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Abstract

We present the exact solution of the asymptotics of the multiple packing problem
in a finite space with a sum-type metric. 1

Consider the space Qn of n−tuples over a finite set Q = [q] = {1, 2, . . . , q}
(by standard convention in Combinatorics) and a sum-type metric d(x, y) =
∑n

i=1 d(xi, yi), x = (x1, . . . , xn), y = (y1, . . . , xn). Let Bn(x, r) := {y ∈ Qn :
d(x, y) ≤ r} be the ball of radius r in Qn with the center in y. We say that a
subset An ⊂ Qn is an L−packing by the balls of radius r if

max
x∈Qn

∣

∣

∣

∣

∣

Bn(x, r)
⋂

An

∣

∣

∣

∣

∣

≤ L

or equivalently for an arbitrary set of L + 1 n−tuples {u1, . . . , uL+1} ⊂ An

L+1
⋂

j=1

Bn(uj, r) = ∅.

We refer to papers [1-6] as literature about different properties and asymp-
totics of L−packings. L−packing finds applications in coding theory. Adopting
the terminology from there we can consider the model when n−tuples from
the set An are transmitted over the channel where up to t errors can occur
(up to t coordinates of the output y ∈ Qn of the channel differ from the corre-
sponding coordinates of the input x ∈ An). In such a case there exist not more
than L n−tuples from An at a distance less than t + 1 from the output of the
channel y ∈ Qn and the transmitted n−tuple x ∈ An is among them. In this
case we can decode the output of the channel into the list of not more than
L codewords (elements of the code An) such that the transmitted codeword
x is among them i.e. realize the list–of–L decoding without error. More about
the applications of list decoding one can find in [7]. Here we generalize the
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work [6], where the Hamming metric was considered, to arbitrary sum-type
metrics.

At a recent meeting in Valdivia (Chile) Guruswami pointed out that the results
presented in this paper and results of earlier papers by Blinovsky ([2-6]) are the
only exceptions of essential progress on list decoding bounds - a subject which
through the work of Sudan in Coding Theory has become a very fruitful area
in algorithms. There fortunately asymptotic ratewise optimality is presently
often not needed. But definitely progress like in the present paper with a
new setting via the general distance functions likely has an impact. Another
application of this work can be found in [13]. There is also a close connection
between list code problems and search.

We are interested in the case where for the sequence (An)∞n=1 Rn = ln |An|
n

→ 0
and Mn = |An| → ∞ as n → ∞. We call this case the zero rate case applying
the terminology from coding theory where Rn is called the rate of the code
An. Also, we call such a sequence (Mn)∞n=1 a zero rate sequence.

The restriction to the zero rate case concerns not the lower bound but the
upper bound only, where we presently cannot – and it seems nobody else can
– do better for the non-zero rate case.

For establishing the property that L + 1 different points (u1, . . . , uL+1) ⊂ Qn

are an L−packing we follow [6] and introduce the moment inertia In of these
L + 1 points by the equation

In(u1, . . . , uL+1) =
1

L + 1
min
y∈Qn

L+1
∑

j=1

d(y, uj) =
1

L + 1

n
∑

i=1

min
yi∈Q

L+1
∑

j=1

d(yi, uji). (1)

A point y ∈ Qn, which is an arg min of the RHS, is called a center of inertia.
Note that in general y is not unique.

If we denote

tn(u1, . . . , uL+1) = max







r :
L+1
⋂

j=1

Bn(uj, r) = ∅






,

then the following inequality can be easily verified

In(u1, . . . , uL+1) ≤ tn(u1, . . . , uL+1) + 1. (2)

It means that the intersection of L + 1 balls of radius In(u1, . . . , uL+1) − 1
with the centers in u1, . . . , uL+1 is empty and hence the set {u1, . . . , uL+1} is
an L−packing (by the balls of radius In(u1, . . . , uL+1) − 1). Let now
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t∗n(Mn)= max

{

r : ∃An ⊂ Qn, |An| = Mn, ∀y ∈ Qn

∣

∣

∣

∣

∣

Bn(y, r)
⋂

An

∣

∣

∣

∣

∣

≤ L

}

,

I∗
n(Mn)= max{r : ∃An ⊂ Qn, |An| = Mn, ∀{u1, . . . , uL+1} ⊂ An,

ui 6= uj, i 6= j, In(u1, . . . , uL+1) ≥ r}.

