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Abstract

We introduce and study error correcting codes for parallel synchronous communi-
cation via asymmetric channels. Constructions for error detecting/correcting codes are
presented. More generally, we consider array codes for binary asymmetric channels.
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1 Introduction

In [1] the notion of “parallel error correcting codes” was introduced. A communication chan-
nel (multiple–access channel) consists of several sub–channels transmitting simultaneously
and synchronously. Informally, the senders of a multiple–access channel encode their mes-
sages to the codewords ci (of the same length over the same alphabet X , say X = Zq) and
transmit in parallel the codewords. The errors in the channel are of the additive type and
for all transmitted codewords ci the received vectors are of the form ci +e (in the presence of
noise) where e is an error vector. In particular, for two users let X = Zq and let C ⊂ X n×X n.
C is called a parallel t-error correcting code of length n, if (u, v) + (e, e) 6= (u′, v′) + (e′, e′)
for every pair of distinct codewords (u, v), (u′, v′) ∈ C and any vectors e, e′ ∈ Z

n
q each of

Hamming weight at most t. A motivation for studying such codes is explained in [1].

In many digital systems such as fiber optical communications and optical disks the ratio
between probability of errors of type 1 → 0 and 0 → 1 can be large. Practically we can
assume that only one type of errors can occur in those systems. These errors are called
asymmetric. Thus the binary asymmetric channel has the property that a transmitted 1 is
always received correctly but a transmitted 0 may be received as a 0 or 1.

In this paper we introduce and study parallel error correcting/detecting codes for binary
asymmetric channels.

We consider a parallel asymmetric channel of r senders and block length n over the binary
alphabet. A message of senders s1, . . . , sr is represented by the r×n (0, 1)–matrix with the
i-th row corresponding to the message of si. Thus a code C, called (r × n)–code, is viewed
as a set of r×n (0, 1)–matrices. We consider the errors of type 0 → 1. We say that t errors
have occured in a transmitted matrix M , also called codeword, if in some t columns of M
all zero entries transfered to ones. In other words, the received word M ′ can be considered
as M ′ = M ⊕ E, where the error word E is an r × n matrix with each column consisting
of all-ones or all-zeros and ⊕ means the Boolean sum of matrices. The weight w(E) is the
number of all-one columns in E.

We say that an (r×n)–code C is capable of correcting t asymmetric errors if any transmitted
codeword can be uniquely reconstructed at the receiving end in a presence of t or less errors.
In other words, for any two codewords M1,M2 and error words E1, E2 of weight not greater
than t we have

M1 ⊕ E1 6= M2 ⊕ E2. (1.1)

We also say that C is capable of detecting t errors if there are no codewords M1,M2 such that
M1 ⊕E = M2 with w(E) ≤ t. Such a code is called t–error correcting/detecting asymmetric
parallel code (shortly (r × n, t) AP–code).

2 Construction of error detecting/correcting AP codes.

For an r × n (0, 1)-matrix M the columns of M can be viewed as elements of the alphabet
Q = {0, 1, . . . , q−1} (q = 2r) using arbitrary one-to-one mapping ϕ : {0, 1}r → Q. Thus any
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matrix M can be represented as an n-tuple (a1, . . . , an) ∈ Qn. A natural way is to consider
each column as the binary expansion of the corresponding number from Q. Our parallel
channel can be illustrated now as a q-ary asymmetric channel ( called q–ary AP channel)
with q = 2r shown in Figure 1.
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Figure 1: q–ary AP channel

Thus AP–channel is a special case of the q–ary channel, shown in Figure 1, when q = 2r.
Therefore in general it makes sense to study this channel for arbitrary q (for other models
of q-ary asymmetric channels see [2]). The notion of t– error correcting/detecting code is
extended to any q–ary AP channel in a natural way. We call such codes q–ary t–error
correcting/detecting AP codes. In the sequel sometimes we will not specify q.

Let us consider now the following partial ordering on Qn. For an = (a1, . . . , an), bn =
(b1, . . . , bn) ∈ Qn we say that an � bn if either ai = bi or ai = q − 1 for i = 1, . . . , n. The
weight of an element an ∈ Qn is defined by w(an) = |{i : ai = q− 1}|. Thus Qn is a partially
ordered set ordered by � denoted by S(n, q). In the literature S(n, q) is known (see [8])
as star product. A ⊂ S(n, q) is called an antichain if any two distinct members of A are
incomparable. Let Si(n, q) be the set of all elements of S(n, q) with weight i and denote
Wi = |Si(n, q)|.

