A diametric theorem in \mathbb{Z}_{m}^{n} for Lee and related distances

Rudolf Ahlswede ${ }^{1}$, and Faina I. Solov'eva ${ }^{2}$
${ }^{1}$ Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, 33501 Bielefeld, Germany; hollmann@math.uni-bielefeld.de
${ }^{2}$ Sobolev Institute of Mathematics and Novosibirsk State University, pr. ac. Koptyuga 4, Novosibirsk 630090, Russia; sol@math.nsc.ru

Abstract

We present the diametric theorem for additive anticodes with respect to the Lee distance in $\mathbb{Z}_{2^{k}}^{n}$, where $\mathbb{Z}_{2^{k}}$ is an additive cyclic group of order 2^{k}. We also investigate optimal anticodes in $\mathbb{Z}_{p^{k}}^{n}$ for the homogeneous distance and in \mathbb{Z}_{m}^{n} for the Krotov-type distance.

1 Introduction

In this paper we establish the diametric theorem for optimal additive anticodes in $\mathbb{Z}_{2^{k}}^{n}$ with respect to the Lee distance, where $\mathbb{Z}_{2^{k}}$ is any additive cyclic group of order 2^{k}. We also study additive anticodes for related distances such as the homogeneous distance, see [7], and the Krotov-type distance, see [13].

Farrell [8], see also [15], has introduced the notion of an anticode (n, k, d) as a subspace of $G F(2)^{n}$ with diameter constraint d (the maximum Hamming distance between codewords) and dimension k. In fact earlier anticodes were used by Solomon and Stiffler [16] to construct good linear codes meeting the Griesmer bound, see also [6]. Such anticodes may contain repeated codewords.

Like in [1] we study anticodes without multiple codewords. The notion of an optimal anticode investigated in the paper is different from the notion in [15], Chapter 17. Let G^{n} be the direct product of n copies of a finite group G defined on the set $\mathcal{X}=\{0,1, \ldots, q-1\}$. We investigate

$$
A G^{n}(d)=\max \left\{|\mathcal{U}|: \mathcal{U} \text { is a subgroup of } G^{n} \text { with } D(\mathcal{U}) \leq d\right\}
$$

where $D(\mathcal{U})=\max _{u, u^{\prime} \in \mathcal{U}} d\left(u, u^{\prime}\right)$ is the diameter of $\mathcal{U}, d(\cdot, \cdot)$ is the Hamming distance for any finite group G, the Lee distance or the homogeneous distance for any cyclic group $\mathbb{Z}_{p^{k}}$, where p is prime, or a Krotov-type distance for \mathbb{Z}_{m}^{n}. In [4] the complete solution of the long standing problem of determining

$$
\max \left\{|\mathcal{U}|: \mathcal{U} \subset \mathcal{X}^{n} \text { with } D_{H}(U) \leq d\right\}
$$

for the Hamming distance d, is presented and all extremal anticodes are given. Another diametric theorem in Hamming spaces for group anticodes is established in [1]: for any finite group G, every permitted Hamming distance d, and all $n \geq d$ subgroups of G^{n} with diameter d have maximal cardinality q^{d}.

In Section 2 we give necessary definitions and auxiliary results from [1], in Sections 3 and 4 we prove the diametric theorem for $\mathbb{Z}_{2^{k}}^{n}$ with respect to the Lee distance, in Section 5 we investigate optimal anticodes in $\mathbb{Z}_{p^{k}}^{n}$ endowed with the homogeneous distance, and Section 6 is devoted to optimal anticodes in \mathbb{Z}_{m}^{n} for Krotov type distances.

2 Preliminary definitions and auxiliary results

Throughout in what follows we consider groups additive and write the concatenation of words multiplicative, i.e. for $u^{n} \in \mathbb{Z}_{m}^{n}$ we use $u^{n}=u_{1} u_{2} \ldots u_{n}$. The all-zero word of length n is denoted by 0^{n}.