Denote for zero rate sequences (Mn)∞n=1

τ = sup
(Mn)∞

n=1

lim sup
n→∞

t∗n(Mn)

n
, ρ = sup

(Mn)∞
n=1

lim sup
n→∞

I∗
n(Mn)

n
.

We write in short

τ = lim sup
Mn→∞

t∗n(Mn)

n
, ρ = lim sup

Mn→∞

I∗
n(Mn)

n
.

For the partition j1 + . . . + jq = L + 1, jk ∈ N0 = {0, 1, 2, . . .} let

f(j1, . . . , jq) =
1

L + 1
min
x∈Q

q
∑

y=1

jsd(x, y). (3)

The main purpose of this work is to determine τ exactly. The reason that we
deal with the zero rate case only is that we are not able to find the proper
upper bound for the rate R as a function of τ. At the same time the zero rate
case is the first important non–trivial case of this problem: the value in the
following (4), which is the exact value of τ at zero rate is the upper bound for
τ at all rates. Note that we find (Theorem 2) the lower bound τ = τ(R) for
arbitrary rate R ∈ [0, 1], not only for zero rate. We formulate the main result.

Theorem 1

τ = ϕ(L) := max
λ∈[0,1]q :
∑q

x=1
λx=1

∑

j1,...,jq∈N0:
∑q

x=1
jx=L+1

f(j1, . . . , jq)

(

L + 1

j1, . . . , jq

)

q
∏

x=1

λjx

x . (4)

In the case of the Hamming metric it was shown in [6] that

τ =
1

qL+1

∑

j1,...,jq∈N0:
∑q

x=1
jx=L+1

(

1 − max{j1, . . . , jq}
L + 1

)(

L + 1

j1, . . . , jq

)

.

It was shown in [2] (see also [3]) in the binary Hamming case that

τ =
1

2





1 −

(

L

⌈L
2
⌉

)

2L





 .
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It is interesting that in this case the value of τ for odd and next even values of
L coincide. Note also that for Hamming metric it is possible to find the natural
upper bounds for the rate R as the function of τ, not only at zero rate. The
same we are able to do here in the case of a general sum–type metric.

The proof of Theorem 1 consists of several parts. First we prove the lower
bound on ρ, which due to the relation (2) is a lower bound for τ. Then we will
prove the upper bound for ρ. At last we will prove that this upper bound for
ρ is still valid for τ. All these results are stated in the following lemmas.

Lemma 1 The following relation is valid

ρ ≥ ϕ(L). (5)

Lemma 2 The following relation is valid

ρ ≤ ϕ(L). (6)

Lemma 3 The following relation is valid

τ ≤ ϕ(L). (7)

The proof of Lemma 1 we will give by the method of random choice with
expurgation (about this method see for ex. [3], [9]). Consider the matrix of
size (L + 1) × n with symbols from Q which are chosen independently and
with probability P (x) = λx, where {λx} are values on which the maximum
in (4) is achieved. Let u1, . . . , uL+1 be L + 1 rows of this matrix of length n.
Then the average value of the moment inertia EIn(U1, . . . , UL+1), where Uj =
(Uj1, . . . , Ujn) is the random variable taking values uj = (uj1, . . . , ujn) ∈ Qn,
satisfies the relation

EIn(U1, . . . , UL+1) = nϕ(L).

Now because

In(U1, . . . , UL+1) =
n
∑

i=1

I1(U1i, . . . , U(L+1)i) for I = I1

and variables I1 = I(U1i, . . . , U(L+1)i), i = 1, . . . , n, are independent identically
distributed random variables, we can apply the Chernoff bound to estimate
the large deviation of the sum In of i.i.d. random variables from its mean
value:

P (In < nρ = E(In) − ǫn) < E(exp(−hIn)) exp(hnρ) (8)

= exp (n ln(E(exp(−hI1))) + hnρ) := exp(nδ(h, ρ)), h ≥ 0,
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(The first line in (8) is exactly the Chernoff bound. More about such estima-
tions one can find in [10]). Then consider the new matrix of size Mn×n whose
elements are independently chosen from Q with distribution P (x) = λx, x ∈
Q. We say that the subset of different rows ui1, . . . , uiL+1

of the matrix is bad
if In(ui1, . . . , uiL+1

) < nρ. According to (8) the average number of bad sets is
less than

(Mn)L+1 exp(nδ(h, ρ)). (9)