Proposition 1 Let A ⊂ S(n, q). Then the following two conditions are equivalent
(i) A is a q–ary AP code capable of detecting all errors .
(ii) A is an antichain in S(n, q).

Proof. The equivalence directly follows from the definitions of antichain and error detection
capability. �

Theorem 1 Given integers n, r ≥ 1 and 1 ≤ t < n let Wk = max{Wi : 0 ≤ i ≤ n}. Then

(i) Sk(n, q) is an optimal q–ary AP code capable of detecting all errors.

(ii) the code C defined by

C = {x ∈ Si(n, q) : i ≡ k mod (t + 1)} (2.1)

is a q–ary AP code capable of detecting t errors.
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Proof. Clearly Si(n, q) is an antichain. It is known also (see [8]) that the maximum size of
an antichain in S(n, q) is equal to max{Wi : 0 ≤ i ≤ n}. This with Proposition 1 implies (i).

For (ii) it suffices to show that any an ∈ Si(n, q) and bn ∈ Si+t+1(n, q) with an ≺ bn satisfy
the condition of t-error detection capability. This is clear since an ≺ bn implies that there
exist coordinates i1, . . . , it+1 such that ai1 = · · · = ait+1

= q − 1 and bi1 , . . . , bit+1
6= q − 1. �

Note that the size of the described code

|C| >
2nr

t + 1
. (2.2)

This follows from the unimodality of {Wi}, that is W0 < W1 < ... ≤ Wk ≥ Wk+1 > ... > Wn.

Next we consider error–correcting AP codes. But first we define a distance dA between
elements of Qn. To this end we define two distances d0 and d1 between an, bn ∈ Qn. Let
d0(a

n, bn) := #{i : ai 6= bi and ai, bi 6= q − 1} and let d1(a
n, bn) := max{δ(an, bn), δ(bn, an)},

where δ(an, bn) := #{i : ai 6= bi and ai = q − 1}, δ(bn, an) := #{j : aj 6= bj and bj = q − 1}.

Definition. For an, bn ∈ Qn the distance dA(an, bn) is defined by

dA(an, bn) = d0(a
n, bn) + d1(a

n, bn).

The following is easy to verify.

Proposition 2 A q–ary AP-code C is capable of correcting t errors iff for every distinct
an, bn ∈ C holds

dA(an, bn) ≥ t + 1.

We construct now single-error correcting AP–codes. Note that for n ≤ q+1 (and prime power
q) we can use for this purpose MDS codes (see [11], Ch.11) with the minimum Hamming
distance 3 and cardinality qn−2. However, one can do it better.

Proposition 3 For arbitrary q the code C ⊂ Qn defined by

C = {(x1, . . . , xn) ∈ S0(n, q) : xn =
n−1
∑

i=1

xi mod q − 1} (2.3)

is a single error–correcting AP code with |C| = (q − 1)n−1.

Proof. By the construction we have |C| = |S0(n, q)| = (q − 1)n−1. It is also clear that the
minimum distance dA of the code is 2. �

One can extend the construction to t-error correcting AP–codes. In view of Proposition 2
it is sufficient to construct a code C of length n and minimum Hamming distance t + 1 over
alphabet Q∗ = {0, 1, . . . , q − 2}.
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Lemma 1 For any prime power q and n ≤ q + 1 there exists a code C ⊂ Q∗n of minimum
Hamming distance d with

|C| ≥
(q − 1)n

qd−1
. (2.4)

Proof. There exists an MDS code C′ ⊂ GF(q)n with minimum Hamming distance d and
|C′| = qn−d+1. Let now C ⊂ Q∗n be an optimal code with minimum distance d. We use the
following known result, the idea of which is due to P. Elias (a proof can be found in [10]).

Lemma 2 (see [10]) For any subsets A,B ⊂ Z
n
q there exists x ∈ Z

n
q such that

|(x + A) ∩ B|

|A|
≥

|B|

qn
.

To obtain (2.4) we identify B with Q∗ and C′ with A. �

Clearly Lemma 1 with Proposition 2 in particular implies the following

Proposition 4 For n < 2r one can construct an (n × r) AP code C, capable of correcting
1 ≤ t < n errors, with

|C| ≥
(2r − 1)n

2rt
.

