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Abstract

Already in his Lectures on Search Renyi suggested to consider a search problem,
where an unknown x ∈ X = {1, 2, . . . , n} is to be found by asking for containment in
a minimal number m(n, k) of subsets A1, . . . , Am with the restrictions |Ai| ≤ k < n

2
for i = 1, 2, . . . , m.

Katona gave in 1966 the lower bound m(n, k) ≥ log n

h( k
n)

in terms of binary entropy

and the upper bound m(n, k) ≤
⌈

log n+1
log n/k

⌉

· n
k , which was improved by Wegener in

1979 to m(n, k) ≤
⌈

log n
log n/k

⌉

(⌈

n
k

⌉

− 1
)

.

We prove here for k = pn that m(n, k) = log n+o(log n)
h(p) , that is, ratewise optimality

of the entropy bound: lim
n→∞

m(n,pn)
log n = 1

h(p) .

Actually this work was motivated by a more recent study of Karpovsky, Chakrabarty,
Levitin and Avresky of a problem on fault diagnosis in hypercubes, which amounts
to finding the minimal number M(n, r) of Hamming balls of radius r = ρn with
ρ ≤ 1

2 in the Hamming space Hn = {0, 1}n, which separate the vertices. Their
bounds on M(n, r) are far from being optimal. We establish bounds implying

lim
n→∞

1

n
log M(n, r) = 1 − h(ρ).

However, it must be emphasized that the methods of prove for our two upper bounds
are quite different.

1 Introduction
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1 The results were also presented at the meeting “General Theory of Information
Transfer and Combinatorics” at the Zentrum für interdisziplinäre Forschung (ZiF)
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Concepts and some basic results on search can be found in the books [4],
[5]. Those needed in this paper are repeated in Sections 2 and 3. Basic is an
information-theoretic idea to derive lower bounds on the number of tests.

Quite surprisingly, eventhough this result is known for several decades,
nobody proved that – or even seems to have wondered whether – it
is essentially best possible for instance for k-set tests “carrying h

(

k
n

)

bit
of information”.

However, when we looked for a proof we realized an obstacle, which blocked
the development even for people who may have believed in the entropy bound.
The known proofs for upper bounds (Theorem KW in Section 3) are construc-
tive and apparently hard to improve. In such a situation often a probabilistic
argument helps. However, a standard approach by random choice is subopti-
mal even for the simple case of unrestricted tests as was noticed already by
Renyi [10]. Using the uniform distribution for choosing a separating system
(see Section 2) requires

m ≥ 2 log n + 6 (1.1)

sets, where ⌈log n⌉ is optimal (see Lemma 1 in Section 2). So we are by a
factor of 2 away from the optimum!

Our discovery is that – also in the restricted case – we can close the gap by
advanced random choices used for code selections in information theory ([1],
[7]), which we explain in Section 4 for error correcting codes.

After this preparation we turn to separating systems and present a dictionary,
which explains how the methods for codes can be translated into methods for
separating systems, when we focus on the columns of the incidence matrix.
Thus we get in Section 5 in Theorem 1 (i), (ii) the desired entropy bound first
for an average cardinality constraint. This is then improved in (iii) of Theorem
1 to a worst case constraint using a familiar large deviation argument.

Finally, in Section 6 we settle a separation problem with balls in Hamming
space, which originated in the theory of diagnosis [8]. Here we interpret the
problem as a covering problem and achieve the goal with the Covering Lemma
of [2], whereas the previous method used on the first problem fails
and vice versa!

This leaves us with a challenging future task of analysing the inter-
play of separating systems and coverings.

in Bielefeld, April 26-30, 2004, where discussions about them with G. Katona led
us to add Appendices to the paper.
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2 Nonsequential strategies and separating systems

Let the search domain be defined by X = {1, . . . , n} (n ∈ N). Every non-
sequential strategy for the search problem presented in Section 1 can be de-
scribed by a sequence tA1

, . . . , tAm
(A1, . . . , Am ⊂ X ,m ∈ N). The nonse-

quential strategy s = (tA1
, . . . , tAm

) is said to be successful if and only if for
every x ∈ X , the sequence tA1

(x), . . . , tAm
(x) of results determines the object

uniquely. Either the last test tAm
is superfluous or the strategy requires in the

worst case m tests in order to identify the object being sought. We can limit
ourselves to the analysis of successful strategies for which the last test is not
superfluous. From these strategies one should be chosen for which the worst
search time, i.e., m, is minimal.

