It follows that there exists a j ∈ {1, . . . , N} such that

EPe(C, Sn
j ) ≥

1

4
. (2)

From (2) follows that there exists an sn ∈ Sn such that

Pe(C, sn) ≥
1

4

and this proves Statement 1.

Hence necessary for Cq > 0 is that the QAVC not symmetrizable. The main
contribution of the present work is the proof that if QAVC is not symmetrizable
then actually Cq = C̄ > 0, where

C̄ = max
P

min
Q

H(P,Q),

H(P,Q) = H

(

∑

x∈X

P (x)ρQ
x

)

−
∑

x∈X

P (x)H(ρQ
x ),

ρQ
x =

∑

s∈S

Q(s)ρx,s

and H(ρ) is the entropy of the density ρ : H(ρ) = −Tr (ρ log ρ) .
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Theorem 1 If QAVC is not symmetrizable, then Cq = C̄ > 0.

The plan of the proof of Theorem 1 is as follows: first we prove the fact, that
Cq = C̄ or else zero (Ahlswede’s dichotomy). Then we will prove, that if QAVC
is not symmetrizable, then Cq > 0.

To prove Theorem 1 we need some results about random quantum codes. Let Γ =

(Hn)N
⊗

(

(Cd2

)
N

n
)

N

N

. A random quantum code
(

{Cγ : γ ∈ Γ}, G
)

consists of

the (possibly infinite) family of sets of N pairs Cγ = {(cγ
i , I

γ
i ): i = 1, . . . , N}, γ ∈

Γ, together with the distribution G on Γ. Because for given n the number of
cn γ
i is finite and Iγ

i are matrices with the linearity restrictions on their elements
the natural property of measurability of sets, which we consider, follows. Here
Iγ
i , i = 1, . . . , N is as before the resolution of identity, cn γ

i = (cn γ
i,1 , . . . , cn γ

i,n ) ∈ X n

and operators are considered in
(

C
d
)

N

n
. The capacity of a QAVC under random

quantum coding is defined in the same manner as for usual quantum codes but
with

Per = inf
G

max
sn∈Sn

∑

γ∈Γ

G(γ)Pe(C
γ , sn)

instead of infC maxsn∈Sn Pe(C, sn). We denote this capacity by C̃.

To prove Theorem 1 we need the following two lemmas.

Lemma 1 The following equality is valid

C̃ = C̄.

Lemma 2 If Cq > 0, then
Cq = C̄.

II. Proofs of Lemmas 1, 2 and Theorem 1

We start with the proof of the Lemma 1. Denote

ρP,Q =
∑

x∈X , s∈S

P (x)Q(s)ρx,s
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and in the basis, where ρP,Q is diagonal, we have

ρP,Q =
∑

j

λP,Q
j |eP,Q

j >< eP,Q
j |,

λP,Q
j > 0,

∑

j λP,q
j = 1. Then for P,Qn = (Q1, . . . , Qn), where P,Qj is the

distribution on X or S correspondingly, we have

ρP,Qn

= ρP,Q1

⊗

. . .
⊗

ρP,Qn =
∑

jn

λP,Qn

jn |eP,Qn

jn >< eP,Qn

jn |,

where

λP,Qn

jn = λP,Q1

j1
. . . λP,Qn

jn
,

|eP,Qn

jn > =
⊗

|eP,Q1

j1
>

⊗

. . .
⊗

|eP,Qn

jn
> .

Denote for some δ > 0

F
∆
=

{

jn; 2−
Pn

i=1
H(ρP,Qi )−δn < λP,Qn

jn < 2−
Pn

i=1
H(ρP,Qi )+δn

}

,

ΠP,Qn ∆
=

∑

jn∈F

|eP,Qn

jn >< eP,Qn

jn |.

Then by Chebyshev’s inequality for given P,Qn, the distribution λP,Qn

jn on jn has
the property

Kn
∆
= Pr(F c) (3)

= Pr

(

∣

∣

∣

∣

n
∑

i=1

log λP,Qi

ji
+

n
∑

i=1

H
(

ρP,Qi
)

∣

∣

∣

∣

> nδ

)

<
maxQ

∑

j λP,Q
j log2 λP,Q

j

nδ2

n→∞
→ 0.