Definition 1. For any $\mathcal{U} \subset \mathcal{X}^{n}$ and $\mathcal{S} \subset \mathcal{X}$, where $\mathcal{S} \neq \emptyset$, we define

$$
\begin{array}{r}
\mathcal{U}_{\mathcal{S}}=\left\{u_{1} \ldots u_{n-1}: u_{1} \ldots u_{n-1} s \in \mathcal{U} \text { for all } s \text { from } \mathcal{S}\right. \\
\\
\text { and } \left.u_{1} \ldots u_{n-1} s \notin \mathcal{U} \text { for all } s \text { from } \mathcal{X} \backslash \mathcal{S}\right\} .
\end{array}
$$

¿From this definition we have the property

$$
\begin{equation*}
\mathcal{U}_{\mathcal{S}} \cap \mathcal{U}_{\mathcal{S}^{\prime}}=\emptyset \text { if } \mathcal{S} \neq \mathcal{S}^{\prime} \tag{2.1}
\end{equation*}
$$

Definition 2. For any $\mathcal{U} \subset \mathcal{X}^{n}$ we define
$\mathcal{U}_{(n)}=\left\{u_{n} \in \mathcal{X}:\right.$ there exists a word $u_{1} \ldots u_{n-1}$ such that $\left.u_{1} \ldots u_{n-1} u_{n} \in \mathcal{U}\right\}$.
For two sets $\mathcal{U}, \mathcal{V} \subset \mathcal{X}^{n}$ their cross-diameter is defined as

$$
D(\mathcal{U}, \mathcal{V})=\max _{u \in \mathcal{U}, v \in \mathcal{V}} d(u, v)
$$

Let G be any finite Abelian group. Denote by \mathcal{S}_{0} a subset of G containing 0 . Further we will use the following three lemmas, which can be found in [1].

Lemma 1. For any subgroup \mathcal{U} of G^{n} (briefly $\mathcal{U}<G^{n}$) a non-empty subset $\mathcal{U}_{\{0\}} 0$ of \mathcal{U} is its subgroup.

Lemma 2. (Generalization of Lemma 1) If $\mathcal{U}<G^{n}$ then for a non-empty subset $\mathcal{U}_{\mathcal{S}_{0}} 0$ from \mathcal{U} it is true that $\mathcal{U}_{\mathcal{S}_{0}} 0 \leq \mathcal{U}$.

Lemma 3. If \mathcal{U} is a subgroup of G^{n}, then
(i) there is exactly one subset \mathcal{S}_{0} in G with $\mathcal{U}_{\mathcal{S}_{0}} \neq \emptyset$;
(ii) the set \mathcal{S}_{0} is a group;
(iii) the set $\mathcal{U}_{\mathcal{S}_{0}} \mathcal{S}_{0}$ is a subgroup of \mathcal{U}.

By Lemma 3 we have $\mathcal{U}_{\mathcal{S}_{0}} \mathcal{S}_{0} \leq \mathcal{U}$, so we can decompose a group \mathcal{U} into cosets of the subgroup $\mathcal{U}_{\mathcal{S}_{0}} \mathcal{S}_{0}$:

$$
\begin{equation*}
\mathcal{U}=\bigcup_{\alpha}\left(\mathcal{U}_{\mathcal{S}_{0}}+\alpha\right)\left(\mathcal{S}_{0}+\psi(\alpha)\right) \tag{2.2}
\end{equation*}
$$

for suitable ψ.

3 A diametric theorem in $\mathbb{Z}_{2^{k}}^{n}$ for Lee distance

Let \mathbb{Z}_{m} be an additive cyclic group of order m. The Lee weight of $i \in \mathbb{Z}_{m}$ is defined as

$$
w_{L}(i)=\min \{i, m-i\} .
$$

For $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{Z}_{m}^{n}, w_{L}(u)=\sum_{i=1}^{n} w_{L}\left(u_{i}\right)$ and for $u, v \in \mathbb{Z}_{m}^{n}$ the Lee distance between u and v is

$$
d_{L}(u, v)=w_{L}(u-v)
$$

Let \mathcal{U} be any subgroup of \mathbb{Z}_{m}^{n}. The Lee diameter of \mathcal{U} we define as

$$
D_{L}(\mathcal{U})=\max _{u, v \in \mathcal{U}} d_{L}(u, v)
$$

For any two sets $\mathcal{U}, \mathcal{V} \subset \mathbb{Z}_{m}^{n}$ their Lee cross-diameter is

$$
D_{L}(\mathcal{U}, \mathcal{V})=\max _{u \in \mathcal{U}, v \in \mathcal{V}} d_{L}(u, v)
$$

It is well-known that the order of any group is divisible by the order of any of its subgroups.

Let \mathbb{Z}_{m} be an additive cyclic group, then for any $r \mid m$ denote by $\left(\frac{m}{r}\right)$ the subgroup of \mathbb{Z}_{m} generated by the element $\frac{m}{r}$. It can be written in the form

$$
\left(\frac{m}{r}\right)=\left\{0, \frac{m}{r}, 2 \frac{m}{r}, \ldots,(r-1) \frac{m}{r}\right\}
$$

and has an order r.