Now, before we consider this search problem, we provide a connection to a
problem of combinatorics. The strategy s = (tA1

, . . . , tAm
) is successful if and

only if for x 6= y (x, y ∈ X ) there is an i ∈ {1, . . . ,m} such that tAi
(x) 6= tAi

(y),
i.e. x ∈ Ai and y /∈ Ai or x /∈ Ai and y ∈ Ai. Such set systems are called
separating systems.

Definition 1. A1, . . . , Am constitute a separating system in X if and only if
the following condition is met:

∀x, y ∈ X, x 6= y ∃1 ≤ i ≤ m : x ∈ Ai, y /∈ Ai or x /∈ Ai, y ∈ Ai.

These considerations can be summarized as follows:

Remark 1: The nonsequential strategy s = (tA1
, . . . , tAm

) is successful if and
only if the sets A1, . . . , Am constitute a separating system in X .

In order to decide whether s is a successful strategy, we present every test
by its value table (tAi

(1), . . . , tAi
(n)). Let A = (aix) be the following m × n

matrix with values from {0, 1}:

aix = 1 :↔ tAi
(x) = 1.

A is called the incidence matrix of the strategy s. We see that s is successful
if and only if all n columns of A are distinct.

The columns of A have length m, and there are exactly 2m distinct 0 − 1
vectors of length m. Thus, for a successful strategy s = (tA1

, . . . , tAm
), 2m ≥ n

must hold and therefore m ≥ ⌈log2 n⌉. If m = ⌈log2 n⌉ and thus 2m ≥ n, we
can select n distinct 0 − 1 vectors a1, . . . , an of length m. The strategy whose
incidence matrix is composed of the column vectors a1, . . . , an is successful. In
the following, log is always considered to be log2.
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We summarize the solution to this search problem.

Lemma 1. If all binary tests are admitted, there is a nonsequential strategy
which identifies every object in a search domain with n elements at the latest
after m = ⌈log n⌉ tests. For all m < ⌈log n⌉ there is no successful strategy
tA1

, . . . , tAm
. (A minimal separating system for a set with n elements consists

of ⌈log n⌉ sets.)

Remark 2: An alternative proof uses the representation of the numbers
1, 2, . . . , n as binary sequences of length ⌈log n⌉. This gives Y = {0, 1}⌈log n⌉.
Define Ai = {y ∈ Y : yi = 1} and notice that {Ai : 1 ≤ i ≤ ⌈log n⌉} is a
separating system.

3 Separating systems of sets with at most k elements

Definition 2. Let m(n, k) be the maximum search time of an optimal non-
sequential strategy for finding an object in a search domain of n elements if
only the binary tests tA with |A| ≤ k are admitted.

A nonsequential strategy s = (tA1
, . . . , tAm

) is successful if and only if the sets
A1, . . . , Am form a separating system. Therefore, m(n, k) is also the number
of sets which are contained in a minimal separating system on X = {1, . . . , n}
which consists of sets of at most k elements.

For n ≤ 2k, it follows from Lemma 1 that m(n, k) = ⌈log n⌉. In the following,
we assume n > 2k. Katona [9] proved the following lower bound for m(n, k).

Theorem K. For n > 2k

(a) m(n, k) ≥ log n
h(k/n)

, where h is the binary entropy function h(q) = −q log q−
(1 − q) log(1 − q).

(b) m(n, k) ≥ log n
log(en/k)

n
k
.

Here (b) follows from (a) by elementary calculations. The proof of (a) is based
on an information-theoretic result expressed in the following inequality. We
repeat the original proof, because we shall later use it with an improvement
based on convexity of h.