Hence if we choose one matrix with the number of bad sets less than the
average and expurgate one vector from each bad subset of rows we obtain a
matrix without bad subsets of rows. In order to expurgate the number of rows
such that the whole number of rows does not decrease too much we impose the
condition that the whole number of bad sets is less than Mn/2. This condition,
using (9), can be expressed as

(Mn)L+1 exp(nδ(h, ρ)) < Mn/2. (10)

It sets the restrictions on the possible values of Mn and ρ (for given h). Next we
obtain the asymptotic representation of the inequality (10) which guarantees
that this inequality is satisfied. Taking ln from both sides of this inequality
we obtain the relation

ln Mn

n
+

1

L
δ(h, ρ) ≤ o(1), Mn → ∞. (11)

If Mn = [exp(nR)], then we have the asymptotic relation

R = − 1

L
δ(h, ρ).

Optimization of the RHS of the last relation over h ≥ 0 (we put the derivative
δ′h(h, ρ) = 0) gives the relations

R =− 1

L

(

hρ + ln Ee−hI1
)

, (12)

ρ =
E
(

I1e
−hI1

)

Ee−hI1
.

It is easy to calculate the mathematical expectations from the last formulas:
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Ee−hI1 =
∑

(j1,...,jq):
∑q

x=1
jx=L+1

e−hf(j1,...,jq)

(

L + 1

j1 . . . jq

)

q
∏

x=1

λjx

x (13)

E
(

I1e
−hI1

)

=
∑

(j1,...,jq):
∑q

x=1
jx=L+1

f(ji, . . . , jq)e
−hf(j1,...,jq)

(

L + 1

j1 . . . jq

)

q
∏

x=1

λjx

x .

Substituting (13) into (12) we obtain the asymptotic bounds R(ρ) in para-
metrical form. Obviously these bounds are lower bounds and as we mentioned
before they are still valid if we substitute τ for ρ. We establish the lower bound
R = R(τ) (or τ = τ(R)) in the following

Theorem 2 The asymptotic lower bound in parametrical form (12) is valid

(with parameter h and ρ = τ), where Ee−hI1 and E
(

I1e
−hI1

)

are determined

by the equations (13).

The bound (12) is general and to reach the particular case we are interested
in, it is necessary to put R = 0. In this case we achieve the largest possible
value of ρ (or τ) and still are in the limiting situation where Mn → ∞. It is
easy to see that in this case it is necessary to put h = 0 and obtain

τ ≥ EI1 =
∑

(j1,...,jq):
∑q

x=1
jx=L+1

f(j1, . . . , jq)

(

L + 1

j1 . . . jq

)

q
∏

x=1

λjx

x . (14)

This proves Lemma 1.

To obtain an upper bound on ρ we use Plotkin’s method. Briefly this method
consists in the following: the minimal value of some function of vectors over
some set of vectors estimated from above by the average of this function
over the choice of these vectors. Then due to the additivity property of the
function over coordinates of vectors we can write the average componentwise
and then find the maximum of the average in each component over the choice
of elements from Q. More about Plotkin’s technique one can find in [3], [11].
Now we apply Plotkin’s method in our case. Consider the matrix of size Mn×n
with elements from Q. The minimal moment inertia

Imin
n = min

j1,...,jL+1∈[Mn]
In(uj1, . . . , ujL+1

)

does not exceed the average moment inertia < In > over choosing vectors
uj1, . . . , ujL+1

,

Imin
n ≤< In >=

1
(

Mn

L+1

)

∑

j1,...,jL+1, jm 6=jm′ ,m6=n′

In(uj1, . . . , ujL+1
).
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At the same time, due to the additivity property of the metric, the sum in the
RHS of this inequality can be decomposed into the sum of n coordinate sums:

∑

j1,...,jL+1, j
m′ 6=jm,

m′ 6=m

In(uj1, . . . , ujL+1
) =

n
∑

i=1

∑

j1,...,jL+1, j
m′ 6=jm,

m′ 6=m

I1(uj1,i, . . . , ujL+1,i)

Let gi(k) be the number of times one meets symbol k in the i-th column of
the matrix. Then the following relation can be easily verified:

∑

j1,...,jL+1,

j
m′ 6=jm, m′ 6=m

I1(uj1,i, . . . , ujL+1,i) =
∑

j1,...,jq:
∑

jk=L+1

f(j1, . . . , jq)
q
∏

k=1

(

gi(k)

jk

)

.