Lemma 4. (Diameter of a subgroup $\left(\frac{m}{r}\right)$ of $\left.\mathbb{Z}_{m}\right)$ For any $r \mid m$ we have

$$
D\left(\left(\frac{m}{r}\right)\right)= \begin{cases}D\left(\mathbb{Z}_{2^{k}}\right)=2^{k-1} & \text { if } m=2^{k} \text { for some } k \geq 1, \\ \left\lceil\frac{r-1}{2}\right\rceil \cdot \frac{m}{r} & \text { otherwise. } .\end{cases}
$$

Proof. First consider the case $m=2^{k}, k \geq 1$. Any subgroup of the group $\mathbb{Z}_{2^{k}}$ is a cyclic group $\left(2^{r-s}\right)$ for some $s \in\{0,1, \ldots, k\}$ with the generator 2^{r-s}. It is easy to see that any subgroup $\left(2^{r-s}\right)$ contains the element $2^{k-1} \in \mathbb{Z}_{2^{k}}$. The Lee weight of this element is

$$
w_{L}\left(2^{k-1}\right)=\min \left\{2^{k-1}, 2^{k}-2^{k-1}\right\}=2^{k-1} .
$$

By the definition of the Lee weight we have

$$
w_{L}\left(2^{t}\right)<w_{L}\left(2^{k-1}\right)
$$

for any $t \neq k-1$. Then

$$
D\left(\left(2^{r-s}\right)\right)=2^{k-1} \text { for any } s \text { from }\{0,1, \ldots, k\}
$$

Let now m be any integer not equal to a power of 2 and let r be any integer such that $r \mid m$. By the definition of the subgroup $\left(\frac{m}{r}\right)$ we have

$$
\left(\frac{m}{r}\right)=\left\{0, \frac{m}{r}, 2 \frac{m}{r}, \ldots,(r-1) \frac{m}{r}\right\}
$$

and the order of $\left(\frac{m}{r}\right)$ is $\left|\left(\frac{m}{r}\right)\right|=r$. Then we have $r-1$ non-zero elements in $\left(\frac{m}{r}\right)$ distinguished by pairs $i \cdot \frac{m}{r}$ and $(r-1-i) \frac{m}{r}$, such that $w_{L}\left(i \cdot \frac{m}{r}\right)=$ $w_{L}\left((r-1-i) \frac{m}{r}\right)=i \cdot \frac{m}{r}$ for $i=1, \ldots,\left\lfloor\frac{r-1}{2}\right\rfloor$. If r is even we have one maximal
 $\left.\frac{m}{r}\right)<w_{L}\left(\left\lceil\frac{r-1}{2}\right\rceil^{r} \cdot \frac{m}{r}\right)$ for any $i<\left\lceil\frac{r_{-1}^{r}}{2}\right\rceil$ regardless of the parity of r. Therefore $\stackrel{r}{D}\left(\left(\frac{m}{r}\right)\right)=\left\lceil\frac{r^{2}-1}{2}\right\rceil \cdot \stackrel{m}{r}$.

Lemma 4 has the following useful consequences.
Corollary 1. Let $r=2 l$ be even and $r \mid m$, then $D\left(\left(\frac{m}{r}\right)\right)=D\left(\mathbb{Z}_{m}\right)=\frac{m}{2}$.
Corollary 2. Let $r=2 l+1$ be odd and $r \mid m$, then $D\left(\left(\frac{m}{r}\right)\right)=\frac{l}{2 l+1} m<\frac{m}{2}$.
Corollary 3. For any odd r or s such that $r|m, s| m$, and $s>r$ we have $D\left(\left(\frac{m}{s}\right)\right)>D\left(\left(\frac{m}{r}\right)\right)$.

Remark 1. Like for the Hamming distance (see [1]) in the Lee case for $m=2^{k}$ all subgroups of \mathbb{Z}_{m} have the same diameter. This makes the approach via the transformation L introduced in [1] possible.