Lemma 2. For the entropy of m random variables Y1, . . . , Ym, which assume
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only a finite number of values, we have

H(Y1, . . . , Ym) ≤
∑

1≤i≤m

H(Yi),

with equality if and only if Y1, . . . , Ym are independent.

Proof of Theorem K: (a) Let A1, . . . , Am, m = m(n, k) be a minimal sep-
arating system on X = {1, . . . , n} of sets with at most k elements. Let the
uniform distribution be given on X , and let 1Ai

be the indicator variable of
Ai, i.e., 1Ai

assumes the value 1 or 0 depending on whether the object being
sought is in Ai or not. We have Pr(1Ai

= 1) = |Ai|/n ≤ k/n. The entropy

function h increases monotonically in the domain
[

0, 1
2

]

. For n > 2k, therefore,

H(1Ai
) = h(|Ai|/n) ≤ h(k/n).

The random vector (1Ai
, . . . , 1Am

) assumes, since A1, . . . , Am is a separating
system, different values for different x ∈ X . Therefore, the distribution of
(1A1

, . . . , 1Am
) is the uniform distribution on n values and H(1A1

, . . . , 1Am
) =

log n.

It follows from Lemma 2 that log n ≤ mh(k/n) and thus (a).

We conclude with the familiar upper bounds.

Theorem K,W. For n > 2k,

(a) m(n, k) ≤
⌈

log n+1
log(n/k)

⌉

n
k

(Katona [9]).

(b) m(n, k) ≤
⌈

log n
log(n/k)

⌉

(⌈n/k⌉ − 1) (Wegener [12]).

4 Basic methods of proving the Gilbert-type bounds on the cardi-
nality of a code

Let us consider the following problem: we are given a code length n and a
value of d ≤ 1

2
n. What is a lower bound on the cardinality of a binary code

having the minimal distance not less than d?

Maximal coding (Gilbert bound)

Since d is the minimal distance of a code, we have an evident inequality

M ≥ 2n

Sd

∼ 2n(1−h(δ)), (4.1)
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where δ = d/n ≤ 1
2

and Sd is the cardinality of a Hamming ball of radius d in
{0, 1}n. It is well-known that Sd ∼ 2h(δ)n.

Selection of a random code

Suppose, we want to find a code with M codewords selecting the codewords
at random. There are 2nM codes. Let us fix the m-th codeword. The number
of choices of all other codewords such that at least one of them is located at
the Hamming distance less than d from the m-th codeword is not greater than

(M − 1)2n(M−2)Sd−1.

Since m can vary over 1, . . . ,M and the m-th codeword can take 2n values,
the number of ‘bad’ codes (the codes with the minimal distance less than d)
is not greater than

M(M − 1)2n(M−1)Sd−1. (4.2)

If this expression is less than the total number of codes, i.e.,

M(M − 1)2n(M−1)Sd−1 < 2nM ,

then there exists at least one code with the desired property. Direct calcula-
tions show that it is possible if

M2 <
2n

Sd−1

. (4.3)

Hence, the exponent of our upper bound is twice less than the exponent we
get in (4.1). The method that can be used to improve the result is known
as expurgation. Note that the probability to select a bad i-th codeword is
upper-bounded by

(M − 1)Sd−1

2n
.

Thus, the average number of the bad words is upper-bounded by

M
(M − 1)Sd−1

2n
. (4.4)

Let us require this to be smaller than 1
2
(M − 1) and let us expurgate bad

words. Then, constructing a new code that contains only the remaining M ′

codewords, we get the inequality

M ′ >
1

4

2n

Sd−1

, (4.5)
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which is only by a factor 1
4

less than the Gilbert bound (the exponent of the
bound is the same as the exponent of Gilbert’s bound in the ratewise sense).

Selection of clouds of random codes

Suppose that we want to construct M clouds such that each cloud consists
of K codewords. The minimal distance between some codeword of every
cloud and all codewords belonging to the other clouds should be not less than
d. A generalization of the previous counting leads to the following inequality,
which upperbounds the number of bad cloud systems by the product of the
number of bad first clouds, the number of messages M and the total number
of cloud systems for M − 1 messages and requires that this be smaller than
the total number of cloud systems for M messages,

M(K(M − 1)Sd−1)
K2nK(M−1) < 2nKM (4.6)

or

M1/K(K(M − 1)Sd−1) < 2n.

