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Abstract

The Rényi-Berlekamp-Ulam game is a classical model for the problem of determining
the minimum number of queries to find an unknown member in a finite set when
up to a finite number of the answers may be erroneous. In the variant considered
in this paper, questions with q many possible answers are allowed, further lies are
constrained by a bipartite graph with edges weighted by 0, 1, 2, . . . (the “channel”).
The channel Γ is an arbitrary assignment stipulating the cost of the different possible
lies, i.e., of each answer j 6= i when the correct answer is i by Γ(i, j). It is also
assumed that a maximum cost e (sum of the cost of all wrong answers) can be
afforded by the responder during the whole game. We provide tight asymptotic
bounds for the number of questions needed to solve this problem. The appropriate
searching strategies are actually provided. We also show that adaptiveness can be
dramatically reduced when the channel satisfies certain symmetry constraints.

1 Introduction

The q-ary Rényi-Berlekamp-Ulam game is played by two players, called Paul and Carole. A
search space U = {0, . . . ,M − 1} is given. Carole chooses a number x∗ ∈ U , the secret number,
and Paul must find out x∗ by asking the minimum number of q-ary questions. By a q-ary
question we understand a list T0, . . . , Tq−1 of pairwise disjoint subsets forming a partition of the
set U . When presented with such a list, Carole will answer by pointing out a set Tk, supposedly
containing the secret number x∗. It is however agreed that Carole may give wrong answers with
a total weight up to e. The integer e ≥ 0 is fixed and known to both players. Intuitively, any
q-ary question asks “Which set among T0, T1, . . . , Tq−1 does the secret number x∗ belong to?”
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and the answer is just an index k ∈ Q = {0, 1, . . . , q − 1}, meaning that x∗ belongs to Tk.
We generalize the q-ary game by fixing a function Γ : Q × Q → IN0 = {0, 1, 2, . . .} such that
Γ(i, i) = 0 for each i, and Γ(i, j) > 0 for each i 6= j. The function Γ is meant to weigh Carole’s
answers. More precisely, whenever Carole answers j to a question whose correct answer is i,
we say that Carole’s answer has individual weight Γ(i, j). Note that every correct answer has
weight 0. The parameter e is meant to bound Carole’s lies via the following rule:

Carole is allowed to give wrong answers, with total weight (up to) e.

Thus, if k is the correct answer to Paul’s first question T = {T0, T1, . . . , Tq−1}, (in the sense
that x∗ ∈ Tk) then Carole can choose her answer in the set {j : e − Γ(k, j) ≥ 0}. If Carole
answers i, with i in this set, then her available weight becomes e − Γ(k, i). And the individual
weight of her answer is Γ(k, i).

We think of Γ as the weighted noise-transmission pattern on a channel carrying Carole’s answers.
The q-ary Rényi-Berlekamp-Ulam game with this sort of restriction on the patterns of Carole’s
lies will be called the game over the channel Γ. Each pair (i, j) with Γ(i, j) > e stands for an
impossible lie: indeed, if Carole answered j to a question whose correct answer is i, already the
individual weight of this answer would exceed the total weight e.

The classical q-ary Rényi-Berlekamp-Ulam game is a Rényi-Berlekamp-Ulam game over a chan-
nel Γ, such that Γ(i, j) = 1 whenever i 6= j (see [4]) . Let

wΓ = min{Γ(i, j) : i 6= j}, EΓ = {(j, k) : Γ(j, k) = wΓ} (1)

and

LΓ
ℓ (k) = {j : j ∈ Q, Γ(j, k) = ℓ} for each k ∈ Q and 0 ≤ ℓ ≤ e. (2)

For any choice of the parameters q, e,M , and for any channel Γ, let N [q](M, e) be the minimum
number of questions that Paul must ask in order to determine a number x∗ ∈ {0, 1, . . . ,M −1},
in the q-ary Rényi-Berlekamp-Ulam game with lies, over the channel Γ, with total weight e. In
this paper we deal with a dual version of this problem and we determine the largest possible
M = M(q, e, Γ, n) such that for all possible choices of the parameters q, e, n, and for any channel
Γ, there exists a strategy of size n for Paul to determine a number x∗ ∈ {0, 1, . . . ,M − 1} in
the q-ary Rényi-Berlekamp-Ulam game with lies over the channel Γ with total weight e.

Related works The Rényi-Berlekamp-Ulam game was introduced independently in [12], [13]
(in the realm of error-correcting codes for the noiseless delay-less feedback channel the same
problem had been also considered in [2]). Since these seminal treatments many models of fault-
tolerant search have been studied, see the surveys [8], [11], [9]. In [6] the issue of reducing
adaptiveness in optimal search strategies tolerant against symmetric errors was first considered
(see also [7,1]). A first step towards the study of the Rényi-Berlekamp-Ulam game over an
arbitrary channel Γ as described here was taken in [10] and [4] where the authors considered
the particular case of Γ(i, j) ∈ {1, e + 1} for all i 6= j.
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In the context of the theory of error-correcting codes, our searching strategies are the same as
shortened error-correcting codes for the noiseless delay-less feedback channel where a cost is
incurred either for the transmission or the reception of a bit.

2 Searching with lies over a general channel

Before the game starts we fix three non-negative integers q ≥ 2, M ≥ 1 and e ≥ 0, together
with a channel Γ. Then the search space is identified with the set U = {0, 1, . . . ,M − 1}. The
set of possible answers to a q-ary question is set to Q = {0, 1, . . . , q − 1}. Carole chooses a
number x∗ ∈ U and Paul must guess it by asking as few q-ary questions as possible. Carole is
allowed to choose wrong answers with total weight e on the channel Γ. We say that the current
weight available to Carole is e−w if the sum of the individual weights of her previous answers
equals w. At any stage of the game, when questions T1, . . . ,Tt have been asked and answers
Bt = b1, . . . , bt have been received (with bi ∈ Q) Paul’s state of knowledge is represented by
an (e + 1)-tuple σ = (A0, A1, A2, . . . , Ae) of pairwise disjoint subsets of U , where for each i =
0, 1, 2, . . . , e Ai is the set of elements of U which could possibly coincide with x∗ supposing that
the sum of the individual weights of Carole’s answers b1, . . . , bt equals i. In particular, the initial
state σ0 is given by (U , ∅, ∅, . . . , ∅). Let k = bt and assume Paul is in state σt−1 = (B0, . . . , Be).
Then Paul’s new state σt = σk

t−1 = (Ck
0 , . . . , Ck

e ) resulting from Carole’s answer k to question
Tt is given by

Ck
i =

⋃

{j∈Q : :Γ(j,k)≤i}

(

Bi−Γ(j,k) ∩ Tj

)

. (3)

By induction, Carole’s answers b1, . . . , bt determine a sequence of states

σ0 = σ, σ1 = σb1
0 , σ2 = σb2

1 , . . . , σt = σbt

t−1.