Lemma 5. For any odd r and s such that $r|m, s| m$ and $s>r$ we have

$$
\begin{equation*}
\frac{\log _{2} s}{D\left(\left(\frac{m}{s}\right)\right)}>\frac{\log _{2} r}{D\left(\left(\frac{m}{r}\right)\right)} \tag{3.1}
\end{equation*}
$$

Further, if r is even and the other relations hold again, the inequality also holds. In particular for $s=p^{j}, r=p^{i}, j>i$ it is true

$$
\frac{j}{D\left(\left(p^{k-j}\right)\right)}>\frac{i}{D\left(\left(p^{k-i}\right)\right)}
$$

Proof. By Corollary 2 it suffices to show for any natural number l that

$$
\frac{2 l+1}{l} \log _{2}(2 l+1)<\frac{2 l+3}{l+1} \log _{2}(2 l+3),
$$

or that

$$
(2 l+1)^{\frac{2 l+1}{l}}<(2 l+3)^{\frac{2 l+3}{l+1}}
$$

or

$$
(2 l+1)^{2 l^{2}+3 l+1}<(2 l+3)^{2 l^{2}+3 l}
$$

which is equivalent to

$$
(2 l+1)<\left(\frac{2 l+3}{2 l+1}\right)^{2 l^{2}+3 l}=\left(1+\frac{2}{2 l+1}\right)^{2 l^{2}+3 l}
$$

Since $(1+a)^{n}>1+n a$ sufficient is

$$
1+\frac{2\left(2 l^{2}+3 l\right)}{2 l+1}>1+2 l
$$

or, equivalently, $4 l^{2}+6 l>4 l^{2}+2 l$, which is true.
The final statement holds by Corollaries 1 and 2 .
Remark 2. In summary, having again the relations $r|m, s| m$, and $s>r$, the inequality (3.1) can fail only for r odd and s even. Since in this case $D\left(\left(\frac{m}{s}\right)\right)=\frac{m}{2}$, the weakest counterexample could be for $r=2 l+1$ and $s=2 l+2$. Here we have to find l such that

$$
\frac{\log _{2}(2 l+2)}{\left\lceil\frac{2 l+1}{2}\right\rceil \frac{m}{2 l+2}}<\frac{\log _{2}(2 l+1)}{\left\lceil\frac{2 l}{2}\right\rceil \frac{m}{2 l+1}}
$$

or, equivalently, with

$$
2 l \log _{2}(2 l+2)<(2 l+1) \log _{2}(2 l+1)
$$

or with

$$
\left(1+\frac{1}{2 l+1}\right)^{2 l}<1+2 l
$$

Since the term to the left is smaller than e this holds for all $l=1,2, \ldots$.
On the other hand for $s=2 l^{\prime}+2, l^{\prime}>l$ we have to check whether

$$
2 l \log _{2}\left(2 l^{\prime}+2\right)<(2 l+1) \log _{2}(2 l+1)
$$

This fails for $l^{\prime} \geq l_{0}^{\prime}(l)$, suitable.
Remind that by \mathcal{S}_{0} we denote a subset of $\mathbb{Z}_{2^{k}}$ containing 0 .
Lemma 6. If for any subgroup $\mathcal{U}<\mathbb{Z}_{2^{k}}^{n}, k \geq 1$, of diameter d it is true that $\left|\mathcal{S}_{0}\right| \geq 2$, then the transformation

$$
L: \bigcup_{\mathcal{S}} \mathcal{U}_{\mathcal{S}} \mathcal{S} \rightarrow\left(\bigcup_{\mathcal{S}} \mathcal{U}_{\mathcal{S}}\right) \mathbb{Z}_{2^{k}}
$$

results in a group of diameter not more than d and not decreased cardinality.
Proof. First we show that the transformation L does not decrease the cardinality. Consider the decomposition (2.2). Every u^{n-1} occuring in some $\mathcal{U}_{\mathcal{S}_{0}}+\alpha$ has multiplicity

$$
\left|\mathcal{S}_{0}+\psi(\alpha)\right|=\left|\mathcal{S}_{0}\right|
$$

and gets by the transformation L the multiplicity $\left|\mathbb{Z}_{2^{k}}\right| \geq\left|\mathcal{S}_{0}\right|$. So the cardinality does not decrease.

Furthermore by (2.2) and Lemma 4 we have

$$
D\left(\mathcal{U}_{\mathcal{S}_{0}}\right)=D\left(\mathcal{U}_{S_{0}}+\alpha\right) \leq d-2^{k-1}
$$

and also

$$
D\left(\mathcal{U}_{\mathcal{S}_{0}}+\alpha, \mathcal{U}_{\mathcal{S}_{0}}+\alpha^{\prime}\right) \leq d^{\prime}-2^{k-1}
$$

where $d^{\prime} \leq d$.
Using the transformation L and Lemma 4 we get

$$
D\left(\left(\bigcup_{\mathcal{S}} \mathcal{U}_{\mathcal{S}}\right) \cdot \mathbb{Z}_{2^{k}}\right) \leq d-2^{k-1}+2^{k-1}=d
$$

Hence the transformation L is appropriate, i.e. does not decrease the cardinality and does increase the diameter d.