If we set K = n, then this inequality can be written as

M
1

n (M − 1) <
2n

n · Sd−1

.

Sufficient for this is

M
n+1

n <
2n

nSd−1

or M <

(

2n

nSd−1

) n
n+1

.

Since n2

n+1
≥ n − 1, again sufficient for this is

M <
2n−1

nSd−1

.

As a result we obtain

M ∼ 1

2n

2n

Sd−1

, (4.7)

i.e., the construction based on the clouds of codewords instead of one code-
word assigned to each message leads to approximately the same result as
expurgation.
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5 Separating systems with an average cardinality constraint

Recall that to an (m,n)-separating system (A1, . . . , Am) of subsets Ai ⊂ X =
{1, 2, . . . , n} corresponds the incidence matrix A = (aix) 1≤i≤m

1≤x≤n
with m rows

and n columns, where the columns are distinct. If every row contains at most
k 1’s we speak of an (m,n, k)-separating system. For given n, k m(n, k) is the
minimal m for which an (m,n, k)-separating system exists.

One can generalize this concept by requiring

1

m

m
∑

i=1

|Ai| ≤ k. (5.1)

Here k is an average cardinality constraint. Correspondingly we consider (m,n)-
separating systems meeting constraint (5.1) and denote the minimal m for
which for given n, k such a system exists by m(n, k).

Our main result is the

Theorem 1. For n > 2k and p = k
n
,

(i) m(n, k) ≥ log n
h(p)

.

(ii) m(n, k) ≤ log n+o(log n)
h(p)

,

(iii) m(n, k) ≤ m(n, k) = log n+o(log n)
h(p)

.

Proof: (i) Obviously m(n, k) ≤ m(n, k). Therefore (i) improves (a) in Theo-
rem K. The proof follows again Lemma 2. Thus

log n ≤
m

∑

i=1

h

(

|Ai|
n

)

and now we proceed differently with the convexity of entropy

= m
m

∑

i=1

1

m
h

(

|Ai|
n

)

≤ m h

(

1

m

m
∑

i=1

|Ai|
n

)

≤ m h

(

k

n

)

= m(h(p)),

because h is monotone increasing for p ≤ 1
2
.

(ii) We translate the proof for codes based on clouds, which is presented in
Section 4, into the present situation.

Construction

For an m × n-matrix with pm 1’s in every column we use the following dic-
tionary relating to code concepts.
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codewords ↔ columns

M ↔ n (want to separate many columns)

2n (number of possible codewords) ↔
(

m
pm

)

(number of possible columns)

Sd−1 (bad codewords for one codeword) ↔ 1 (bad column is an identical column)

To make a first observation recall that in the random choice of codes the
number of bad codes in (5.2) is bounded by

M(M − 1)2n(M−1)Sd−1

!
< 2nM .

Translation by dictionary

number of bad matrices ≤ n(n − 1)

(

m

pm

)n−1
!
<

(

m

pm

)n

(5.2)

Sufficient for (5.2) is

n2 <

(

m

pm

)

∼ 2h(p)m (5.3)

m ∼ 2 log n

h(p)
. (5.4)

The factor “2” occurs again as in (1.1).

Now we make a random choice of clouds of matrices.

Recall (4.6), where the number of bad cloud systems for coding is upper
bounded by

M(K(M − 1)Sd−1)
K2nK(M−1) !

< 2nKM . (5.5)

Translation by dictionary

n(K(n − 1) · 1)K

(

m

pm

)K(n−1)
!
<

(

m

pm

)Kn

(5.6)

or

n1/K(K(n − 1))
!
<

(

m

pm

)

∼ 2h(p)m (5.7)

or
1

K
log n + log K + log(n − 1)

!
< h(p)m. (5.8)
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Choose K = (log n)2 and obtain

(

1

log n
+ 2 log log n

)

+ log n = o(log n) + log n
!
< h(p)m (5.9)

and thus (ii).