(15)

Dividing the last sum by
(

Mn

L+1

)

and using relations

(

a

b

)

<
ab

b!
,

(

a

b

)

=
ab

b!
(1 + o(1))

as a → ∞, b = const we obtain the asymptotic inequality

< I1 >=
1

(

Mn

L+1

)

∑

j1,...,jL+1, jk′ 6=jk, k′ 6=k

I1(uj1,i, . . . , ujL+1,i
) (16)

=
∑

j1,...,jq:
∑

jk=L+1

f(j1, . . . , jq)

(

L + 1

j1 . . . jq

)

q
∏

k=1

(κi(k))jk (1 + o(1))

where κi(k) = gi(k)
Mn

. Now from (16) it follows that

ρ ≤ max
{κi(k)}:

∑q

k=1
κi(k)=1

∑

j1,...,jq:
∑

jk=L+1

f(j1, . . . , jq)

(

L + 1

j1 . . . jq

)

q
∏

k=1

(κi(k))jk .

(17)

This proves Lemma 2.

To prove Lemma 3 we need an involved technique. First we need Ramsey’s
Theorem. We next formulate the version of this theorem adapted to our pur-
poses and for further information refer to [8]. k−uniform hypergraphs are those
for which all edges contain k vertices. The complete k−uniform hypergraph
with n vertices contains all

(

n

k

)

edges.

Theorem 3 (Ramsey) Let r and Z be positive integers. There exists n0 such
that for n > n0 a k−uniform complete hypergraph with n vertices, whose edges
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are colored by Z numbers, contains a monochromatic complete subhypergraph
with n′ > r vertices.

The scheme of the proof is as follows. First we consider the (L + 1)-uniform
hypergraph G on Mn vertices of which all are vectors from some set Mn ⊂ Qn

and |Mn| = Mn
n→∞→ ∞. Edges of this hypergraph are all subsets of L + 1

vectors from Mn. Using Ramsey’s Theorem we extract from this hypergraph
a subhypergraph such that for each sequence (q1, . . . , qL+1) ∈ QL+1 all L + 1
ordered vertices of this subhypergraph have the same up to o(n) as Mn → ∞
number of positions, where this sequence occurs. Then we will show that this
is sufficient for the same property to be satisfied for non–ordered L + 1 ver-
tices from the subhypergraph. At last we will show that for such hypergraphs
moment inertia of arbitrary L + 1 vectors asymptotically coincide with the
maximal radius of an L−packing of these vectors. The important thing is that
after all these transformations of the initial set Mn we obtain a set whose
cardinality still goes to infinity as Mn → ∞. Now applying Lemma 2 to this
set we obtain the upper bound for ρ and hence for τ of this set. Since the
initial set has a τ only smaller than the obtained set, we can state that the
initial set also satisfies the bound from (3) with τ instead of ρ. This proves
Lemma 3.

Now we will realize our plan. Let (Mn)
∞
n=1 be the sequence of subsets from

Qn and Mn
n→∞→ ∞. First we order once and arbitrarily each set Mn. Fix

some ordered set (q1, . . . , qL+1) ∈ QL+1 whose elements can repeat. For the
arbitrarily ordered subset (u1, . . . , uL+1) ⊂ Mn we denote by

T(q1,...,qL+1)(u1, . . . , uL+1)

the number of positions i where (u1i, . . . , u(L+1)i) = (q1, . . . , qL+1). Dividing
all such T by n we obtain values form interval [0, 1]. We divide this interval
into S equal subintervals of length 1/S. Then we number these intervals by
the numbers 1, . . . , S and color every edge (u1, . . . , uL+1) of the hypergraph
according to the number of the interval ∆S such that

1

n
T(q1,...,qL+1)(u1, . . . , uL+1) ∈ ∆S.