Lemma 7. If for any subgroup $\mathcal{U}<\mathbb{Z}_{2^{k}}^{n}, k \geq 1$ of diameter d it is true that $\mathcal{S}_{0}=$ $\{0\}$, then there exist appropriate transformations of the group \mathcal{U} into another subgroup of $\mathbb{Z}_{2^{k}}^{n}$ that do not decrease the cardinality and do not increase the diameter d.

Proof. For $\mathcal{S}_{0}=\{0\}$ the decomposition (2.2) transforms into the decomposition

$$
\begin{equation*}
\mathcal{U}=\bigcup_{i \in \mathcal{U}_{(n)}}\left(\mathcal{U}_{\{0\}}+\varphi(i)\right) i \tag{3.2}
\end{equation*}
$$

where $\mathcal{U}_{(n)}$ is from Definition 2. All cosets $\mathcal{U}_{\{0\}}+\varphi(i), i \in \mathcal{U}_{(n)}$, are disjoint or equal.

We distinguish two cases.
Case 1: Since the set $\mathcal{U}_{\{0\}}$ by Lemma 2 is a subgroup for the case if there exist $i, j, i \neq j$, such that

$$
\mathcal{U}_{\{0\}}+\varphi(i)=\mathcal{U}_{\{0\}}+\varphi(j),
$$

then $\varphi(i)-\varphi(j) \in \mathcal{U}_{\mathcal{S}_{0}}$.
Case 1a: If $d_{L}(i, j)=2^{k-1}$ then

$$
D\left(\mathcal{U}_{\{0\}}+\varphi(i)\right)=D\left(\mathcal{U}_{\{0\}}\right)=d-2^{k-1}
$$

In this case we use the transformation L, i.e. replace all i by $\mathbb{Z}_{2^{k}}$.
Case 1b: Let $d(i, j)=2^{s}<2^{k-1}$. W.l.o.g. we consider the case $\mathcal{U}_{\{0\}}=\mathcal{U}_{\{0\}}+$ $\varphi(i)$, where $d(0, i)=2^{s}$. Since $\mathcal{U}_{(n)}$ is a subgroup in $\mathbb{Z}_{2^{k}}$ by Lemma 4 we have $D\left(\mathcal{U}_{(n)}\right)=2^{k-1}$. Therefore we can find in $\mathcal{U}_{(n)}$ an element 2^{k-1}. Either $\mathcal{U}_{\{0\}}=$ $\mathcal{U}_{\{0\}}+\varphi\left(2^{k-1}\right)$ or $\mathcal{U}_{\{0\}} \neq \mathcal{U}_{\{0\}}+\varphi\left(2^{k-1}\right)$ we have $D\left(\mathcal{U}_{\{0\}}\right)=D\left(\mathcal{U}_{\{0\}}+\varphi\left(2^{k-1}\right)\right)=$ $d-2^{k-1}$.

In both cases we use the transformation L, i.e. replace $\mathcal{U}_{(n)}$ by $\mathbb{Z}_{2^{k}}$ (the smaller one we replace by $\mathbb{Z}_{2^{k}}$ not changing the diameter).

Case 2: If $\mathcal{U}_{\{0\}}+\varphi(i) \neq \mathcal{U}_{\{0\}}+\varphi(j)$ for any distinct i, j from $\left\{0,1, \ldots, 2^{k}-1\right\}$, then we replace all i by 0 and get the subgroup in $\mathbb{Z}_{2^{k}}^{n}$ with the same cardinality as the group \mathcal{U} and the diameter does not increase.
¿From Lemmas 1-4, 6, and 7 we get
Theorem 1. For any cyclic group $\mathbb{Z}_{2^{k}}, k \geq 1$, with respect to the Lee distance it holds

$$
A \mathbb{Z}_{2^{k}}^{n}(d)=\left|\mathbb{Z}_{2^{k}}\right|^{\min \left(n,\left\lfloor\frac{d}{2^{k-1}}\right\rfloor\right)}=2^{k \min \left(n,\left\lfloor\frac{d}{\left.2^{k-1}\right\rfloor}\right)\right.}
$$