(iii) We have to get now the worst case constraint for the rows and not as
previously for columns. We achieve this by a kind of expurgation with the
following procedure:

1. We follow the cloud construction as before in (ii). Clearly the number of
bad cloud systems with average size constraint
≥ number of bad cloud systems with worst case constraint.

2. Choose columns as before with probability 1

( m

pm)
. Thus for the i-th row

of matrix X = (Xij) 1≤i≤m
1≤j≤n

we have E Xi1 = · · · = E Xin = p and for

i = 1, 2, . . . ,m

Prob





n
∑

j=1

Xij > (p + ε)n



 ≤ e−E(p,ε)n. (5.10)

Therefore Prob(X does not meet n(p + ε) constraint) ≤ m e−E(p,ε)n,
E(p, ε) > 0.

Furthermore, we thus have
(

m
pm

)nK
(1 − m e−E(p,ε)n)K ≥

(

m
pm

)nK
(1 −

Kme−E(p,ε)n) , T cloud systems with an n(p + ε) worst case constraint.
On the other hand the number of bad cloud systems (see (5.6)) is bounded
by

n(K(n − 1))K

(

m

pm

)K(n−1)
!
< T (5.11)

and therefore

n1/K(K(n − 1))
!
<

(

m

pm

)

(1 − Kme−E(p,ε)n)1/K . (5.12)

Again, with the choice K = (log n)2 we obtain

(

1

log n
+ 2 log log n

)

+ log n
!
< h(p)m − me−E(p,ε)n. (5.13)

To get the constraint np we replace p by p − ε in this derivation and
thus get

o(log n) + log n < h(p − ε)m − log(1 − me−E(p−ε)n).
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Make now ε = ε(n) dependent on n such that

(h(p) − h(p − ε))m + log(1 − me−E(p−ε,ε)n) = o(log n)

and thus we obtain (iii).

Remark 3: Choosing rows instead of columns with a constant number of 1’s
gives immediately the desired worst case constraint. However, there seems to
be no way to get the desired entropy bound this way. We just got m < f(p) log n

h(p)

for some f(p) > 1.

6 A search problem arising with a problem on fault diagnosis

Let M(n, r) be the minimum number of balls of radius r ≤ 1
2
n in the Hamming

space Hn = {0, 1}n, which separate the vertices. This means that there is a
system B(n, r) of balls, whose members are contained in Hn, of cardinality
|B(n, r)| = M(n, r) such that for every x, y ∈ Hn for some ball B ∈ B(n, r)
we have

x ∈ B, y /∈ B or x /∈ B, y ∈ B. (6.1)

We see that B(n, r) is a separating system of sets, which possess a geometrical
property, namely, they are balls of radius r.

We don’t see how to extend the constructions described so far to derive an
upper bound on M(n, r).

If we select columns as in Section 6, it is difficult to get rows which constitute
balls. We follow now another idea, namely, hypergraph covering (see [2]).

As edge-regular hypergraph (V , E) we choose as vertex set V = {(x, y) : x, y ∈
Hn, x 6= y} and as edge set E = {Er(z) : z ∈ Hn} where

Er(z) = {(x, y) : x ∈ Br(z), y /∈ Br(z)} (6.2)

for the ball Br(z) with center z and radius r = ρn with ρ ≤ 1
2
.

Now obviously for all edges the equal cardinalities are

e = |Er(z)| = Sr(2
n − Sr) ∼ 2h(ρ)n(2n − 2h(ρ)n). (6.3)

It is also readily seen that

dmin = min
v∈V

deg(v) =

(

n − 1

r

)

. (6.4)
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The inequality
(

n

ρn

)

≥ 2h(ρ)n

√

8nρ(1 − ρ)

implies now

dmin =

(

n − 1

r

)

=
n − r

n
·
(

n

r

)

≥ 2h(ρ)n

2
√

2n

(On the other hand we have for the average vertex degree

d̄ =
1

|V| |E|e ∼ 2n

22n
2h(ρ)n(2n − 2h(ρ)n) = 2h(ρ)n(1 − 2(h(ρ)−1)n). (6.5)

Therefore d̄
d max

= d̄(ρ,n)
dmax(ρ,n)

→ 1 as n → ∞.)