A state (A0, A1, A2, . . . , Ae) is final iff the set A0 ∪ A1 ∪ A2 ∪ · · · ∪ Ae has at most one
element. By a strategy S with n questions we mean the q-ary tree of depth n, where each node
ν is mapped into a question Tν , and the q edges η0, η1, . . . , ηq−1 generated by ν are, respectively
from left to right, labeled with 0, 1, . . . , q − 1, which represent Carole’s possible answers to
Tν . Let ~η = η1, . . . , ηn be a path in S, from the root to a leaf, with respective labels b1, . . . , bn,
generating nodes ν1, . . . , νn and associated questions Tν1

, . . . ,Tνn
. We say that strategy S is

winning for σ iff for every path ~η the state σ~η is final. A strategy is said to be nonadaptive if
all nodes at the same depth of the tree are mapped into the same question.

For a state σ = (A0, A1, . . . , Ae), we define the type of σ as the (e+1)-tuple whose ith coordinate
coincides with the cardinality of Ai. We shall sometimes identify σ with its type and write
σ = (a0, a1, . . . , ae), where ai = |Ai|, for each i = 0, 1, . . . , e. Accordingly, for a question
T = {T0, T1, . . . , Tq−1}, asked when the state is σ we define the type of T as the matrix

ΠT = [ti,j]0≤i≤e, j∈Q
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such that ti,j = |Tj ∩ Ai|. Then the type of Paul’s new state, σk = (bk
0, . . . , b

k
e) resulting from

Carole’s answer k to question T of type ΠT is given by

bk
i =

i
∑

ℓ=0

∑

{j∈Q : Γ(j,k)=i−ℓ}

tℓ,j. (4)

3 An upper bound for the size of the search space

Using a result of [10] in this section we shall give an upper bound on the largest integer M such
that Paul has a strategy of size n to determine Carole’s secret number in the Rényi-Berlekamp-
Ulam game over the channel Γ with total weight e, over a search space of cardinality M . Our
result holds for any Γ with Γ(i, i) = 0 and Γ(i, j) > 0 for all i, j (i 6= j), and for all sufficiently
large n .

Theorem 1 [Dumitriu, Spencer]
Fix integers q ≥ 2 and e ≥ 0 and let Q = {0, 1, . . . , q − 1}. Fix Γ : Q×Q → {0, 1, e + 1} such
that Γ(i, j) = 0, iff i = j, for each i, j ∈ Q. Let E = {(i, j) ∈ Q ×Q : Γ(i, j) = 1}. Then, for
all ǫ > 0 there exists an integer n0 > 0 such that for all n ≥ n0, if Paul has a strategy of size n
to determine a number x∗ ∈ {0, 1, . . . ,M − 1} in the q-ary Rényi-Berlekamp-Ulam game with
lies over the channel Γ, with total weight e, then

M ≤

((

q

|E|

)e

+ ǫ

)

qn

(

n
e

) .

As a consequence, recalling the definition of wΓ, and EΓ in (1) we have:

Theorem 2 Fix integers q ≥ 2 and e ≥ 0 and let Q = {0, 1, . . . , q − 1}. Fix a function
Γ : Q×Q → IN0 such that Γ(i, i) = 0 for each i and Γ(i, j) > 0 for i 6= j. Then for all ǫ > 0
there exists an integer n0, such that for all integers n > n0, if Paul has a strategy of size n
to determine a number x∗ ∈ {0, 1, . . . ,M − 1}, in the q-ary Rényi-Berlekamp-Ulam game with
lies, over the channel Γ, with total weight e, then

M ≤





(

q

|EΓ|

)⌊ e

wΓ ⌋
+ ǫ





qn

(

n

⌊ e

wΓ ⌋

) .

Proof. Let ΓU
1 : Q×Q → {0, wΓ, e + 1} be defined by

ΓU
1 (i, j) =











Γ(i, j), if Γ(i, j) ∈ {0, wΓ}

e + 1, otherwise.

For any fixed M, e, n, if Paul has no winning strategy with n questions in a game over the
channel ΓU

1 , then he has no winning strategy for the game over the channel Γ. In fact, over the
channel Γ Carole can choose her lies more freely than over ΓU

1 , whence Paul’s tasks can only
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become more difficult. Moreover, in the game over ΓU
1 each one of Carole’s lies weighs exactly

wΓ. Since the total weight of her lies cannot exceed e, the maximum number of her wrong
answers is at most

⌊

e/wΓ
⌋

. Let ΓU
2 : Q×Q → {0, 1, e + 1} be defined by

ΓU
2 (i, j) =











1, if ΓU
1 (i, j) = wΓ

ΓU
1 (i, j), otherwise.

Trivially, the game over ΓU
1 with total weight e is equivalent to the game over ΓU

2 with total

weight
⌊

e/wΓ
⌋

. Thus, for all n = 1, 2, . . . , , we have

M(q, e, Γ, n) ≤ M(q, e, ΓU
1 , n) = M(q, ⌊e/wΓ⌋, ΓU

2 , n).

Then from Theorem 1 we immediately get the desired conclusion. 2

4 Optimal strategies for the game over a channel Γ

In the rest of the paper we shall prove the existence of a strategy which almost matches the
bound given by Theorem 2. In fact, our upper and lower bounds match for all instances when
e is a multiple of wΓ.

Theorem 3 Fix integers e ≥ 0 and q ≥ 2 and let Q = {0, 1, . . . , q − 1}. Fix a function
Γ : Q×Q → IN0 satisfying Γ(i, i) = 0 for all 0 ≤ i ≤ q − 1. Then for all ǫ > 0 there exists an
integer n0, such that for all integers n > n0, if

M ≤





(

q

|EΓ|

)⌈ e

wΓ ⌉
+ ǫ





qn

(

n

⌈ e

wΓ ⌉

) , (5)

then Paul has a strategy of size n to determine a number x∗ ∈ {0, 1, . . . ,M − 1}, in the q-ary
Rényi-Berlekamp-Ulam game with lies, over the channel Γ, with total weight e.

4.1 The structure of the proof

We shall assume that the channel Γ has been fixed together with the parameters e, n,M satisfy-
ing (5). In order to ease the notation, we shall write w,E, Lℓ(k) for wΓ, EΓ, LΓ

ℓ (k), respectively.

We shall also use an additional parameter ê = ⌈e/w⌉w, as described below.