It should be mentioned that the described codes can be viewed as codes correcting erasures
with the erasure symbol is q − 1 ( for definition see [7]).

Next we give a construction of single error correcting (r × n, 1) AP codes for any r and n.

In [13] Varshamov and Tennengolts gave the first construction of nonlinear codes correcting
asymmetric errors. Given n ∈ N and an integer a, the Varshamov–Tennengolts code (VT
code ) C(n, a) is defined by

C(n, a) =

{

(x1, . . . , xn) ∈ {0, 1}n :
n

∑

i=1

ixi ≡ a mod m

}

(2.5)

where m ≥ n + 1 is an integer. It was shown that the code C(n, a) is capable of correcting
any single asymmetric error. Moreover, taking m = n + 1 there exists a ∈ {0, . . . , n} such
that

|C(n, a)| ≥
2n

n + 1
, (2.6)

thus exceeding the Hamming upper bound for the size of a binary single symmetric error–
correcting codes. Varshamov [12] showed that |C(n, 0)| ≥ |C(n, a)|.

VT codes can be used for construction of q–ary single error correcting PA codes.

Construction

Let C(n, a) be a VT code and let v ∈ C(n, a) be a codeword of weight n−k. Suppose w.l.o.g.
v = (0, . . . , 0, 1, . . . , 1). Let also D(k, 2) be a code of length k and minimum Hamming
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distance 2 over Q∗ = {0, 1, . . . , q − 2} (q = 2r). In particular given α ∈ Q∗ let Dα(k, 2) be
the code defined by

Dα(k, 2) = {(x1, . . . , xk) ∈ Q∗k : xk =
k−1
∑

i=1

xi + α mod (q − 1)}. (2.7)

We define now

Sv(n, a, α) = {(a1, . . . , ak, q − 1, . . . , q − 1) ∈ Qn : (a1, . . . , ak) ∈ Dα(k, 2) (2.8)

Similarly for every x ∈ C(n, a) define Sx(n, a, α). Clearly Sx(n, a, α) is a single error correct-
ing AP–code. Observe also that for distinct x and y and every vn ∈ Sx(n, a, α) and un ∈
Sy(n, a, α) the minimum distance dA(un, vn) ≥ 2. Thus S(n, a, α) :=

⋃

x∈C(n,a) Sx(n, a, α) is
q–ary AP–code capable of correcting all single errors.

Let A0(n, a), A1(n, a), . . . , An(n, a) be the weight distribution of C(n, a) (that is Ai(n, a) :=
# {codewords of weight i}). Then it can be easily seen that |S(n, a, α)| =

∑n
i=1 Ai(n, a) ·

(q − 1)n−i−1. Thus we have proved the following

Theorem 2 For integers q, n ≥ 2; 0 ≤ a ≤ n and 0 ≤ α ≤ q, the code S(n, a, α) is q–ary
single error correcting AP code with |S(n, a, α)| =

∑n
i=1 Ai(n, a) · (q − 1)n−i−1.

Note that {S(n, a, α)}, a = 0, . . . , n; α = 0, . . . , q− 2 is a partition of Qn into (n+1)(q− 1)
single error correcting AP–codes. Therefore max

a,α
|S(n, a, α)| ≥ qn/(n + 1)(q − 1).

Corollary 1 For integers n, r ≥ 2 there exists a single error correcting (n × r, 1) AP code
S∗ (described above) with

|S∗| ≥
2nr

(n + 1)(2r − 1)
. (2.9)

Example. n = 8, r = 2 (q = 4).
Let Ai be the number of codewords of weight i in the VT code C(8, 0). We have A0 = A8 = 1,
A2 = A6 = 4, A3 = A4 = A5 = 6. Then the construction above gives us a single error-
correcting (2×8, 1) AP code of size A0 ·3

7+A2 ·3
5+A3 ·3

4+A4 ·3
3+A5 ·3

7+A6 ·3+A8 = 3874.
Note that the size of a single symmetric error correcting code of length 8 (over an alphabet
of size 4) is upper bounded (by the Hamming bound) by 216/(3 · 8 + 1) = 2621.

3 Array codes for binary asymmetric channels

In general, a binary array code C is a set of r × n (0,1)–matrices, intended for correc-
tion/detection of erroneous bits which can for instance occur only in t rows or only in t
columns or in both, in t rows and t columns.