By the Covering Lemma of [2] there exists a covering C which is a separating
system such that

M(n, r) ≤ |C| ≤ |E|
dmin

log |V| + 1

≤ 2
√

2n · 2n

2h(ρ)n
· log 2n(2n − 1) + 1

≤ 4
√

2 · n3/2 · 2(1−h(ρ))n + 1

Since |V| = 2n(2n − 1), it follows from (6.3) that

M(n, r) ≥ 2n(2n − 1)

e
∼ 1

1 − 2(h(ρ)−1)n
2(1−h(ρ))n. (6.7)

Consequently

lim
n→∞

1

n
log M(n, r) = 1 − h(ρ). (6.8)

Using the entropy argument with Lemma 2 we obtain

log 2n ≤ M(n, r)h
(

Sr

2n

)

(6.9)

and thus with Sr ∼ 2h(ρ)n and the inequality log x ≤ x − 1 for all x > 0, we
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obtain

M(n, r) ≥ n

Sr/2n log 2n/Sr + (1 − Sr/2n) log 1
1−Sr/2n

≥ n

n(1 − h(ρ))2(h(ρ)−1)n + 2(h(ρ)−1)n

≥ 2(1−h(ρ))n

1 − h(ρ) + 1
n

(6.10)

which is much better than (6.7).

We summarize our findings

Theorem 2. For the separation problem with Hamming balls for 0 < ρ ≤ 1/2
and r = ρn

(i) M(n, r) ≤ 1 + 4
√

2n3/2 · 2(1−h(ρ))n

(ii) M(n, r) ≥ 1
1−h(ρ)+ 1

n

· 2(1−h(ρ))n.

Remark 4:

(a) If we use the Covering Lemma for the separation problem in Section 5
for the hypergraph (V , E), where

V = {(x, y) : x, y ∈ X = {1, 2, . . . , n}, x 6= y}

E =

{

E : E ⊂ V, E = EA = {(x, y) : |{x, y} ∩ A| = 1} for some A ∈
(

[n]

k

)}

,

|E| = k · (n − k), deg(v) = 2
(

n−2
k−1

)

, |V| = 2
(

n
2

)

, |E| =
(

n
k

)

then we obtain

m(n, k) ≤
(

n
k

)

2
(

n−2
k−1

) log 2

(

n

2

)

≤ n2

k(n − k)
log n,

which is by n
n−k

worse than the old results.

(b) On the other hand we don’t know how to handle the second problem in
Hamming space by clouds as in our first approach. Choosing columns at
random how do we get balls into the rows?

These two observations show that there is more to be understood about the
interplay of covering and search, eventually giving better results in one
of the two areas by coming from the other!

13



7 Other directions: sequential search, guessing, inspections

In the model considered here the search space X carries no probability dis-
tribution P . It would not make any difference for the task, anyhow. However,
sources (X , P ) are considered in noiseless coding or, what is equivalent, se-
quential (also called adaptive) search. We propose to study this also under
cardinality constraints k on the tests with the expected search time as
performance criterion.

Actually in his unpublished “Guessing and exponential entropy”, (Nov. 15,
1993 according to E. Arikan [6]) James Massey considered the problem of
guessing the value of a realization of a random variable X by asking questions
of the form “Is X equal to its ith possible value?” until the answer is yes.

Notice that except for the wording this is just our problem for k = 1!

Other constraints on tests have been discussed in [4], [5]. We draw here espe-
cially attention to linear search problems (or alphabetical noiseless coding).
They also should be studied under an additional cardinality constraint on the
tests.

Perhaps an even more important observation is that guessing is also a spe-
cial case of what has been called in Part 4 of [4], [5] search problems with
inspections or inspections in short. The model has the following ingredients:

(1) a search space (X , P )
(2) c(j, k) ∈ R

+, (j ∈ N, 1 ≤ k ≤ n) the costs of the jth inspection of object
k

(3) q(j, k) ∈ [0, 1] (j ∈ N, 1 ≤ k ≤ n) the probability that the object k, the
true one, is found as such exactly in its jth inspection.