Thus
P (jn ∈ F) = 1 − Kn

n→∞
→ 1. (4)

In the same manner for x ∈ X , xn = (x1, . . . , xn) ∈ X n we define

ρQ
x

∆
=

∑

s∈S

Q(s)ρx,s =
∑

j

λQ
x,j|e

Q
x,j >< eQ

x,j|,

ρQn

xn

∆
= ρQ1

x1

⊗

. . .
⊗

ρQn

xn
=

∑

jn

λQn

xn,jn|e
Qn

xn,jn >< eQn

xn,jn|,

Fxn
∆
=

{

jn : 2−
Pn

i=1
H̄(ρ

Qi
· )−δn < λQn

xn,jn < 2−
Pn

i=1
H̄(ρ

Qi
· )+δn

}

ΠQn

xn

∆
=

∑

jn∈Fxn

|eQn

xn,jn >< eQn

xn,jn|.
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Here

jn = (j1, . . . , jn)

λQn

xn,jn = λQ1

i1,j1
. . . λQn

in,jn

H̄(ρQ
· ) =

∑

x∈X

P (x)H(ρQ
x ).

The distribution λQn

xn,jn on {jn} has analogously to (3) the property that

Pr(Fxn)
n→∞
→ 1

which also has an analogous proof. Define the operator

IQn

i
∆
=

(

N
∑

j=1

ΠP,Qn

ΠQn

cn
j

ΠP,Qn

)−1/2

ΠP,Qn

ΠQn

cn
i

ΠP,Qn

(

N
∑

j=1

ΠP,Qn

ΠQn

cn
j

ΠP,Qn

)−1/2

.

Here H−1/2 ≡ 0 on the space F =
{

rn ∈ (Cd)
N

n : Hrn = 0
}

and
(

H−1/2
)2

H = I

on (Cd)
N

n − F. Operators IQn

cn
i

are positive,

N
∑

i=1

IQn

cn
i

≤ I

and C(Qn) = {(ci, I
Qn

cn
i

), i = 1, . . . , N} is the quantum code.

Now we consider the distributions Qi on S which take values from the set m/M, m =
0, . . . ,M for some sufficiently large M. The number of such distributions is finite
for given M . This gives us a finite number of resolutions of identity IQn

i , the
property which we will use later. Now we take the average of the probability
of decoding errors (1) over some distributions Ti on S and obtain the average
probability of decoding error

Pe(C, Qn, T n) = 1 −
1

N

N
∑

i=1

Tr(ρT n

cn
i

IQn

i ),

where T n = (T1, . . . , Tn), each Ti is the distribution on S and

ρT n

cn
i

=
∑

sj∈S

T1(s1) . . . Tn(sn)ρcn
i ,sn .
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It is clear that for an arbitrary distribution T on S and ǫ > 0 there exists a
distribution from Q(M) such that

max
s∈S

|T (s) − Q(s)| < ǫ.

Now we approximate each Ti by some Qi ∈ Q(M) in the above sense.

We are going to show that for every ǫ1 > 0 and T n = (T1, . . . , Tn), for sufficiently
large M there exists a code C(Qn) = {(cn

i , I
Qn

i ) : i = 1, . . . , N} such that

Pe(C, Qn, T n) < ǫ1. (5)

First of all we will show that we can approximate the probability in the LHS
of (5) by the value Pe(C(Qn), Qn). We have

Tr(ρT n

cn
i

IQn

i ) = Tr(ρQn

cn
i

IQn

i ) − Tr((ρQn

cn
i
− ρT n

cn
i

)IQn

i )

and
∣

∣

∣

∣

Tr((ρQn

cn
i
− ρT n

cn
i

)IQn

i )

∣

∣

∣

∣

≤ Tr(IQn

i )||ρQn

cn
i
− ρT n

cn
i
|| ≤ qn2|S|nǫ.

Here we use the inequalities

Tr(IQn

i ) ≤ qn,

||ρcn
i

Qn

− ρT n

cn
i
|| ≤ n|S|n max

s∈S
, i = 1, . . . , n|Ti(s) − Qi(s)|.

Thus we have
Pe(C, Qn, T n) ≤ πQn

N + γn,N (6)

where

πQn

N = 1 −
1

N

N
∑

i=1

Tr(IQn

i ρQn

cn
i

) (7)

γn,M
M→∞
→ 0.

Next we use the considerations of the work [8], which we do not repeat here, and
which allow us to come from the formula (7) to the estimation

πQn

N ≤
1

N

N
∑

i=1

(

3Tr(ρQn

cn
i

(I − ΠP,Qn

)) (8)

+
∑

j 6=i

TrΠP,Qn

ρQn

cn
i

ΠP,Qn

ΠQn

cn
j

+ Tr(ρQn

cn
i

(I − ΠQn

cn
i

))

)

.
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Next we use the random coding argument which consists in choosing the code
strings cn

i = (ci,1, . . . , ci,n) independently with probability P (cn
i ) = P (ci,1) . . . P (ci,n).