4 Optimal direct products of cyclic groups with specified Lee diameter

Let us consider maximal direct products of subgroups in $\mathbb{Z}_{p^{k}}$ with n factors and Lee diameter not exceeding $d, p>2$. Recall that by Lemma 4

$$
D\left(\left(\frac{p^{k}}{p^{s}}\right)\right)=D\left(\left(p^{k-s}\right)\right)=\left\lceil\frac{p^{s}-1}{2}\right\rceil \cdot p^{k-s}
$$

and write $F_{p^{s}}=\left(p^{k-s}\right)$.
Clearly, for $k>s \geq t \geq 1$ it is true that $\left|F_{p^{s}}\right| \cdot\left|F_{p^{t}}\right|=\left|F_{p^{s+1}}\right| \cdot\left|F_{p^{t-1}}\right|$ and

$$
\begin{equation*}
D\left(F_{p^{s}}\right)+D\left(F_{p^{t}}\right) \geq D\left(F_{p^{s+1}}\right)+D\left(F_{p^{t-1}}\right) \tag{4.1}
\end{equation*}
$$

because this is equivalent with

$$
\left\lceil\frac{p^{s}-1}{2}\right\rceil \frac{p^{k}}{p^{s}}+\left\lceil\frac{p^{t}-1}{2}\right\rceil \frac{p^{k}}{p^{t}} \geq\left\lceil\frac{p^{s+1}-1}{2}\right\rceil \frac{p^{k}}{p^{s+1}}+\left\lceil\frac{p^{t-1}-1}{2}\right\rceil \frac{p^{k}}{p^{t-1}}
$$

which is equivalent to

$$
\frac{1}{2}-\frac{1}{2 p^{s}}+\frac{1}{2}-\frac{1}{2 p^{t}} \geq \frac{1}{2}-\frac{1}{2 p^{s+1}}+\frac{1}{2}-\frac{1}{2 p^{t-1}}
$$

or to

$$
\frac{1}{p^{s+1}}+\frac{1}{p^{t-1}} \geq \frac{1}{p^{s}}+\frac{1}{p^{t}}
$$

or

$$
p^{t-1}+p^{s+1} \geq p^{t}+p^{s} .
$$

This is true, because $p^{s+1}>2 p^{s}>p^{s}+p^{t}$.
¿From (4.1) readily follows
Lemma 8. For cardinality $p^{T}, T=a k+t, 0 \leq t<k$, the group $\prod_{1}^{a} F_{p^{k}} \cdot F_{p^{t}}$ has the smallest diameter, namely

$$
D\left(\prod_{1}^{a} F_{p^{k}} \cdot F_{p^{t}}\right)=a \frac{p^{k}-1}{2}+\frac{p^{t}-1}{2} p^{k-t} .
$$

This optimization problem can also be written as the following linear programming problem

> (a) $d \leq \sum_{t=1}^{k} a_{t} \cdot \operatorname{diam}\left(\mathbb{Z}_{p^{t}}\right)$
> (b) $\max \left\{\prod_{t=1}^{k} p^{a_{t} \cdot t}:\right.$ integers $a_{1}, a_{2}, \ldots, a_{k}$ satisfy (a) $\}$
> or (c) $\max \left\{\sum_{t=1}^{k} a_{t} \cdot t:\right.$ integers $a_{1}, a_{2}, \ldots, a_{k}$ satisfy (a) $\}$.

The value of t is $f(t)=\frac{t}{\operatorname{diam}\left(\mathbb{Z}_{p^{t}}\right)}$, which can be seen with Lemma 5 to be monotonically increasing in t.

Therefore it is best to use $\mathbb{Z}_{p^{k}}$ as often as possible as factor in the subgroup, then $\mathbb{Z}_{p^{k-1}}$ as often as possible (under the constraint (a)) etc.

The result easily generalizes from $m=p^{k}, \quad F_{p^{s}}, \quad F_{p^{t}}, \quad s>t$, to $m=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{\mu}^{\alpha_{\mu}}, F_{S}=F_{p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{\mu}^{\beta_{\mu}}}, F_{T}=F_{p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots p_{\mu}^{\gamma_{\mu}}}, S>T$. In the case there exists i such that $\beta_{i}<\alpha_{i}, \gamma_{i} \geq 1$ by taking p_{i} from T and adding it to S. Obviously for $S^{\prime}=S p_{i}$, and $T^{\prime}=\frac{T}{p_{i}}$ we have $\left|F_{S}\right| \cdot\left|F_{T}\right|=\left|F_{S^{\prime}}\right| \cdot\left|F_{T^{\prime}}\right|$ and $D\left(F_{S}\right)+D\left(F_{T}\right) \geq D\left(F_{S^{\prime}}\right)+D\left(F_{T^{\prime}}\right)$ because