We shall consider a modified game in which Carole has the possibility to use lies whose total
weight is bounded by ê. Moreover, we shall assume that the game starts from a state which
is worse (for Paul) than the official initial state σ = (M, 0, . . . , 0). We allow Carole to choose
her secret number from a set of cardinality larger than M . This superset of the search space is
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partitioned into ê + 1 parts S0, S1 . . . , Sê, where U ⊂ S0. If Carole chooses the secret number
from Sj then she agrees to answer in such a way that the total weight of her answers does not
overcome ê − j.

For Paul this new setting is clearly worse than the original one. On the other hand because of
its more symmetrical structure, such a state will allow us an easier description of the optimal
strategy.

We shall also assume that the channel used to charge Carole’s lies is the most difficult one (for
Paul) among the channels over Q × Q which have minimum error transition cost equal to w
and whose set of error transitions of minimum cost coincides with E. More precisely, we shall
assume that Paul agrees to decrease to w+1 the charge for each of Carole’s lies that has weight
greater than w on the channel Γ.

Paul’s strategy will consist of two phases. In the first phase Paul will ask O(log M) perfect
questions. These are questions that allow Paul to maximize the information gained from each
of Carole’s answers.

The second phase will consists of n−O(log M) questions obtained via a well known procedure
in the theory of error-correcting codes. This will imply that Paul can actually ask this final
set of questions in a non-adaptive fashion. We shall first proceed to the analysis of the second
phase and then complete the proof by showing that perfect questions can be used to reach the
necessary conditions for the second phase to start.

The effectiveness of the perfect questions will be first shown for the special case when the
channel belongs to the class of the d-rightregular channels introduced in [3]. This warm up will
give us the possibility to show that for a d-rightregular channel a stronger version of Theorem
3 holds. In fact when the channel is d-rightregular the optimal strategies can be implemented
as two batch procedures, i.e., as minimum adaptiveness algorithms.

4.2 Initial conditions - technicalities

The following results allow us to modify the parameters of the game for the purpose of the
analysis and to consider a setting in which the initial state and the structure of the channel
satisfy some useful symmetry requirements.

Lemma 1 (Dumitriu-Spencer) For any α < α′ <
(

q
|E|

)
ê
w , there exist r and n0 such that

for any n ≥ n0 and for any M < α qn

( n
ê
w
)
, there exists a number aqm with a ∈ (qr, qr+1]∩ IN such

that M ≤ aqm < α′ qn

(

n
ê
w

) .

Proposition 1 Let the parameters e, q, Γ,M and n be as in Theorem 3. Let ê = ⌈e/w⌉w
and a and m be given by Lemma 1. Let c0 = 1, c1, . . . , cê be non-negative integers. For each
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i = 0, 1, . . . , ê, let

si =











qm−⌊ i
w⌋, if i mod w ≤

⌊

i
w

⌋

0, otherwise.

If Paul has a winning strategy with n questions in the q-ary Rényi-Berlekamp-Ulam game with
lies, over the channel

Γ′(i, j) =











Γ(i, j), if Γ(i, j) ∈ {0, w}

w + 1, otherwise.

with total weight ê starting from the state

σIN = (ac0s0, ac1s1, ac2s2, . . . , acêsê), (6)

then Paul has a strategy of size n to determine a number x∗ ∈ {0, 1, . . . ,M − 1}, in the q-ary
Rényi-Berlekamp-Ulam game with lies, over the channel Γ, with total weight e.

Recalling the definition of M(q, e, Γ, n) we have M(q, e, Γ, n) ≥ M(q, e, Γ′, n) ≥ M(q, ê, Γ′, n).
In fact, in the Rényi-Berlekamp-Ulam game over the channel Γ′, with total weight e, each lie
has a weight that cannot exceed the weight of a corresponding lie in the Rényi-Berlekamp-Ulam
game over the channel Γ. Trivially, any winning strategy for the game over channel Γ′ with total
weight e is also a winning strategy for the game over channel Γ with total weight e. Moreover,
any winning strategy for the game over channel Γ′ with total weight ê is also a winning strategy
for the game over channel Γ′ with total weight e, since in the former case we are giving Carole
more freedom to lie. We shall prove that under the hypothesis (5), there is a strategy for Paul
to determine a number in the set {0, 1, . . . , aqm − 1} in the Rényi-Berlekamp-Ulam game over
the channel Γ′ with total weight ê. Theorem 3 will then follow from the chain of inequalities

M(q, e, Γ, n) ≥ M(q, e, Γ′, n) ≥ M(q, ê, Γ′, n) ≥ aqm ≥ M. (7)

Henceforth we shall assume that the channel Γ chosen by Paul and Carole coincides with the
channel Γ′ given by the above proposition. Therefore, there are exactly |E| error transitions of
cost w and q2 − q − |E| error transitions of cost w + 1.

Notice that, in the expanded game we are considering with total weight of lies ê, and minimum
lie weight w we have that ê/w is an integer and in particular it coincides with ⌈e/w⌉.

To avoid repetitions, in the following we shall generally omit the quantification on the parame-
ters e, ê, q,M, n, w, a, α, α′,m and tacitly assume, that they are as given in Theorem 3, Lemma
1 and Proposition 1.

7



5 The last n − m + ê
w

questions

We shall first describe the final part of Paul’s strategy. This phase begins as soon as Paul
reaches a state σ = (A0, A1 . . . , Aê) such that

|Ai| ≤ a q
ê
w (q − 1)⌊

i
w
⌋

(

m − ê
w

⌊

i
w

⌋

)

+ O

(

(m −
ê

w
)⌊

i
w⌋−1

)

for i = 0, 1, . . . , ê − 1, (8)

and

|Aê| ≤ a |E|
ê
w

(

m − ê
w

ê
w

)

+ O

(

(m −
ê

w
)

ê
w
−1

)

. (9)

Theorem 4 at the end of this section proves that once such a condition is fulfilled, Paul can
easily get through to an easy and successful end of the game by using at most n − m + ê

w

additional questions. 2

We shall need the following technical lemmas.

Lemma 2 Let A0, A1, . . . , Aê satisfy (8)-(9), then there exists a n0 such that for all n ≥ n0 we
have the inequality

qn−m+ ê
w ≥





ê−1
∑

j=0

|Aj|









2ê/w
∑

i=0

(

n − m + ê
w

i

)

qi



 + |Aê|. (10)

Proof.

First we notice that by Lemma 1 we have

m ≤ n − logq

((

n
ê
w

)

a

α′

)

. (11)

The desired result is a direct consequence of the following two claims.