This model covers a wide range of practical problems. Some of them are men-
tioned in [4], [5], where also references to the pioneering works can be found.

Now just notice that a very special case (c(1, k) = q(1, k) = 1 for 1 ≤ k ≤ n)
corresponds to guessing!

Thus guessing comes up as special case of two models. There are by now also
many results on guessing (also with variations of the original task like the
incorporation of distortion criteria). Obviously, interactions between the areas
described should be very challenging and fruitful.
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8 Appendix: Improvements

One can consider (m,n)-separating systems (A1, . . . , Am) with the stronger
constraint

|Ai| = k for i = 1, 2, . . . ,m. (8.1)

We speak here also about a k-uniform separating system.

For given n, k let m̄(n, k) be the minimal m for which a k-uniform (m,n)-
separating system exists. Clearly,

m̄(n, k) ≥ m(n, k) ≥ m(n, k). (8.2)

Gyula Katona proved in [9] two remarkable theorems, which we now present.

Clearly, k-uniform (m,n)-separating systems correspond to Mmn matrices with
the properties

(a) the elements are 0 or 1
(b) each row contains k ones
(c) no two columns are identical.

Theorem K1. Let m,n, 1 ≤ k ≤ n/2, s0, s1, . . . , sm be fixed non-negative
integers. Then there is an Mmn matrix with the properties (a), (b) and (c), in
which si is the number of columns containing i ones, if and only if

(1) mk =
m
∑

i=1
isi

(2) n =
m
∑

i=0
si

(3) si =
(

m
i

)

for i = 0, 1, . . . ,m

The point of this theorem is that the (obviously) necessary conditions (1)-(3)
are also sufficient.

Corollary K1. m̄(n, k) is equal to the least number m for which there exists
a system of non-negative integers, s0, s1, . . . , sm satisfying conditions (1)-(3).

Theorem K2. If for k < n/2 (A′
1, . . . , A

′
m) is an (m,n, k)-separating sys-

tem, then there exists an (m,n)-separating system (A1, . . . , Am), which is k-
uniform.

Corollary K2. m̄(n, k) = m(n, k).

Actually, we observed that an even stronger result holds.
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Theorem 3. If for k < n/2 (A′′
1, . . . , A

′′
m) is an (m,n)-separating system with

m
∑

i=1

|A′′
i | ≤ mk

then there exists an (m,n)-separating system (A1, . . . , Am) which is k-uniform.

Consequently we have also

Corollary. m(n, k) = m̄(n, k) = m(n, k).

Proof: This is exactly what is shown – but not stated, because the concept
of an average constraint was not present – in the proof of Theorem K2!

Furthermore, this result also can be proved by our expurgation technique by
not only guaranteeing |Ai| ≤ k = pn but simultaneously, also n − |Ai| ≤
n − k = (1 − p)n and thus |Ai| = k.

For this just replace the probability Kme−E(p,ε)n by Kme−E(p,ε)n+Kme−E(1−p,ε)n.

Remark 5: Notice that the proof of Theorem 1 can be altered. The expurga-
tion used to derive (iii) from (ii) can be replaced by the Corollary.

Problem: We are now curious whether our entropy upper bound (ii) in The-
orem 1 can also be derived by Katona’s characterisation of m(n, k) in terms of
a system of inequalities and intend to return to this question as soon as time
permits.

Remark 6: From Theorems K1, K2 Katona derives the upper bound m(n, k) ≤
⌈

log 2n
log n/k

⌉

n
k

and compares it with the lower bound log n

h( k
n

)
≤ m(n, k). He notices

the similarity of these formulas and gives estimates on their ratios. He ad-
dresses on page 193 the dependence k = cn as the most important case.
However, unfortunately – apparently due to some error in calculation –, he
concludes “... it is not difficult to show that the lower estimation is not even
asymptotically the best ...”.

In the paper “Search with small sets in presence of a liar”, Katona returns in
Section 2 “Improvements for the case of zero lies” to the issue of estimating
m(n, k), which is f(n, k) in his terminology.