$$
\frac{\left\lceil\frac{S-1}{2}\right\rceil}{S}+\frac{\left\lceil\frac{T-1}{2}\right\rceil}{T} \geq \frac{\left\lceil\frac{S^{\prime}-1}{2}\right\rceil}{S^{\prime}}+\frac{\left\lceil\frac{T^{\prime}-1}{2}\right\rceil}{T^{\prime}}
$$

holds, since it is true the inequality

$$
\frac{1}{2}-\frac{1}{2 S}+\frac{1}{2}-\frac{1}{2 T} \geq \frac{1}{2}-\frac{1}{2 S^{\prime}}+\frac{1}{2}-\frac{1}{2 T^{\prime}}
$$

as a consequence of $S^{\prime}+T^{\prime} \geq S+T$.

5 A diametric theorem in $\mathbb{Z}_{p^{k}}^{n}$ for homogeneous distance

According to $[7]$ the homogeneous weight of $i \in \mathbb{Z}_{p^{k}}$ is given by

$$
w_{\text {hom }}(i)=\left\{\begin{array}{cl}
0 & \text { if } i=0 \tag{5.1}\\
p-1 & \text { if } i \in \mathbb{Z}_{p^{k}} \backslash\left(p^{k-1}\right), \\
p & \text { if } i \in\left(p^{k-1}\right) \backslash\{0\} .
\end{array}\right.
$$

For $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{Z}_{p^{k}}^{n}, w_{h o m}(u)=\sum_{i=1}^{n} w_{h o m}\left(u_{i}\right)$ and for $u, v \in \mathbb{Z}_{p^{k}}^{n}$ the homogeneous distance between u and v is $d_{\text {hom }}(u, v)=w_{\text {hom }}(u-v)$. The homogeneous diameter we define as

$$
D_{\text {hom }}(\mathcal{U})=\max _{u, v \in \mathcal{U}} d_{\text {hom }}(u, v)
$$

and for any two sets $\mathcal{U}, \mathcal{V} \subset \mathbb{Z}_{p^{k}}^{n}$ the homogeneous cross-diameter is

$$
D_{\text {hom }}(\mathcal{U}, \mathcal{V})=\max _{u \in \mathcal{U}, v \in \mathcal{V}} d_{\text {hom }}(u, v)
$$

Lemma $\mathbf{4}^{\prime}$. (Homogeneous diameter of a subgroup of $\mathbb{Z}_{p^{k}}$) For any integer $i \in\{1,2, \ldots, k-1\}$ we have $D_{\text {hom }}\left(\left(p^{i}\right)\right)=D_{\text {hom }}\left(\mathbb{Z}_{p^{k}}\right)=p$, where $\left(p^{i}\right)=$ $\left\{0, p^{i}, 2 p^{i}, \ldots,\left(p^{k-i}-1\right) p^{i}\right\}$ has p^{k-i} elements.
Proof. Since $p^{k-i-1} \leq p^{k-i}-1$ and $p^{k-i-1} p^{i}=p^{k-1}$ we have $p^{k-1} \in\left(p^{i}\right)$ for any $i \in\{1,2, \ldots, k-1\}$. Therefore by (5.1)

$$
p=D_{\text {hom }}\left(\left(p^{i}\right)\right) \leq D_{\text {hom }}\left(\mathbb{Z}_{p^{k}}\right)=p .
$$

It is easy to see that both Lemmas 6 and 7 have corresponding Lemmas 6^{\prime} and 7^{\prime}, we just have to replace in the proofs 2^{k-1} by p and note that a subgroup $\mathcal{U}<\mathbb{Z}_{p^{k}}$ is of the form $\left(p^{i}\right)$ for some i.

Using this and Lemma 4^{\prime} we get for

$$
A^{\prime} \mathbb{Z}_{p^{k}}^{n}(d)=\max \left\{|\mathcal{U}|: \mathcal{U}<\mathbb{Z}_{p^{k}}^{n} \text { with } D_{\text {hom }}(\mathcal{U}) \leq d\right\} \text { the following }
$$

Theorem 2. For any cyclic group $\mathbb{Z}_{p^{k}}, k \geq 1$, it is true $A^{\prime} \mathbb{Z}_{p^{k}}^{n}(d)=p^{k \min \left(n,\left\lfloor\frac{d}{p}\right\rfloor\right)}$.