Claim 1. The following inequality holds:

m ≤

(

α′ ê
w
! qn−m

a

)

1
ê
w

+
ê

w
. (12)

For otherwise (absurdum hypothesis) we would have

2 Therefore, in order to complete the proof of Theorem 3 it will be enough to show that a state
fulfilling (8)-(9) can be reached within the first m − ê

w questions. This part is deferred to the next
sections.
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(

n
ê
w

)

a

α′
>

(

m
ê
w

)

a

α′
≥

(

m − ê
w

)
ê
w

ê
w
!

a

α′
≥

(

(

α′ ê
w

! qn−m

a

)
1
ê
w

)

ê
w

ê
w
!

a

α′
= qn−m

contradicting (11). Our first claim is settled.

Claim 2. There exists a constant 0 < γ < 1 − α′
(

|E|
q

)− ê
w , such that

|Aê| ≤ (1 − γ)qn−m+ ê
w (13)

We have the following for n ≥ n0:

|Aê| ≤ |E|
ê
w

(

m − ê
w

ê/w

)

a + O

(

(m −
ê

w
)

ê
w
−1

)

(14)

≤ |E|
ê
w

(

n

ê/w

)

a (15)

≤α′ qn−m |E|
ê
w (16)

≤ (1 − γ)qn−m+ ê
w . (17)

where

• (14) directly follows from (9),
• (15) follows from e, w constant, (11) and the properties of the binomial coefficient,
• (16) follows from (11),

• (17) follows from the fact that α′ <
(

|E|
q

)− ê
w .

This settles our second claim.

We are now ready to complete the proof of the lemma. By (8), we have that there exist poly-
nomials p and p1, such that

|Aê|+





ê−1
∑

j=0

|Aj|









2ê/w
∑

i=0

(

n − m + ê
w

i

)

qi





< (ê − 1)
(

max
0≤j≤ê−1

|Aj|
)





2ê/w
∑

i=0

(

n − m + ê
w

i

)

qi



 + (1 − γ)qn−m+ ê
w (18)

≤

(

m − ê
w

ê
w
− 1

)

p(n − m +
ê

w
) + (1 − γ)qn−m+ ê

w (19)
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≤

(

(

α′ ê
w

! qn−m

a

)
1
ê
w

)

ê
w
−1

( ê
w
− 1)!

p(n − m +
ê

w
) + (1 − γ)qn−m+ ê

w (20)

≤p1(n − m)q
(n−m)

ê
w −1

ê
w + (1 − γ)qn−m+ ê

w (21)

< γqn−m+ ê
w + (1 − γ)qn−m+ ê

w . (22)

Here,

• (18) follows by the sizes of the sets Ai being monotonically increasing and by Claim 2,
• (19) follows from (8), upon noting that

max
0≤j≤ê−1

|Aj| ≤ a q
ê
w (q − 1)

ê
w
−1

(

m − ê
w

ê
w
− 1

)

+ O

(

(m −
ê

w
)

ê
w
−2

)

and in the asymptotics analysis employed here,

(ê − 1)qê/w(q − 1)
ê
w
−1a





2ê/w
∑

i=0

(

n − m + ê
w

i

)

qi





and the term in the O notation can be absorbed in a multiplicative factor as a polynomial
in (n − m + ê

w
),

• (20) trivially follows from (12) and the properties of the binomial coefficient,

• (21) follows because
p(n−m+ ê

w
)

(

α′ ê
w !

a

)1− 1
ê
w

( ê
w
−1)!

is bounded by a polynomial in n−m of degree 2 ê
w
,

• (22) holds for all n > m−
(

ê
w

)2
+ ê

w
logq

p1(n−m)
γ

, since the exponent of q in p1(n−m)q
(n−m)

ê
w −1

ê
w

is smaller than n − m + ê
w

The proof is complete. 2

Lemma 3 Let A0, A1, . . . , Aê satisfy (8)-(9). Then there exist disjoint sets, C1, C2, of q-ary
tuples of length n − m + ê

w
such that

(i) |C1| ≥
∑ê−1

i=0 |Ai|,
(ii) for all x1,x2 ∈ C1, dH(x1,x2) ≥ 2 ê

w
+ 1,

(iii) |C2| ≥ |Aê|,
(iv) for all x1 ∈ C1,x2 ∈ C2, dH(x1,x2) ≥

ê
w

+ 1,

where dH(·, ·) denotes Hamming distance between q-ary vectors.

Proof. The sets C1 and C2 will be constructed via the following greedy algorithm 3 . Let R =
{0, 1, . . . , q − 1}n−m+ ê

w . We first build the set C1 ⊆ R by the following procedure:

3 This algorithm is an ad hoc version of the well known Gilbert procedure.
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1. Pick an arbitrary vector x ∈ R and include it in C1.
2. Delete from R all vectors y such that dH(x,y) ≤ 2 ê

w
.

3. If |C1| ≤
∑ê−1

i=0 |Ai| go back to 1.

Direct inspection shows that each time step 2. is performed, at most
∑2ê/w

j=0

(

n−m+ ê
w

j

)

qj vectors

are deleted from R. Lemma 2 guarantees that, as long as |C′
1| ≤

∑ê−1
i=0 |Ai|, one can add new

elements to C′
1: indeed, there are more elements in the set {0, 1, . . . , q − 1}n−m+ ê

w than in the
union of C′

1 and the set of deleted vectors. Once the set C1 has been constructed with its
∑ê−1

i=0 |Ai|
vectors, by Lemma 2 in R\C1 there still exist |Aê| many vectors which have not been discarded
during the construction of C1. These vectors will constitute the set C2. By direct inspection, C1

and C2 satisfy (ii) and (iv). The proof is complete. 2

Theorem 4 Let A0, A1, . . . , Aê satisfy (8)-(9). Then, starting from the state σ = (A0, A1, . . . , Aê)
Paul has a non-adaptive winning strategy of size n−m+ ê

w
in the q-ary Rényi-Berlekamp-Ulam

game with lies, over the channel Γ′, with total weight ê.

Proof. We shall show that starting from the state σ, a batch of n−m+ ê
w

nonadaptive questions
is sufficient to guess the secret number x∗ in the Rényi-Berlekamp-Ulam game over the channel
Γ′ with total weight e.

Let the encoding function θ send all elements of ∪ê−1
j=0Aj one-to-one onto q-ary tuples in C1, and

all elements of Aê one-to-one onto q-ary tuples in C2. Let C = C1 ∪ C2 be the range of θ. Paul
will ask his batch of questions with the aim of guessing the encoding xθ

∗ ∈ C of Carole’s secret
number x∗. Our constraints on the Hamming distance between any two q-tuples in C1 and C2

are just to ensure that Paul will be able to identify x∗, no matter Carole’s wrong answers. As
a matter of fact, there are two possible cases:

Case 1. The secret number x∗ is an element of ∪ê−1
j=0Aj. Then Carole can give at most ê/w wrong

answers. Any tuple x ∈ C representing a number 6= x∗ will differ from xθ
∗ in at least 2ê/w + 1

digits. From the tuple a of Carole’s answers, Paul will correctly guess x∗, as the only possible
number corresponding to the tuple in C having minimum distance from a.