We call
(

1
n
T(q1,...,qL+1)(u1, . . . , uL+1)

)

(q1,...,qL+1∈QL+1
the type of the set

(u1, . . . , uL+1). If Mn → ∞ then by Ramsey’s Theorem we can extract a
complete subhypergraph on ordered vertices such that for all ordered sets of
L + 1 edges (u1, . . . , uL+1) from this hypergraph, 1

n
T(q1,...,qL+1)(u1, . . . , uL+1)

belongs to the same interval δ. Note that for this extracted subhypergraph
we still have for the number of edges M1n

→ ∞. Moreover, if we let S → ∞
sufficiently slowly, then we can preserve the property M1n

→ ∞. Next we do
this procedure for all ordered sets (q1, . . . , qL+1) and receive a sequence of hy-
pergraphs such that for an arbitrarily ordered set of vertices (u1, . . . , uL+1) in
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the given hypergraph the interval ∆ such that 1
n
T(q1,...,qL+1)(u1, . . . , uL+1) ∈ ∆

does not depend on the choice of (u1, . . . , uL+1) (but can depend on the choice
of the hypergraph in the sequence). Hence all 1

n
T(q1,...,qL+1)(u1, . . . , uL+1) are

equal for different (u1, . . . , uL+1) up to 1/S = o(1).

Then we will show that, if for all ordered sets of vectors (u1, . . . , uL+1) the
values

1

n
T(q1,...,qL+1)(u1, . . . , uL+1)

coincide up to o(1), then

T(q1,...,qL+1)(u1, . . . , uL+1) = T(σ(q1),...,σ(qL+1))(u1, . . . , uL+1) + o(n).

Here σ is an arbitrary permutation of (q1, . . . , qL+1). In words it is as follows:
1
n
T(q1,...,qL+1)(u1, . . . , uL+1) up to o(1) depends only on the non–ordered set

(q1, . . . , qL+1).

It is not difficult to deduce that if the type has such a property, then the
distance from the center of inertia y(u1, . . . , uL+1) (if the center of inertia is
not unique, then we make a special choice of it, as can be seen below) to the
arbitrary vector u ∈ {u1, . . . , uL+1} does not depend (up to o(n)) on the choice
of u i.e. the center of inertia asymptotically coincides with the center of the ball
of minimal radius such that it contains all L+1 points (u1, . . . , uL+1). From this
property immediately follows that In(u1, . . . , uL+1) = tn(u1, . . . , uL+1) + o(n).
Note that similar considerations where made in [6], [3], see also [4].

Introduce the following result of Komlos [12].

Lemma 4 Let αj and βj, j = 1, . . . , M, be square integrable functions under
the probability measure P such that

∣

∣

∣

∣

∣

∫

αj1βj2dP − r(j1, j2)

∣

∣

∣

∣

∣

< δ,

and
max

j
||αj||2 = max

j
||βj||2 ≤ 1.

Then

|r(j1, j2) − r(j2, j1)| <
6√
M

+ 6
√

δ + 2δ. (18)

Actually we need a generalization of this lemma to the case of L + 1 variables
{αj1(x1), . . . , αjL+1

(xL+1)); jk ∈ [Mn], xj ∈ [q]} on [n]. In our case αj(x) is the
indicator function of the set of positions, where vector number j in ordered set
of Mn vectors has symbol x. Also we do not need an estimate as precise as on
the RHS of (18). It is enough for us that the rest term can be chosen such that
it tends to zero as Mn → ∞. For the finite ordered set (q1, . . . , qL+1) ∈ Qn+1 let
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(σ(q1), . . . , σ(qL+1)) be some transposition of this set. We have the following
result.

Lemma 5 If
∣

∣

∣

∣

∣

∫

αj1(q1) · . . . · αjL+1
(qL+1)dP − r(q1, . . . , qL+1)

∣

∣

∣

∣

∣

→ 0

as Mn → ∞, then

|r(q1, . . . qL+1) − r(σ(q1), . . . , σ(qL+1))| → 0.

i.e. r is asymptotically a symmetric function. Here P is the uniform distribu-
tion on the set of positions {1, . . . , n}.

Proof Lemma 5. Denote by αj(x) the indicator function of the positions,
where vector uj has symbol x ∈ [q]. From the Komlos Lemma follows that if the
types of ordered pairs of vectors uj1, uj2, j1 < j2 asymptotically do not depend
on the choice of this ordered pair, then the types of the arbitrary pair of vectors
are symmetric functions and coincide (asymptotically). In these considerations
we assume that the probability measure P is the uniform distribution on the
set of n coordinates of the vectors.

