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Abstract. We present the diametric theorem for additive anticodes with
respect to the Lee distance in Zn

2k , where Z2k is an additive cyclic group
of order 2k. We also investigate optimal anticodes in Zn

pk for the homo-
geneous distance and in Zn

m for the Krotov-type distance.

1 Introduction

In this paper we establish the diametric theorem for optimal additive anticodes
in Zn

2k with respect to the Lee distance, where Z2k is any additive cyclic group
of order 2k. We also study additive anticodes for related distances such as the
homogeneous distance, see [7], and the Krotov-type distance, see [13].

Farrell [8], see also [15], has introduced the notion of an anticode (n, k, d)
as a subspace of GF (2)n with diameter constraint d (the maximum Hamming
distance between codewords) and dimension k. In fact earlier anticodes were
used by Solomon and Stiffler [16] to construct good linear codes meeting the
Griesmer bound, see also [6]. Such anticodes may contain repeated codewords.

Like in [1] we study anticodes without multiple codewords. The notion of an
optimal anticode investigated in the paper is different from the notion in [15],
Chapter 17. Let Gn be the direct product of n copies of a finite group G defined
on the set X = {0, 1, . . . , q − 1}. We investigate

AGn(d) = max{|U| : U is a subgroup of Gn with D(U) ≤ d},
where D(U) = max

u,u′∈U
d(u, u′) is the diameter of U , d(·, ·) is the Hamming distance

for any finite group G, the Lee distance or the homogeneous distance for any
cyclic group Zpk , where p is prime, or a Krotov-type distance for Zn

m. In [4] the
complete solution of the long standing problem of determining

max{|U| : U ⊂ Xn with DH(U) ≤ d},
for the Hamming distance d, is presented and all extremal anticodes are given.
Another diametric theorem in Hamming spaces for group anticodes is established
in [1]: for any finite group G, every permitted Hamming distance d, and all n ≥ d
subgroups of Gn with diameter d have maximal cardinality qd.



In Section 2 we give necessary definitions and auxiliary results from [1], in
Sections 3 and 4 we prove the diametric theorem for Zn

2k with respect to the Lee
distance, in Section 5 we investigate optimal anticodes in Zn

pk endowed with the
homogeneous distance, and Section 6 is devoted to optimal anticodes in Zn

m for
Krotov type distances.

2 Preliminary definitions and auxiliary results

Throughout in what follows we consider groups additive and write the concate-
nation of words multiplicative, i.e. for un ∈ Zn

m we use un = u1u2 . . . un. The
all-zero word of length n is denoted by 0n.

Definition 1. For any U ⊂ Xn and S ⊂ X , where S 6= ∅, we define

US = {u1 . . . un−1 : u1 . . . un−1s ∈ U for all s from S
and u1 . . . un−1s 6∈ U for all s from X r S}.

¿From this definition we have the property

US ∩ US′ = ∅ if S 6= S ′. (2.1)

Definition 2. For any U ⊂ Xn we define

U(n) = {un ∈ X : there exists a word u1 . . . un−1 such that u1 . . . un−1un ∈ U}.
For two sets U ,V ⊂ Xn their cross-diameter is defined as

D(U ,V) = max
u∈U,v∈V

d(u, v).

Let G be any finite Abelian group. Denote by S0 a subset of G containing 0.
Further we will use the following three lemmas, which can be found in [1].

Lemma 1. For any subgroup U of Gn (briefly U < Gn) a non-empty subset
U{0}0 of U is its subgroup.

Lemma 2. (Generalization of Lemma 1) If U < Gn then for a non-empty subset
US00 from U it is true that US00 ≤ U .

Lemma 3. If U is a subgroup of Gn, then

(i) there is exactly one subset S0 in G with US0 6= ∅;
(ii) the set S0 is a group;
(iii) the set US0S0 is a subgroup of U .