Case 2. The secret number belongs to Aê. Then Carole must give correct answers to all remain-
ing questions. As a matter of fact, each lie weighs at least w and, under our standing hypothesis
for this case, Carole’s available weight is less then w. Carole’s answers will necessarily coincide
with the encoding xθ

∗ of x∗. Again, by choosing the tuple of C which is closest to the tuple of
Carole’s answers, Paul will correctly guess the secret number. In either case Paul must only
find the tuple in C which is closest to the tuple of Carole’s answers. This tuple does correspond
to Carole’s secret number x∗.

The proof is now complete. 2
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6 The first m − ê
w

questions

Perfect questions

The first phase of Paul’s strategy relies on the existence of the so called Perfect Questions.

Definition 1 (Perfect questions) A question T is perfect for a state σ = (x0, x1, . . . , xê)
if there exists a state σNext = (y0, y1, . . . , yê), such that, when Paul is in the state σ and asks
question T then for each k = 0, 1, . . . , q−1, the state resulting form Carole’s answer k coincides
with σNext.

Perfect questions play a central role in our strategies because they balance at the best the
information content among all of Carole’s possible answers. A perfect question is not prone to an
adversary strategy. As long as Paul is able to ask perfect questions Carole has no room for trying
to implement a devil’s strategy. Since each possible answer (a correct one or a lie) of Carole’s
leads to the “same state” 4 the dynamics of Paul’s states (of knowledge) is predetermined.

The problem in trying to use perfect questions is that they may not exist for the state under
consideration. In fact, the key point in our argument is to show that perfect questions are
available to Paul until the game reaches the conditions for the start of the final stage.

Fact 1 Given a state σ = (x0, x1, . . . , xê), a question T of type ΠT = [ti,j] is perfect for σ if
the following conditions are satisfied

xi =
q−1
∑

j=0

tij (23)

xk
i = ti,k +

∑

ℓ∈Lw(k)

ti−w,ℓ +
∑

ℓ∈Lw+1(k)

ti−w−1,ℓ for each j = 0, 1, . . . , ê (24)

for each i = 0, 1, . . . , ê and k = 0, 1, . . . , q − 1, where σk = (xk
0, . . . , x

k
ê) is the state resulting

from Carole’s answer k.

The system of equations (23)-(24) has the following solution:

xk
i =

1

q



xi +
q−1
∑

j=0





∑

ℓ∈Lw(j)

ti−w,ℓ +
∑

ℓ∈Lw+1(j)

ti−w−1,ℓ







 (25)

ti,k = xk
i −

∑

ℓ∈Lw(k)

ti−w,ℓ −
∑

ℓ∈Lw+1(k)

ti−w−1,ℓ for each k = 0, 1, . . . , ê (26)

Unfortunately, equation (26) does not always define a feasible question since it might be the
case that not all the question’s components ti,k’s and the next state’s components xk

i ’s as given
by (25) are non-negative integers.

4 In actual fact, different answers lead to different states but of the same type.
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6.1 Warm up: d-rightregular channels

As a warm up we shall concentrate on the special case when the channel is d-rightregular [3].

Definition 2 [3] A channel Γ is said to be d-rightregular, if |{(j, k) : Γ(j, k) = wΓ}| = d for all
k ∈ Q.

Trivially, for a d-rightregular channel Γ, it holds that d = |E|/q. We shall start by proving a
variant of Theorem 3 for the special case when Γ is a d-rightregular channel. The result restricted
to this weaker variant of the game will be stronger. In fact, for the case of d-rightregular
channels we shall prove that optimal strategies exist which are implementable with minimum
adaptiveness, i.e., in two batches of non-adaptive questions.

Proposition 2 Let σ = (x0, . . . , xe) in the q-ary Rényi-Berlekamp-Ulam game with lies, over
the channel Γ, with total weight e. Let Γ be d-rightregular and xi/q be an integer for each
i = 0, 1, . . . , ê.

Then the question T of type ΠT = [ti,j], defined by ti,j = xi/q, for each j = 0, 1, . . . , q − 1 and
i = 0, 1, . . . , ê, is perfect for the state σ. Moreover, let σk = (yk

0 , y
k
1 , . . . , y

k
ê ) be the state resulting

from Carole’s answer k. It holds that

yk
i =

1

q
xi +

d

q
xi−w +

q − 1 − d

q
xi−w−1 =

1

q
(xi + dxi−w + (q − 1 − d)xi−w−1) . (27)

Proof. The desired follows from Fact 1 and the definition of a d-rightregular channel that gives
|Lw(j)| = d and Lw+1(j) = q − 1 − d for each j = 0, 1, . . . , q − 1. 2

Recall the definition of the initial state σIN = (ac0s0, ac1s1, ac2s2, . . . , acêsê), given in Propo-
sition 1, where c0, . . . , cê are non-negative integers to be determined.

Let us fix c0 = 1. Therefore, if Γ is a d-rightregular channel for any choice 5 of non-negative
integers c1, c2, . . . , cê, iterated application of the above proposition shows that Paul can ask
m − ê

w
perfect questions.

Note that after the
(

m − ê
w

)

th question has been answered, the state resulting from Carole’s
answer might have the last component which is not a multiple of a power of q anymore. Hence
Paul cannot count on perfect questions in the remaining part of the game and will have to
use a different strategy. As a matter of fact at that point, as we shall show, Paul will be in
the position to start the final phase and successfully end the game within the next n − m + ê

w

questions.

5 Actually for our present purposes it is enough to set ci = 0 for each i = 1, 2, . . . , ê.
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6.1.1 Perfect questions are non-adaptive for the d-rightregular channel

It remarkable that the set of m − ê
w

questions described above can actually be implemented
as a batch of non-adaptive questions. This can be done as follows. Let σ = (S0, S1, . . . , Sê)
be the initial state of type (ac0s0, ac1s1, ac2s2, . . . , acêsê), as defined above. Let f : x ∈
⋃ê

i=0 Si 7→ IN be a one-to-one function which sends each element of Si into a number in
[

∑i−1
j=0 acjsj,

∑i
j=0 acjsj − 1

]

∩ IN. The first batch of questions is defined as follows: For each

j = 1, 2, . . . ,m − ê
w
, let Dj = (Dj 0, Dj 1, . . . , Dj q−1) denote the question

• “What is the jth least-significant (q-ary) digit of f(x∗)?”