He considers the ranges k = κnα, α < 1. To be specific we quote his results.
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Theorem K 2.3. Let the integer 2 ≤ R and the real number

κ ≥ R

R!1/R

be fixed. Then

f(n, κn1− 1

R ) = γn
1

R + O(1)

where γ is the only real solution of the equation

κγ +
γR

R!
= R + 1

and O(1) does not depend on n, but may depend on R and κ. On the other
hand, if

κ <
R

R!1/R

holds, then

f(n, κn1− 1

R ) =
R

n
n

1

R + O(1)

is the approximate solution.

Another perspective

In the same paper Katona is led to study 1-error correcting codes (u1, . . . , un)

for which the matrix U with columns ui =
( ui1

...
uim

)

has rows with constraints

on the number of letters (0 and 1 in his case). Notice that for codes of fixed
composition the constraints are on the columns.

Notice also that frequency counts in rows arise in the 1-dimensional marginal
distributions of the uniform distribution on the set of codewords (“Fano-
sources”) and for instance also in the derivation of Plotkin’s bound.

The row constraints can be imposed – if practically feasable or useful – not
only on t-error correcting codes, but also in Shannon’s probabilistic theory of
transmission over noisy channels.

Furthermore, they can be imposed also on codes in multi-user transmission
theory and even in our general theory of information transfer, especially, for
the theory of identification.

Many coding theorems can be improved to meet such constraints using double-
exponentially large deviational estimates like we gave for codes generated via
permutations.
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9 Appendix: on the q-ary case

Instead of partitions (Ai, A
c
i) considered are now partitions of X = {1, 2, . . . , n}

into q sets
→

Ai = (Ai1, . . . , Aiq) with associated test function Ti : X n → Q =
{0, 1, 2, . . . , q − 1}, where

Ti(x) = t − 1 iff x ∈ Ait. (9.1)

(
→

A1, . . . ,
→

Am) is an (m,n)-separating system, if the associated matrix A =
(aix) 1≤i≤m

1≤x≤n
defined by

aix = t − 1 iff x ∈ Ait (9.2)

has distinct columns.

As in the previous case (q = 2)

log n ≤
m

∑

i=1

H(Ti). (9.3)

With Pit = |Ait|
n

and Pi = (Pi1, . . . , Piq), the entropy H(Ti) equals

−
q

∑

t=1

Pit log Pit = H(Pi)

(with the usual abuse of notation).

By convexity of entropy log n ≤ m H(P̃ ), where P̃ = 1
m

∑m
i=1 Pi, and log n

H(P̃ )
≤

mq(n, c) , min{m : ∃ (m,n)-separating system with H(P̃ ) ≤ c}.

Thus we have the entropy bound

mq(n, c) ≥ log n

c
. (9.4)

In the binary case for c = h
(

k
n

)

,

H(P̃ ) ≤ c ⇔ 1

m

m
∑

i=1

|Ai| ≤ k or
1

m

m
∑

i=1

|Ac
i | ≥ n − k.

Now obviously we can derive

Proposition. log n
c

≤ mq(n, c) ≤ log n+o(n)
c

.
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Indeed choose columns by a cloud random selection with Ptm many t’s and
H(P ) ≤ c. This results in a matrix with Pt mn many t’s and H(P̃ ) ≤ c.

Technically, the number of possible columns is now
(

m
P0m,P1m,...,Pq−1m

)

∼ qH(P )m+o(m)

and this quantity takes the role of 2h(p)m+o(n) in the proof of (ii) in Theorem
1.

Now we go for (m,n)-separating systems which are (k0, k1, . . . , kq−1)-uniform,
meaning that every column contains kt many t’s (0 ≤ t ≤ q − 1).

Finally, by the expurgation techniques applied simultaneously for kt = Ptn
(0 ≤ t ≤ q − 1) as earlier for k = pn and n − k = (1 − p)n, we get now (in
obvious notation)

Theorem 4. m̄q(n; k0, k1, . . . , kq−1) = log n+o(log n)
H(P )

, if Pt = kt

n
and P = (P0, . . . , Pq−1).
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