Taking the average over both sides of (8) we obtain

EπQn

N ≤ 3TrρP,Qn

(I − ΠP,Qn

) + NTrΠP,Qn

ρP,Qn

ΠP,Qn

EΠQn

cn
j

+ ETrρQn

cn
i

(I − ΠQn

cn
i

)

≤ 4ǫ2 + N ||ΠP,Qn

ρP,Qn

ΠP,Qn

||TrEΠQn

cn
i

.

Next we have
||ΠP,Qn

ρP,Qn

ΠP,Qn

|| ≤ 2−
Pn

i=1
H(ρP,Qi )+δn

and
TrEΠQn

cn
i

= ETrΠQn

cn
i

) ≤ 2
Pn

i=1
H̄(ρ

Qi
· )+δn.

From these inequalities it follows that

EπQn

N ≤ 4ǫ2 + N22nδ−
PN

i=1
(H(ρP,Qi )−H̄(ρ

Qi
· ))

≤ 4ǫ2 + N2nδ−n minQ(H(ρP,Q)−H̄(ρQ
· )).

Thus if
log N

n
< min

Q
(H(ρP,Q) − H̄(ρQ

· )) + δ

for some δ
n→∞
→ 0, then for each n and T n we can choose M and code C =

{(cn
i , I

Qn

i ) : i = 1, . . . , N} such that

Pe(C, T n) ≤ 5ǫ2 + γn,M
n→∞
→ 0.

We have freedom in the choice of the distribution P. We will choose it to maximize
the value

H(ρP,Q) − H̄(ρQ
· ).

What we show is that for each n we have the finite family of sets of distributions
Qn = (Q1, . . . , Qn) on S such that for each set of distributions T n = (T1, . . . , Tn)
on S we have

min
C

∑

sn∈Sn

T n(sn)Pe(C, sn) < ǫ, (9)

where min is taken over the finite set of codes C = {(cn
i , I

Qn

i ) : i = 1, . . . , N} and
T n(sn) = T1(s1), . . . , Tn(sn).
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Now we use the key idea of [3], namely, the Mini-Max Theorem for mixed strate-
gies, which are the distributions T n on the states sn of the QAVC and the set of
distributions Ω on the given finite set of codes C. It says here that

max
T n

min
G∈Ω

∑

sn∈Sn, C

T n(sn)G(C)Pe(C, sn) = min
G∈Ω

max
T n

∑

sn∈Sn, C

T n(sn)G(C)Pe(C, sn).

(10)

From (9) and (10) it follows that there exists a distribution G ∈ Ω such that

max
sn∈Sn

∑

C

Pe(C, sn)G(C) < ǫ.

In other words we show that for the distribution G(C) on the finite set of codes
(random code) the average (over this distribution) probability of the decoding
error can be made arbitrary small uniformly in the choice of the state of QAVC.
This proves the direct part of Lemma 1 (that C̃ ≥ C̄).

However this scheme has the disadvantage that the sender and the receiver should
know the code which is used in the particular transmission. Later we will show
how to eliminate this difficulty.

Next we show, that
C̃ ≤ C̄. (11)

Consider another quantum channel which has the following density operators:
for given n we fix n distributions Qn = (Q1, . . . , Qn) on S and to the code
string cn corresponds the density ρQn

cn =
∑

sn∈Sn ρcn,snQ1(s1) . . . Qn(sn). The set
of complex elements of the matrices of the resolutions of the identity which defined
the quantum channel is a compact set in the natural space of vectors with complex
components. Obviously the value

Pe(Q
n)

∆
= inf

G

∫

Γ

Pe(C
γ , Q̄)dG(γ)

is achieved on the sequence of distributions {Gm; m = 1, . . .}, each of which has
support on a finite number of codes. Thus for given n for each ǫ > 0 there exists a
distribution on the codes G′ with mass, concentrated on a finite number of codes
Cγ , γ ∈ Γ̃, such that

Pe(Q
n) ≥

∑

γ∈Γ̃

Pe(C
γ , Qn)G′(γ) − ǫ1.
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From this it follows that if we have the bound
∑

γ∈Γ̃

Pe(C
γ , Qn)G′(γ) > C1, (12)

then we have the lower bound

Pe(Q
n) > C1 − ǫ1.

This for given small ǫ1 and large C1 = const implies the impossibility of trans-
mission with arbitrary small probability of decoding error.