Array codes for binary symmetric channels are well studied (see [5] for a good survey ).
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It seems that array codes for asymmetric channels also deserve (from both theoretical and
practical points of view) to study. Here we consider the case when errors can occur in t or
less columns.

Let M(r × n) be the set of all r × n (0, 1)–matrices. We say that C ⊂ M(r × n) is a
t–error correcting/detecting array code (shortly t–AEC/AED array code) if C is capable of
correcting all asymmetric errors in t or less columns. Note that any t–AEC/AED array code
C ⊂ M(r × n) is also a t–error correcting/detecting AP code.

We discuss first the error detection problem. For two binary sequences ak = (a1, . . . , ak) and
bk = (b1, . . . , bk) we say that ak covers bk and write ak ≥ bk iff ai ≥ bi for i = 1, . . . , n. Let
us also define a partial ordering on M(r × n). For A,B ∈ M(r × n), let h1, . . . , hn and
g1, . . . , gn be the columns of A and B, respectively.

We say that A �M B iff hi ≤ gi for i = 1, . . . , n. A ⊂ M(r×n) is called an antichain iff any
two members of A are incomparable. By definition of asymmetric error detection condition
for array codes we have

Proposition 5 A ⊂ M(r×n) is a code detecting all asymmetric errors iff A is an antichain.

By the classical Sperner theorem (see [8]) it follows that the maximal size of an antichain
in M(r × n) (with respect to ordering defined above) is

(

nr
⌊nr/2⌋

)

. Thus the problem of
constructing an optimal array code detecting all asymmetric errors is easy. We just take the
set of all matrices A ⊂ M(r × n) with the Hamming weight wtH(A) = ⌊nr/2⌋, i.e. having
⌊nr/2⌋ ones.

However, the problem of construction of optimal t-AED codes (given parameters n, r, t) seems
to be not so easy. In particular, one can observe that for t = 1 the problem is equivalent to
(a special case) of a problem known (in Extremal Set Theory) as n–part Sperner problem.
However the latter problem is solved only for n = 2 (see [3] or [8]).

The following lower bound for the size of a t–AED code can be easily verified.

Proposition 6 Given integers 1 ≤ t ≤ n, 1 ≤ r let

A = {A ∈ M(r × n) : wtH(A) ≡ ⌊nr/2⌋ mod (tr + 1)} (3.1)

then A is a t–AED array code.

The lower bound (3,1) appears to be tight for r = 1, that is for usual t–AED codes. This was
observed in Borden [6]. However, this is not the case in general. Let for example r = n = 3,
t = 1. Then the size of the code A defined by (3.1) |A| =

(

9
0

)

+
(

9
4

)

+
(

9
8

)

= 136.

Let now B(w1, w2, w3) be the set all X ∈ E(3 × 3) with the i–th column (i = 1, 2, 3) having
the Hamming weight wi. It is easy to observe that the union of the sets below denoted by
B is a 1–AED array code of size |B|= 144:

B(1, 0, 3), B(1, 1, 2), B(1, 2, 1), B(1, 3, 0), B(2, 0, 0), B(2, 1, 1), B(2, 2, 2), B(2, 3, 3)

B(0, 0, 1), B(0, 1, 0), B(0, 2, 3), B(0, 3, 2), B(3, 2, 0), B(3, 1, 3), B(3, 2, 0), B(3, 3, 1).

7



Let us consider now the error correcting problem for the simplest case t = 1.

Every matrix B ⊂ M(r × n), with columns denoted by b̄1, . . . , b̄n, is associated with the
sequence (b1, . . . , bn) where b̄i (i = 1, . . . , n) is the binary representation of bi. For a subset
S ⊂ Qn , (Q = {0, . . . , q − 1 = 2r − 1}) we denote by S(r × n) ⊂ M the set of all matrices
corresponding to S.

We say that there exists a k–factorization of Z
∗
m ( Z

∗
m := Zm \ {0}) if there exists a subset

A ⊂ Z
∗
m such that each element of Z

∗
m can be uniquely represented as a product i · a where

i ∈ {1, . . . , k} and a ∈ A.