By Lemma 3 we have US0S0 ≤ U , so we can decompose a group U into cosets
of the subgroup US0S0:

U =
⋃
α

(US0 + α)(S0 + ψ(α)) (2.2)

for suitable ψ.



3 A diametric theorem in Zn
2k for Lee distance

Let Zm be an additive cyclic group of order m. The Lee weight of i ∈ Zm is
defined as

wL(i) = min{i,m− i}.

For u = (u1, . . . , un) ∈ Zn
m, wL(u) =

n∑
i=1

wL(ui) and for u, v ∈ Zn
m the Lee

distance between u and v is

dL(u, v) = wL(u− v).

Let U be any subgroup of Zn
m. The Lee diameter of U we define as

DL(U) = max
u,v∈U

dL(u, v).

For any two sets U ,V ⊂ Zn
m their Lee cross-diameter is

DL(U ,V) = max
u∈U ,v∈V

dL(u, v).

It is well-known that the order of any group is divisible by the order of any of
its subgroups.

Let Zm be an additive cyclic group, then for any r|m denote by
(

m
r

)
the

subgroup of Zm generated by the element m
r . It can be written in the form

(m

r

)
=

{
0,

m

r
, 2

m

r
, . . . , (r − 1)

m

r

}

and has an order r.

Lemma 4. (Diameter of a subgroup
(

m
r

)
of Zm) For any r|m we have

D
((m

r

))
=

{
D(Z2k) = 2k−1 if m = 2k for some k ≥ 1,
d r−1

2 e · m
r otherwise.

Proof. First consider the case m = 2k, k ≥ 1. Any subgroup of the group Z2k

is a cyclic group (2r−s) for some s ∈ {0, 1, . . . , k} with the generator 2r−s. It is
easy to see that any subgroup (2r−s) contains the element 2k−1 ∈ Z2k . The Lee
weight of this element is

wL(2k−1) = min{2k−1, 2k − 2k−1} = 2k−1.

By the definition of the Lee weight we have

wL(2t) < wL(2k−1)

for any t 6= k − 1. Then

D((2r−s)) = 2k−1 for any s from {0, 1, . . . , k}.



Let now m be any integer not equal to a power of 2 and let r be any integer
such that r|m. By the definition of the subgroup

(
m
r

)
we have

(m

r

)
=

{
0,

m

r
, 2

m

r
, . . . , (r − 1)

m

r

}

and the order of
(

m
r

)
is | (m

r

) | = r. Then we have r − 1 non-zero elements
in

(
m
r

)
distinguished by pairs i · m

r and (r − 1 − i)m
r , such that wL(i · m

r ) =
wL((r − 1− i)m

r ) = i · m
r for i = 1, . . . , b r−1

2 c. If r is even we have one maximal
element d r−1

2 e · m
r with wL(d r−1

2 e · m
r ) = d r−1

2 e · m
r . It is easy to see that wL(i ·

m
r ) < wL(d r−1

2 e · m
r ) for any i < d r−1

2 e regardless of the parity of r. Therefore
D((m

r )) = d r−1
2 e · m

r .

Lemma 4 has the following useful consequences.

Corollary 1. Let r = 2l be even and r|m, then D
((

m
r

))
= D(Zm) = m

2 .

Corollary 2. Let r = 2l + 1 be odd and r|m, then D
((

m
r

))
= l

2l+1m < m
2 .

Corollary 3. For any odd r or s such that r|m, s|m, and s > r we have
D

((
m
s

))
> D

((
m
r

))
.

Remark 1. Like for the Hamming distance (see [1]) in the Lee case for m = 2k

all subgroups of Zm have the same diameter. This makes the approach via the
transformation L introduced in [1] possible.

Lemma 5. For any odd r and s such that r|m, s|m and s > r we have

log2 s

D
((

m
s

)) >
log2 r

D
((

m
r

)) . (3.1)

Further, if r is even and the other relations hold again, the inequality also holds.
In particular for s = pj, r = pi, j > i it is true

j

D((pk−j))
>

i

D((pk−i))
.