More precisely, a number y ∈ ∪ê
ℓ=0Sℓ belongs to Dj i iff the jth least significant digit yj of the

q-ary expansion of its image via f(·), y = y1 · · · ym is equal to i. Let bj ∈ {0, 1, . . . , q−1} be the
answer to question Di. Let B = b1 · · · bm. Starting from the initial state σ = (S0, S1, . . . , Sê),
Paul’s state resulting from Carole’s answers b1 · · · bm is the (ê+1)-tuple σB = (A0, A1, . . . , Aê),
where for all i = 0, 1, . . . , ê, Ai =

⋃i
ℓ=0{y ∈ Sℓ | dΓ′(y,B) = i − ℓ} and dΓ′(y,B) =

∑m
i=1 Γ′(yi, bi). Therefore, for each i = 0, 1, . . . , ê and ℓ = 0, 1, . . . , i, a number y which was

initially in Sℓ will be eventually in Ai iff:

• There exists an integer j ∈ {0, 1, . . . , ⌊(i − ℓ)/w⌋} such that (i − ℓ − jw)/(w + 1) is also an
integer, and there exist two disjoint subsets of {1, 2, . . . ,m − ê

w
}, say W = {k1, k2, . . . , kj}

and W ′ = {o1, o2, . . . , o(i−ℓ−wj)/(w+1)}, such that

Γ′(yu, bu) =



























w, if u ∈ W

w + 1, if u ∈ W ′

0, otherwise.

Thus,

|Ai| =
i

∑

ℓ=0







⌊ i−ℓ
w ⌋

∑

j=0

(

m − ê
w

j

)

g(m −
ê

w
− j,

i − ℓ − jw

w + 1
)(q − 1 − d)

i−ℓ−jw

w+1 dj





 acℓ
sℓ

qm− ê
w

, (28)

where

g(x, y) =











(

x
y

)

, if x, y ∈ IN0

0, otherwise.

Let us first consider the case i = ê. Recalling that ê is divisible by w it is not hard to see that in
(28) the asymptotically leading term is the one given by ℓ = 0, j = ⌊ i

w
⌋. Recalling that c0 = 1,

and that for d-regular channels |E| = dq we have that for all sufficiently large m,

|Aê| ≤

((

m − ê
w

ê
w

)

d
ê
w + O

(

(m −
ê

w
)

ê
w
−1

))

q
ê
w a
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≤ |E|
ê
w

(

m − ê
w

ê/w

)

a + O

(

(m −
ê

w
)

ê
w
−1

)

.

Moreover, by analogous argument and d ≤ q − 1, it is not hard to see that the following looser
bound holds for each i = 0, 1, . . . , ê − 1

|Ai| ≤





(

m − ê
w

⌊

i
w

⌋

)

(q − 1)⌊
i
w⌋ + O

(

(m −
ê

w
)⌊

i
w⌋−1

)



 q
ê
w a

Therefore, after this batch of questions Paul’s state satisfies (8)-(9).

Together with Theorem 2 the results in Sections 6.1 and 5 provide the following result for the
Rényi-Berlekamp-Ulam game over a d-rightregular channel.

Theorem 5 Fix integers e ≥ 0 and q ≥ 2 and let Q = {0, 1, . . . , q − 1}. Fix an integer
0 ≤ d ≤ q − 1 and a d-rightregular channel Γ.

Then,

M(q, e, Γ, n) ≥ qn d−⌈ e
w⌉

(

n

⌈ e
w⌉

) (1 + o(1)) ,

and this bound is asymptotically tight in all cases where e is a multiple of wΓ. Moreover the
strategies attaining the above bound can be implemented with minimum adaptiveness, i.e., in
two batches of nonadaptive questions.

6.2 From d-rightregular channels to arbitrary channels

In the previous section we have shown how Paul can implement the idea of perfect questions
on a d-rightregular channel to obtain a two batch strategy that attain the bound in Theorem
3. In particular, such strategy is optimal whenever the minimum lie weight divides e.

In this section we shall need a slightly more involved machinery to show that we can extend the
upper bound of the previous section to the case of non-regular channels, at the cost of losing
the non-adaptiveness of the questions of the first stage. Notwithstanding the impossibility to
count on the symmetric structure of the channel we shall show that asymptotically (with n) a

non-regular channel Γ behaves “like” an |E|
q

-rightregular channel.

By virtue of Proposition 1 and Theorem 4 in order to prove Theorem 3 it is enough to show
that there are constants c0 = 1, c1, . . . , cê, such that for all sufficiently large m starting in the
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state σIN Paul can 6 ask m− ê
w

perfect questions as defined in (25)-(26) and the resulting state
(A0, . . . , Aê) satisfies (8).

For u = 0, 1, . . . , let σ(u) = (A
(u)
0 , A

(u)
1 , . . . , A

(u)
ê ) be the state of knowledge of Paul after the

answer to the u-th question. In particular σ(0) coincides with σIN . Let F = (Q×Q) \E. Then,
in particular, |F | = q2 − q − |E|. We shall prove our claim by induction. The key observation

is that the cardinality |A(u)
i | of the i-th component of the state of knowledge of Paul after u

questions/answers satisfies the following.

(i) |A
(u)
i | can be expressed as a · zi(u) · qm−⌊ i

w⌋−u.
(ii) The coefficient zi(u) is a linear combination of z0(u− 1), . . . , zi(u− 1), with the coefficient of

zi(u − 1), zi−w(u − 1), zi−w−1(u − 1) being respectively 1, |E| and |F |, and the coefficients of
zj(u − 1) being 0 for j = i − w + 1, . . . , i − 1.

Note that (i)-(ii) formalize the intuition that the recurrence governing the evolution of |A
(u)
i |

with respect to σ(u−1) cannot diverge much from (27).

Indeed, the next key observation will be that solving such recurrence zi(u) can be expressed
as a linear combination of c0, c1, . . . , ci, whose coefficients are polynomials of u. In symbols,
zi(u) =

∑i
j=0 pi,j(u)×cj, where for each j = 0, 1, . . . , i, pi,j(u) is a polynomial in u. In particular,

pi,j is asymptotically bounded by

|E|⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)

+ O(u⌊
i−j

w ⌋−1),

for all i divisible by w. In the remaining cases, pi,j can be asymptotically bounded by

(q × (q − 1))⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)

+ O(u⌊
i−j

w ⌋−1).