Theorem 3 Given integers n, r ≥ 2 let m := n(q − 1) + 1 (q = 2r). Let also there exists a
(q − 1)–factorization of Z

∗
m by a subset A = {a1, . . . , an}. For a ∈ Zm let B ∈ Qn be defined

by

B = {(x1, . . . , xn) ∈ Qn :
n

∑

i=1

aixi ≡ a mod m} (3.2)

then B(r × n) is a single error–correcting array code with

|B(r × n)| ≥
qn

n(q − 1) + 1
. (3.3)

Proof. Assume the opposite. Then there exist two codewords B and C with columns
b̄1, . . . , b̄n and c̄1, . . . , c̄n, such that b̄i > c̄i, c̄j > b̄j for some i, j ∈ {1, . . . , n}, and b̄k = c̄k for
all indices k 6= i, j. This clearly means that bi > ci, cj > bj and bk = ck (for all k 6= i, j) for
the corresponding sequences (b1, . . . , bn) and (c1, . . . , cn). The latter with (3.2) implies that
ai(bi−ci) ≡ aj(cj−bj) mod m. However this is a contradiction with the (q−1)–factorization
of Z∗

m by A = {a1, . . . , an}. The lower bound (3.3) is clear. �

Example. Let n = 12 and r = 2 (q = 4), thus n(q − 1) + 1 = 37. One can check that there
exists 3–factorization of Z

∗
37 by the set {2, 9, 12, 15, 16, 17, 20, 21, 22, 25, 28, 35}. Therefore,

the code B(2 × 12) defined by (3.2) has cardinality |B(2 × 12)| ≥ 412/37 exceeding the
Hamming bound for a quaternary single symmetric error–correcting code of length 12.

We give now a construction of single-error correcting array codes with a very simple decoding
algorithm.

Construction

For integers 1 < r ≤ n let E(r × n) denote the set of all r × n (0, 1)-matrices with even row
weights. Thus |E| = 2(n−1)r. For an r×n (0, 1)-matrix M let hi(M) be the Hamming weight
of its i-th column. Let also p be the smallest prime such that p ≥ n + 1. We define now the
code C(r × n) as follows.

C(r × n) = {M ⊂ E :
n

∑

i=1

ihi(M) ≡ a mod p}. (3.4)

Theorem 4 (i) C(r × n) is capable of correcting all asymmetric errors in a single column.
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(ii) There exists 0 ≤ a ≤ p − 1 such that

|C(r × n)| ≥
2(n−1)r

p
. (3.5)

Proof. Only part (i) is needed to argue. Let M ′ be a received word and let (ε1, . . . , εr)
T be

the sum of all columns of M ′ where εi is taken modulo 2, that is, (ε1, . . . , εr) is the parity
check of the rows of M ′. Then the nonzero coordinates εi1 , . . . , εit indicate that the errors
occur in the rows i1, . . . , it. Suppose now there are two codewords M1,M2 such that the
addition of (ε1, . . . , εr)

T to the i-th column of M1 and j-th column of M2 (i 6= j) results in
M ′. Then in view of (3.4) we have

n
∑

i=1

ihi(M
′ − M1) ≡

n
∑

i=1

ihi(M
′ − M2) mod p

which implies that it ≡ jt mod p. However this is a contradiction since t, i, j < p. Therefore
M1 = M2 concluding the proof. �

Decoding algorithm: For a received word M ′

1. Determine the column vector (ε1, . . . , εr)
T := M ′ · (1, . . . , n)T mod 2.

Let wH(ε1, . . . , εr) = t.
If t = 0 then M ′ is a codeword, otherwise

2. Compute b :=
∑

ihi(M
′) mod p.

3. Compute i := b−a
t

mod p .

4. Subtract from the i-th column of M ′ the column vector
(ε1, . . . , εr)

T , obtaining the transmitted codeword.

4 Concluding remarks

We have considered two models of multiple–access parallel asymmetric channels giving con-
structions of error– detecting/correcting codes for that channels.

Many problems remain open in this direction:
1. What is the size of an optimal t–error detecting AP–code?
Is the code defined by (2.1) is an optimal t–error detecting AP–code?

2. What is the size of an optimal t–AED array code?

3. Costruction of good t–error correcting AP codes and t–AED array codes.

4. Nontrivial upper bounds for the size of both classes of codes.

We considered array codes for detecting/correcting t column errors. Several natural and
interesting models can be considered here.

Consider array codes for correction/detection of t1 column and t2 row errors.
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It would be also interesting to consider the case when the number of errors in each column
(row) is limited.

The study of array codes for unidirectional type of errors (see [4] for a collection of papers
on error control codes for uniderectional errors) is also seems to be natural.
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