Note that it is enough to prove the lemma only for permutations which fix
the first L − 1 elements (q1, . . . , qL−1) and permutate the last two elements
(qL, qL+1). Also we can assume that ujk

= uj. To prove Lemma 5 instead of the
uniform distribution on the set of n coordinates we consider the distribution
(T(q1,...,qL−1)(u1, . . . , uL−1) 6= 0)

ωq1,...,qL−1
(x) =

α1(q1), . . . , αL−1(qL−1)

T(q1,...,qL−1)(x1, . . . , xL−1)
.

If T(q1,...,qL−1)(u1, . . . , uL−1) = 0, then

T(q1,...,qL−1,qL,qL+1)(u1, . . . , uL−1, ujL
, ujL+1

) = 0

for all qL, qL+1 ∈ Q. We can apply Lemma 4 to this distribution and for the
pair (αjL

(qL), αjL+1
(qL+1)) and obtain the relations

∣

∣

∣

∣

∣

∫

αjL
(qL)αjL+1

(qL+1)dω − r(qL, qL+1)

∣

∣

∣

∣

∣

= o(1). (19)

We note that the range of possible values of jL, jL+1 is [L, Mn − 1] and [L +
1, Mn] correspondingly. The number of elements in each such set go to infinity
as Mn → ∞. Hence by Lemma 4

|r(qL, qL+1) − r(qL+1, qL)| = o(1) (20)

10



and from (19) and (20) follows the relation

∣

∣

∣

∣

∣

∫

αjL
(qL)αjL+1

(qL+1)α1(q1) . . . αL−1(qL−1)dP −
∫

αjL
(qL+1)αjL+1

(qL)α1(q1) . . . αL−1(qL−1)dP

∣

∣

∣

∣

∣

= o(1) (21)

Here P is once more the uniform distribution on the set of positions 1, . . . , n.
This proves Lemma 5.

To complete the proof of Lemma 3 we have to show that if for any
ui1, . . . , uiL+1

∈ Mn T(q1,...,qL+1)(ui1, . . . , uiL+1
) is asymptotically symmetric in

q1, . . . , qL+1 ∈ Q, then the center of inertia of the points (ui1, . . . , uiL+1
) coin-

cides asymptotically with the center of the ball of minimal radius containing
these L + 1 points and in turn this radius is equal asymptotically to the mo-
ment of inertia In(ui1 , . . . , uiL+1

). Precisely the last assertion is not true! Next
we will show how to choose the center of inertia (it can be not a unique choice)
in order to make our consideration valid.

We say that the word (q1, . . . , qL+1) ∈ QL+1 has composition (k1, . . . kq) if
the number of occurrences of symbol x ∈ Q in the this word is equal to
kx. Write vectors ui1, . . . , uiL+1

in the rows of a matrix of size (L + 1) × n.
Then the columns of the matrix are words (q1, . . . , qL+1). Note that for a
given (q1, . . . , qL+1) ∈ QL+1 such that symbol a is among elements q1, . . . , qL+1

exactly ka times, we have (possibly) a not unique element yi ∈ Q which is
arg min of the RHS of (1). We will choose the same value yi ∈ Q for all
positions i such that the column of the matrix corresponding to this position
is the permutation of (q1, . . . , qL+1). Since the number of positions with given
column (q1, . . . , qL+1) is asymptotically equal to the number of positions, whose
column is an arbitrary given permutation of (q1, . . . , qL+1), we conclude that
every point uij has each symbol from {q1, . . . , qL+1} in the position with given
composition asymptotically the same number of times, which does not depend
on the choice of uij . Hence the contribution to the distance d(y, uij) from
the positions with column of composition (k1, . . . , kq) asymptotically does not
depend on the choice of uij and from this follows that distances d(y, uij) are
asymptotically the same for different uij .

Therefore we have the sets of growing size such that arbitrary L + 1 points
from this set asymptotically lie on the sphere with the center in the center of
inertia of these points.

From the relations
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In(ui1 , . . . , uiL+1
) ≤ t(ui1, . . . , uiL+1

) + 1 ≤ max
j

d(y, uij)

In(ui1 , . . . , uiL+1
) = max

j
d(y, uij) + o(n)

one can easily see that the moment inertia asymptotically coincide with
t(ui1, . . . , uiL+1

). Hence the bound (6), which is valid for the moment of in-
ertia, in our case is still valid for τ. At last, since our set is the extracted
subset of the initial set and the minimal L−packing radius t of the initial set
can be only smaller, we conclude that bound (6) is still valid with τ instead
of ρ. This proves Lemma 3.
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