Lemma 4 There exist constants c0 = 1, c1, c2, . . . , cê, and questions T1, . . .Tm− ê
w
, such that

for each u = 1, 2, . . . ,m − ê
w

we have

|A
(u)
i | =















aqm−⌊ i
w⌋−u ∑i

j=0 cj

(

|E|⌊
i−j

w ⌋
(

u

⌊ i−j

w ⌋

)

+ O(u⌊
i−j

w ⌋−1)
)

if w|i,

aqm−⌊ i
w⌋−u ∑i

j=0 cj

(

(q × (q − 1))⌊
i−j

w ⌋
(

u

⌊ i−j

w ⌋

)

+ O(u⌊
i−j

w ⌋−1)
)

otherwise.

Proof. For sake of definiteness let us set t
(0)
i k = 0 for each i = 0, 1, . . . , ê and each k = 0, 1, . . . , q−

1 and for i = −(w + 1),−w, . . . ,−1, and for all u = 0, 1, . . . , |A
(u)
i | = 0.

We shall first show that the validity of the bound on the components of the states of knowledge
of Paul when he chooses his questions according to the rules in (25)-(26). Then we shall prove
that constants c0, . . . , cê exist that allow such questions, i.e., they guarantee that the questions
defined by (25)-(26) are feasible since they satisfy the integrality and non-negativity constraints.

6 Of course by can we mean that such questions are feasible, i.e., they satisfy the constraints of
integrality and non-negativity together with the states they lead to.
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The following claims are not difficult to prove by induction on i and u.

Claim 3. For each u = 0, 1, . . . and i = 0, 1, . . . , ê, and k = 0, 1, . . . , q − 1, there exist integers

d
(u)
i and τ

(u)
i k such that |A

(u)
i |/a = d

(u)
i qm−⌊ i

w⌋−u and t
(u)
i k = τ

(u)
i k qm−⌊ i

w⌋−u.

The claim is obviously true when u = 0. Moreover, it is also easy to see that it holds when
i = 0 for all u > 0, since |A

(u)
0 |/a = c0q

m−u = t
(u)
0 k , for all k = 0, 1, . . . , q − 1.

Now fix u ≥ 1 and i ∈ {1, . . . , ê} and assume that the claim holds for all A
(t′)
i′ , such that either

t′ < t or t′ = t and i′ < i. Then we have

|A(u)
i |/a = d

(u−1)
i qm−⌊ i

w⌋−u +





q−1
∑

j=0

∑

ℓ∈Lw(j)

τ
(u)
i−w ℓ



 qm−⌊ i
w⌋−u +





q−1
∑

j=0

∑

ℓ∈Lw+1(j)

τ
(u)
i−w−1 ℓ



 qm−⌊ i−1

w ⌋−u

and hence setting

d
(u)
i = d

(u−1)
i +

q−1
∑

j=0

∑

ℓ∈Lw(j)

τ
(u)
i−w ℓ + q⌊

i
w⌋−⌊

i−1

w ⌋
q−1
∑

j=0

∑

ℓ∈Lw+1(j)

τ
(u)
i−w−1 ℓ (29)

we have the desired result for the cardinality of A
(u)
i . Moreover by induction hypothesis we have

t
(u)
i k = d

(u)
i qm−⌊ i

w⌋−u −
∑

ℓ∈Lw(k)

τ
(u)
i−w ℓq

m−⌊ i
w⌋+1−u −

∑

ℓ∈Lw+1(k)

τ
(u)
i−w−1 ℓq

m−⌊ i−1

w ⌋+1−u (30)

which proves the second part of the induction step with

τ
(u)
i k = d

(u)
i − q

∑

ℓ∈Lw(k)

τ
(u)
i−w ℓ − q1+⌊ i

w⌋−⌊
i−1

w ⌋ ∑

ℓ∈Lw+1(k)

τ
(u)
i−w−1 ℓ. (31)

Claim 4. For each u = 1, 2, . . . and i = 0, 1, . . . , q − 1, it holds that d
(u)
i =

∑i
j=0 δi jd

(u−1)
j with

δi j integers and in particular δi i = 1, δi i−w = |E|, δi i−w−1 = q⌊
i
w⌋−⌊

i−1

w ⌋|F |, and δi j = 0, for
j = i − w + 1, i − w + 2, . . . , i − 1.

For u = 0, the claim is true for all i = 0, 1, . . . , ê. Moreover, for i = 0, the claim is trivially true
for all integer u = 1, . . . .

Now fix u ≥ 1 and assume that the claim is true for i = 0, 1, . . . , i′ − 1. As an immediate
consequence, using (29)-(31) we have that for all i = 0, 1, . . . , i′−1 and for each k = 0, 1, . . . , q−

1, τ
(u)
i k is a linear combination of {d

(u−1)
j | j = 0, 1, . . . , i} with the coefficient of d

(u−1)
i being 1.

Then, the desired result directly follows from (29). Thus, writing τi k =
∑i

j=0 sk j × d
(u−1)
j and

q′i for q⌊
i
w⌋−⌊

i−1

w ⌋ we have sk i = 1, for each k, whence
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d
(u)
i = d

(u−1)
i +

q−1
∑

j=0

∑

ℓ∈Lw(j)

τ
(u)
i−w ℓ + q′i

q−1
∑

j=0

∑

ℓ∈Lw+1(j)

τ
(u)
i−w−1 ℓ

= d
(u−1)
i +

q−1
∑

j=0

∑

ℓ∈Lw(j)

(

d
(u−1)
i−w +

i−w−1
∑

k=0

sℓ kd
(u−1)
k

)

+ q′i

q−1
∑

j=0

∑

ℓ∈Lw+1(j)

(

d
(u−1)
i−w−1 +

i−w−2
∑

k=0

sℓ kd
(u−1)
k

)

= d
(u−1)
i + |E|d

(u−1)
i−w +

q−1
∑

j=0

∑

ℓ∈Lw(j)

i−w−1
∑

k=0

sℓ kd
(u−1)
k + |F |d

(u−1)
i−w−1 + q′i

q−1
∑

j=0

∑

ℓ∈Lw+1(j)

i−w−2
∑

k=0

sℓ kd
(u−1)
k

which concludes the proof of the claim.

Claim 5. d
(u)
i =

∑i
j=0 γi j(u)cj, with γi j =

(

u

⌊ i−j

w ⌋

)

|E|⌊
i−j

w ⌋ + O(u⌊
i−j

w ⌋−1) for each i which is

divisible by w and γi j ≤
(

u

⌊ i−j

w ⌋

)

(q × (q − 1))⌊
i−j

w ⌋ + O(u⌊
i−j

w ⌋−1) otherwise.

For u = 1 and for each i = 0, 1, . . . , ê, the claim directly follows by Claim 4, since |E|, |F | ≤
q(q − 1).