Proof. By Corollary 2 it suffices to show for any natural number l that

2l + 1
l

log2(2l + 1) <
2l + 3
l + 1

log2(2l + 3),

or that
(2l + 1)

2l+1
l < (2l + 3)

2l+3
l+1 ,

or
(2l + 1)2l2+3l+1 < (2l + 3)2l2+3l,

which is equivalent to

(2l + 1) <

(
2l + 3
2l + 1

)2l2+3l

=
(

1 +
2

2l + 1

)2l2+3l

.



Since (1 + a)n > 1 + na sufficient is

1 +
2(2l2 + 3l)

2l + 1
> 1 + 2l,

or, equivalently, 4l2 + 6l > 4l2 + 2l, which is true.
The final statement holds by Corollaries 1 and 2.

Remark 2. In summary, having again the relations r|m, s|m, and s > r, the
inequality (3.1) can fail only for r odd and s even. Since in this case D((m

s )) = m
2 ,

the weakest counterexample could be for r = 2l+1 and s = 2l+2. Here we have
to find l such that

log2(2l + 2)
d 2l+1

2 e m
2l+2

<
log2(2l + 1)
d 2l

2 e m
2l+1

or, equivalently, with

2l log2(2l + 2) < (2l + 1) log2(2l + 1)

or with (
1 +

1
2l + 1

)2l

< 1 + 2l.

Since the term to the left is smaller than e this holds for all l = 1, 2, . . . .

On the other hand for s = 2l′ + 2, l′ > l we have to check whether

2l log2(2l′ + 2) < (2l + 1) log2(2l + 1).

This fails for l′ ≥ l′0(l), suitable.

Remind that by S0 we denote a subset of Z2k containing 0.

Lemma 6. If for any subgroup U < Zn
2k , k ≥ 1, of diameter d it is true that

|S0| ≥ 2, then the transformation

L :
⋃

S
USS →

(⋃

S
US

)
Z2k

results in a group of diameter not more than d and not decreased cardinality.

Proof. First we show that the transformation L does not decrease the cardinality.
Consider the decomposition (2.2). Every un−1 occuring in some US0 + α has
multiplicity

|S0 + ψ(α)| = |S0|
and gets by the transformation L the multiplicity |Z2k | ≥ |S0|. So the cardinality
does not decrease.

Furthermore by (2.2) and Lemma 4 we have

D(US0) = D(US0 + α) ≤ d− 2k−1



and also
D(US0 + α,US0 + α′) ≤ d′ − 2k−1,

where d′ ≤ d.
Using the transformation L and Lemma 4 we get

D

((⋃

S
US

)
· Z2k

)
≤ d− 2k−1 + 2k−1 = d.

Hence the transformation L is appropriate, i.e. does not decrease the cardinality
and does increase the diameter d.

Lemma 7. If for any subgroup U < Zn
2k , k ≥ 1 of diameter d it is true that S0 =

{0}, then there exist appropriate transformations of the group U into another
subgroup of Zn

2k that do not decrease the cardinality and do not increase the
diameter d.

Proof. For S0 = {0} the decomposition (2.2) transforms into the decomposition

U =
⋃

i∈U(n)

(U{0} + ϕ(i))i, (3.2)

where U(n) is from Definition 2. All cosets U{0} + ϕ(i), i ∈ U(n), are disjoint or
equal.

We distinguish two cases.

Case 1: Since the set U{0} by Lemma 2 is a subgroup for the case if there exist
i, j, i 6= j, such that

U{0} + ϕ(i) = U{0} + ϕ(j),

then ϕ(i)− ϕ(j) ∈ US0 .

Case 1a: If dL(i, j) = 2k−1 then

D(U{0} + ϕ(i)) = D(U{0}) = d− 2k−1.

In this case we use the transformation L, i.e. replace all i by Z2k .