Now we prove (12). It is easy to see that the average probability P̃e(Q
n)

∆
=

∑

γ∈Γ̃ Pe(C
γ , Qn)G′(γ) of the decoding error in such a channel satisfies the in-

equality

P̃e(Q
n) ≤ inf

G

∫

Γ

Pe(C
γ , Qn)dG(γ) + ǫ1 (13)

≤ inf
C

max
sn∈Sn

Pe(C, sn) + ǫ1.

We denote the capacity under the criterium of the probability of error Pe(Q
n) by

C̃a.

From (13) follows that the upper bound for the capacity C̃a is at the same time
the upper bound for Cq. Next we find the proper upper bound for C̃a. We fix n
and G′, defined before.

Let W = {1, . . . , 2nR} be the set of messages with uniform distribution on it. If
W ′ is the estimation of W, then by the Fano inequality [4]

H(W |W ′) ≤ H(P̃e(Q
n)) + P̃e(Q

n) log(N − 1),

where H(x) = −x log x − (1 − x) log(1 − x). At the same time

H(W |W ′) = H(W ) − I(W ; W ′) = nR − I(W ; W ′).

Thus P̃e(Q
n) can be made an arbitrary small as n → ∞ if

nR < I(W ; W ′). (14)

Since I(W ; W ′) < maxC∈supp(G′) IC(X; Y ), where IC(X; Y ) is the mutual informa-
tion between the input and output (for given code C from the support G′) we
make the condition (14) weaker, if we allow the following inequality

nR < max
C∈supp(G′)

IC(X; Y ). (15)
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For given set Qn = (Q1, . . . , Qn) of n distributions on S we choose the set
Qn(P n) = (Q1(P1), . . . , Qn(Pn)) of n distributions on S in such a way that

Qj(Pj) = arg min
Q

H(Pj, Q).

If C = {(cn
i , Ii) : i = 1, . . . , N}, then, as it was shown in [7],

sup
{{Ii}}

IC(X; Y ) ≤ H(P n, Qn(P n)).

Here sup in the LHS can be taken over all resolutions of identity for given set of
codewords from C, P n in the RHS is the distribution on X n, generated by the
uniform distribution on this set of codewords and Qn(P n)(sn) =

∏n
i=1 Qj(Pj)(sj).

Next, as it was shown in [7],

H(P n(Qn), Qn) ≤
n

∑

j=1

H(Pj, Qj(Pj)).

Furthermore we have

IC(X; Y ) ≤ max
P n

sup
{{Ii}}

IC(X; Y ) ≤ max
P n

H(P n, Qn(P n))

≤ n max
P

H(P,Q(P )) = n max
P

min
Q

H(P,Q).

This together with (15) completes the proof of Lemma 1 .

Now we will prove Lemma 2. Assume that Cq 6= 0, then C̄ 6= 0. We have already
shown that Cq ≤ C̄. For given ǫ > 0, there exists a random code

(

{Cγ : γ ∈ Γ}, G
)

C = {(cγ
i , I

γ
i ) : γ ∈ Γ̄}

with finite Γ̄ such that

max
sn∈Sn

∑

γ∈Γ̄

Pe(C
γ , sn)G(γ) < ǫ

and log N/n > C̄−δ. Next we consider n2 i.i.d. random variables Z1, . . . , Zn2 with
values in Γ̄ such that P (Zi = γ) = G(γ). Then for given sn ∈ Sn, πj = Pe(Zj, s

n)
are also i.i.d. random variables and

EPe(Zj, s
n) < ǫ.
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Here E(·) is the average in the current sense and does not coincide with the
concept in the same notation before. By Chebyshev’s inequality

πn ∆
= G

(

n2

∑

j=1

πj > λn

)

< e−αλn2

nn
∏

j=1

Eeαπj , α > 0.

But because 0 ≤ πk
j ≤ πj ≤ 1, k ≥ 0, we have

Eeαπj ≤ 1 +
∞

∑

k=1

αk

k!
Eπj ≤ 1 + ǫ

∞
∑

k=0

αk

k!
.

Thus if α = 2, and ǫ > 0 is sufficiently small, then

πn < e−αλn2

(1 + ǫeα)n2

(16)

< e−2λn2

eλn2

= e−λn2

.

Since πn decreases faster than exponentially with n we conclude that πn n→∞
→ 0

uniformly with the choice of sn ∈ Sn.

Since Cq > 0, there exists the code C = {(cn
i , Ii), i = 1, . . . , n2} of length

ν(n) = o(n) with probability of decoding error maxsn∈Sn Pe(C, sn) < λ. Now
we construct a new code of length ν(n) + n with Nn2 codewords. This code is
D = {(cn

γc
γ
i , Iγ

⊗

Iγ
i ), i = 1, . . . , N, γ = 1, . . . , n2}.