6 A diametric theorem in $\mathbb{Z}_{m}^{n}, m=4 l$, for Krotov-type distance

For the cyclic group \mathbb{Z}_{m} the Krotov-type weight $w_{K}: \mathbb{Z}_{m} \rightarrow \mathbb{R}^{+}$is defined by

$$
w_{K}(i)=\left\{\begin{array}{l}
0 \text { if } i=0 \tag{6.1}\\
1 \text { if } i \text { is odd } \\
2 \text { otherwise }
\end{array}\right.
$$

(see also [13]). For any word $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ from \mathbb{Z}_{m}^{n} we define the Krotovtype weight $w_{K}(u)=\sum_{i=1}^{k} w_{K}\left(u_{i}\right)$, distance $d_{K}(u, v)=w_{K}(u-v)$, diameter $D_{K}(\mathcal{U})$, and cross-diameter $D_{K}(\mathcal{U}, \mathcal{V})$.

As analog to Lemma 4 we get
Lemma $4^{\prime \prime}$. (Diameter of a subgroup of \mathbb{Z}_{m} for Krotov-type distance) For any non-trivial $\mathcal{U}<\mathbb{Z}_{m}, m \geq 2$, we have

$$
D_{K}\left(\left(\frac{m}{s}\right)\right)= \begin{cases}1 & \text { if } s=2 \text { and } \frac{m}{2} \text { is odd } \\ 2 & \text { otherwise. }\end{cases}
$$

The proof easily follows from (6.1) and the fact that any subgroup $\left(\frac{m}{s}\right)$ has an even element with the one exception if $s=2$ and $\frac{m}{2}$ is odd. Lemmas $6^{\prime \prime}, 7^{\prime \prime}$, the analogs to Lemmas 6, 7, are valid for the case $4 \mid m$. Using these facts and Lemma $4^{\prime \prime}$ we get

Theorem 3. For any cyclic group \mathbb{Z}_{m} with $4 \mid m$ with respect to the Krotov-type distance it is true $A^{\prime \prime} \mathbb{Z}_{m}^{n}(d)=m^{\min \left(n, \frac{d}{2}\right)}$.

References

1. Ahlswede, R.: Another diametric theorem in Hamming spaces: optimal group anticodes. Proc. IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 212-216 (2006)
2. Ahlswede, R., Katona, G.: Contributions to the geometry of Hamming spaces. Discrete Mathematics 17, 1-22 (1977)
3. Ahlswede, R., Khachatrian, L.: The complete intersection theorem for systems of finite sets. European J. Combinatorics 18, 125-136 (1997)
4. Ahlswede, R., Khachatrian, L.: The diametric theorem in Hamming spaces optimal anticodes. Adv. Appl. Math. 20, 429-449 (1998).
5. Ahlswede, R., Khachatrian, L.: A pushing-pulling method: New proofs of intersection theorems. Combinatorica 19, 1-15 (1999)
6. Belov, B.I., Logachev, V.N., Sandimorov, V.P.: Construction of a class of linear binary codes achieving the Varshamov-Griesmer bound. Problemy Peredachi Informatsii 10 (3), 36-44 (1974)
7. Constantinescu, I., Heise, W.: A metric for codes over residue class rings of integers. Probl. Inform. Transm. 33 (3), 208-213 (1997)
8. Farrell, P.G.: Linear binary anticodes. Electronics Letters 6, 419-421 (1970)
9. Katona, G.: Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung. 15, 329-337 (1964)
10. Kleitman, D.: On a combinatorial conjecture of Erdös. J. Combin. Theory 1, 209-214 (1966)
11. Krotov, D.S.: \mathbb{Z}_{4}-linear perfect codes. Diskr. Analiz Issled. Oper., Ser. 1, 7 (4), 78-90 (2000) (in Russian).
12. Krotov, D.S.: \mathbb{Z}_{4}-linear Hadamard and extended perfect codes. Electronic Notes in Discrete Mathematics 6, 107-112 (2001)
13. Krotov, D.S.: On $\mathbb{Z}_{2^{k}}$-dual binary codes. IEEE Trans. Inform. Theory 53 (4), 1532-1537 (2007)
14. MacDonald, J.E.: Design for maximmum minimum-distance error-correcting codes. IBM J. Res. Develop. 4 (1), 43-57 (1960)
15. MacWilliams, F.J. Sloane, N.J.: The Theory of Error-Correcting Codes. Amsterdam-New York-Oxford: North-Holland (1977)
16. Solomon, G., Stiffler, I.I.: Algebraically punctured cyclic codes. Information and Control 8 (2), 170-179 (1965)
17. Venturini, D.: Construction of maximum linear binary codes in the case of large distances. Problems of Cybernetics, 16, 231-238 (1966) (in Russian).