Fix u > 1 and 0 ≤ i < e and assume that the claim is true for each d
(u′)
i′ such that either u′ < u

or u′ = u and i′ < i. We split the analysis into two cases, according to whether or not i is
divisible by w.

Case 1. i is divisible by w. By Claim 4 and the induction hypothesis, we have

d
(u)
i =

i
∑

j=0

δ
(u)
i j d

(u−1)
j = d

(u−1)
i + |E|d

(u−1)
i−w + q′i|F |d

(u−1)
i−w−1 +

i−w−2
∑

j=0

δ
(u−1)
i j d

(u−1)
j

=
i

∑

j=0

cj





(

u − 1
⌊

i−j
w

⌋

)

|E|⌊
i−j

w ⌋ + O
(

(u − 1)⌊
i−j

w ⌋−1
)





+|E|
i−w
∑

j=0

cj





(

u − 1
⌊

i−j
w

⌋

− 1

)

|E|⌊
i−j

w ⌋−1 + O
(

(u − 1)⌊
i−j

w ⌋−2
)





+q′i|F |
i−w−1
∑

j=0

cj





(

u − 1
⌊

i−j−1
w

⌋

− 1

)

(q × (q − 1))⌊
i−j−1

w ⌋−1 + O
(

(u − 1)⌊
i−j−1

w ⌋−2
)





+
i−w−2
∑

j=0

cjO((u − 1)⌊
i−j−2

w ⌋−1)

=
i

∑

j=0

cj





(

u − 1
⌊

i−j
w

⌋

)

|E|⌊
i−j

w ⌋ + O((u − 1)⌊
i−j

w ⌋−1)





+
i−w
∑

j=0

cj





(

u − 1
⌊

i−j
w

⌋

− 1

)

|E|⌊
i−j

w ⌋ + O((u − 1)⌊
i−j

w ⌋−2)





+
i−w−1
∑

j=0

cjO((u − 1)(⌊ i−j−1

w ⌋−1))
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=
i

∑

j=i−w+1

cj

(

u − 1
⌊

i−j
w

⌋

)

|E|⌊
i−j

w ⌋ +
i−w
∑

j=0

cj|E|⌊
i−j

w ⌋





(

u − 1
⌊

i−j
w

⌋

− 1

)

+

(

u − 1
⌊

i−j
w

⌋

)





+
i

∑

j=0

cjO((u − 1)(⌊ i−j

w ⌋−1))

=
i

∑

j=i−w+1

cj|E|⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)

+
i−w
∑

j=0

cj|E|⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)

+
i

∑

j=0

cjO((u − 1)⌊
i−j

w ⌋−1)

=
i

∑

j=0

cj



|E|⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)

+ O(u⌊
i−j

w ⌋−1)





Case 2. i is not divisible by w. We use again Claim 4 and the induction hypothesis. Moreover
we use |E| + |F | = q(q − 1) and the fact that, in this case q′i = 1. We have

d
(u)
i =

i
∑

j=0

δ
(u)
i j d

(u−1)
j = d

(u−1)
i + |E|d(u−1)

i−w + q′i|F |d(u−1)
i−w−1 +

i−w−2
∑

j=0

δ
(u−1)
i j d

(u−1)
j

=
i

∑

j=0

cj





(

u − 1
⌊

i−j
w

⌋

)

(q × (q − 1))⌊
i−j

w ⌋ + O
(

(u − 1)⌊
i−j

w ⌋−1
)





+|E|
i−w
∑

j=0

cj





(

u − 1
⌊

i−j
w

⌋

− 1

)

(q × (q − 1))⌊
i−j

w ⌋−1 + O
(

(u − 1)⌊
i−j

w ⌋−2
)





+q′i|F |
i−w−1
∑

j=0

cj





(

u − 1
⌊

i−j−1
w

⌋

− 1

)

(q × (q − 1))⌊
i−j−1

w ⌋−1 + O
(

(u − 1)⌊
i−j−1

w ⌋−2
)





+
i−w−2
∑

j=0

cjO((u − 1)⌊
i−j−2

w ⌋−1)

≤
i

∑

j=0

cj

(

u − 1
⌊

i−j
w

⌋

)

(q × (q − 1))⌊
i−j

w ⌋

+ (q × (q − 1))
i−w
∑

j=0

cj

(

u − 1
⌊

i−j
w

⌋

− 1

)

(q × (q − 1))⌊
i−j

w ⌋−1

+
i

∑

j=0

cjO((u − 1)(⌊ i−j

w ⌋−1))

=
i

∑

j=i−w+1

cj

(

u − 1
⌊

i−j
w

⌋

)

(q × (q − 1))⌊
i−j

w ⌋ +
i−w
∑

j=0

cj (q × (q − 1))⌊
i−j

w ⌋





(

u − 1
⌊

i−j
w

⌋

− 1

)

+

(

u − 1
⌊

i−j
w

⌋

)





+
i

∑

j=0

cjO((u − 1)(⌊ i−j

w ⌋−1))

=
i

∑

j=i−w+1

cj (q × (q − 1))⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)

+
i−w
∑

j=0

cj (q × (q − 1))⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)
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+
i

∑

j=0

cjO((u − 1)⌊
i−j

w ⌋−1)

=
i

∑

j=0

cj



(q × (q − 1))⌊
i−j

w ⌋
(

u
⌊

i−j
w

⌋

)

+ O(u⌊
i−j

w ⌋−1)





By Claim 3 we have that both the perfect questions and the states they determine fulfill the
integrality constraint.

In order to complete the proof we have to show the existence of an assignment for the ci’s which
guarantees that all the questions’ and the states’ components above are non-negative.

This can be achieved by choosing ci such that

d
(u)
i ≥ q

(

|E|d
(u)
i−w + q′i|F |d

(u)
i−w−1

)

for all u = 0, 1, . . . . (32)

for each i = 0, 1, . . . , e, where q′i = q⌊
i
w⌋−⌊

i−1

w ⌋.

In fact, by Claim 3, this gives the desired non-negativity property of the questions, since in
equation (31) we have |Lw(k)| ≤ |E| and |Lw+1(k)| ≤ |F | for all k and τ

(u)
i−w ℓ ≤ d

(u)
i−w, which

imply τ
(u)
i k ≥ 0.

Since d
(u)
i , d

(u)
i−w, d

(u)
i−w−1 are polynomials of u and d

(u)
i has degree higher than both d

(u)
i−w, d

(u)
i−w−1,

there exists λ = minu≥0 d
(u)
i − |E|qd

(u)
i−w − |F |qd

(u)
i−w−1. Thus, (32) can be obtained by setting

ci > −λ. This concludes the proof. 2

End of the Proof of Theorem 3

Directly from Proposition 1, Lemma 4 and Theorem 4. 2
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