Now we use one simple fact, that if α = (α1, . . . , αR) and β = (β1, . . . , βR) are
two sequences, αi, βi ∈ [0, 1] such that

1

R

R
∑

i=1

αi ≥ 1 − ǫ,
1

R

R
∑

i=1

βi ≥ 1 − ǫ, ǫ ∈ (0, 1),

then
1

R

R
∑

i=1

αiβi ≥ 1 − 2ǫ. (17)

Now we have (sn = sn
1s

n
2 )

1

n2

1

N

n2

∑

γ=1

N
∑

i=1

Tr(ρcn
γ ,sn

1

⊗

ρcγ
i ,sn

2
Iγ

⊗

Iγ
i )

=
1

n2

1

N

n2

∑

γ=1

N
∑

i=1

Tr(ρcn
γ ,sn

1
Iγ)Tr(ρcγ

i ,sn
2
Iγ
i ).

13



Denoting

αi = Tr(ρcn
γ ,sn

1
Iγ), βi =

1

N
Tr(ρcγ

i ,sn
2
Iγ
i )

we see from (17) that

1

n2

n2

∑

i=1

αiβi ≥ 1 − 2λ.

Thus the concatenated code D has the probability of decoding error less than 2λ
and rate R = log N2N

f(n)+n
≥ log N

n
(1 − δ). This completes the proof of Lemma 2.

The next Statement 2 we will use to prove that, if QAVC is not symmetrizable,
i.e. if for each distribution U = {U(s|x), x ∈ X} on S for some x, x′ ∈ X

∑

s∈S

U(s|x′)ρx,s 6=
∑

s∈S

U(s|x)ρx′,s, (18)

then Cq > 0.

Statement 2 If for each set of distributions U for some x, x′ ∈ X the rela-
tion (18) is valid, then there exists the resolution of identity {Li, i = 1, . . . d2 +1}
in C

d such that for each set U for some x, x′ ∈ X and i ∈ {1, . . . , d2} the following
relation is valid

∑

s∈S

U(s|x′)Tr(ρx,s, Li) 6=
∑

s∈S

U(s|x)Tr(ρx′,s, Li). (19)

The proof of this statement is quite simple. We choose the set of d2 linear
independent nonegative operators Li, i = 1, . . . , d2 from the cone of nonegative
operators in C

d and norm them in such a way that

d2

∑

i=1

Li ≤ I.

Then {Li, I −
∑d2

i=1 Li; i = 1, . . . d2} is the resolution of the identity. Because
{Li, i = 1, . . . , d2} is the basis and (18) is valid we have for some i relation (19).
This proves Statement 2.

Now we consider the classical AVC with Y = {1, . . . , d2} and transition proba-
bilities

w(i|x, s) = Tr(ρx,s, Li).

14



From the Statement 2 it follows that if the initial QAVC is not symmetrizable,
then such a related AVC is not symmetrizable in the classical sense and from [5] it
follows that the capacity Ca of this AVC is positive. On the other hand obviously
Cq ≥ Ca and hence Cq > 0. Note, that from Lemma 2 in this case Cq = C̄. This
complete the proof of Theorem 1.

Final Remarks

It is interesting to note, that in our proof of Theorem 1 we essentially use the
elimination technique (an early candidate of what is now called derandomization
in Computer Sciences) from [1], which gives Lemma 2. This is the analogue of the
main result of [1]. There a necessary and sufficient condition for positivity of the
capacity was given, if the set of transmission matrices is row-convex closed– that
is under a practically satisfactory assumption of robustness. The mathematical
problem of characterizing positivity without this assumption in terms of sym-
metrizability was started in [6] and completely solved in [5] with a non-standard
decoding rule and without use of the elimination technique of [1]. (Using this
technique and proving directly that non-symmetrizability implies positive capac-
ity is a basic problem, which is open for more than 20 years!)

On the other hand in the present quantum case we have not found a suitable
decoding rule and follow the elemination technique (Lemma 2). Analogously
the positivity problem for the QAVC can be settled by reducing it to a related
classical AVC to which then the result of [5] can be applied.

We emphasize that the very hard maximal error capacity problem for AVC (in-
cluding Shannon’s zero error capacity problem as special case) is based on a more
realistic communication model. It was solved for a nice class of channels in [2],
where for the first time in the area of AVC a non standard decoding rule was
used. Extension to QAVC constitutes a challenging problem!
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