Case 1b: Let d(i, j) = 2s < 2k−1. W.l.o.g. we consider the case U{0} = U{0} +
ϕ(i), where d(0, i) = 2s. Since U(n) is a subgroup in Z2k by Lemma 4 we have
D(U(n)) = 2k−1. Therefore we can find in U(n) an element 2k−1. Either U{0} =
U{0}+ϕ(2k−1) or U{0} 6= U{0}+ϕ(2k−1) we have D(U{0}) = D(U{0}+ϕ(2k−1)) =
d− 2k−1.

In both cases we use the transformation L, i.e. replace U(n) by Z2k (the
smaller one we replace by Z2k not changing the diameter).



Case 2: If U{0} + ϕ(i) 6= U{0} + ϕ(j) for any distinct i, j from {0, 1, . . . , 2k − 1},
then we replace all i by 0 and get the subgroup in Zn

2k with the same cardinality
as the group U and the diameter does not increase.

¿From Lemmas 1-4, 6, and 7 we get

Theorem 1. For any cyclic group Z2k , k ≥ 1, with respect to the Lee distance
it holds

AZn
2k(d) = |Z2k |min(n,b d

2k−1 c) = 2k min(n,b d

2k−1 c).

4 Optimal direct products of cyclic groups with specified
Lee diameter

Let us consider maximal direct products of subgroups in Zpk with n factors and
Lee diameter not exceeding d, p > 2. Recall that by Lemma 4

D

((
pk

ps

))
= D((pk−s)) = dp

s − 1
2

e · pk−s

and write Fps = (pk−s).
Clearly, for k > s ≥ t ≥ 1 it is true that |Fps | · |Fpt | = |Fps+1 | · |Fpt−1 | and

D(Fps) + D(Fpt) ≥ D(Fps+1) + D(Fpt−1), (4.1)

because this is equivalent with

dp
s − 1
2

ep
k

ps
+ dp

t − 1
2

ep
k

pt
≥ dp

s+1 − 1
2

e pk

ps+1
+ dp

t−1 − 1
2

e pk

pt−1
,

which is equivalent to

1
2
− 1

2ps
+

1
2
− 1

2pt
≥ 1

2
− 1

2ps+1
+

1
2
− 1

2pt−1

or to
1

ps+1
+

1
pt−1

≥ 1
ps

+
1
pt

or
pt−1 + ps+1 ≥ pt + ps.

This is true, because ps+1 > 2ps > ps + pt.

¿From (4.1) readily follows

Lemma 8. For cardinality pT , T = ak + t, 0 ≤ t < k, the group
a∏
1

Fpk ·Fpt has

the smallest diameter, namely

D

(
a∏
1

Fpk · Fpt

)
= a

pk − 1
2

+
pt − 1

2
pk−t.



This optimization problem can also be written as the following linear pro-
gramming problem

(a) d ≤
k∑

t=1
at · diam(Zpt)

(b) max
{

k∏
t=1

pat·t : integers a1, a2, . . . , ak satisfy (a)
}

or (c) max
{

k∑
t=1

at · t : integers a1, a2, . . . , ak satisfy (a)
}

.

The value of t is f(t) = t
diam(Zpt ) , which can be seen with Lemma 5 to be

monotonically increasing in t.
Therefore it is best to use Zpk as often as possible as factor in the subgroup,

then Zpk−1 as often as possible (under the constraint (a)) etc.

The result easily generalizes from m = pk, Fps , Fpt , s > t, to m =
pα1
1 pα2

2 · · · pαµ
µ , FS = F

p
β1
1 p

β2
2 ···pβµ

µ
, FT = Fp

γ1
1 p

γ2
2 ···pγµ

µ
, S > T . In the case there

exists i such that βi < αi, γi ≥ 1 by taking pi from T and adding it to S.
Obviously for S′ = Spi, and T ′ = T

pi
we have |FS | · |FT | = |FS′ | · |FT ′ | and

D(FS) + D(FT ) ≥ D(FS′) + D(FT ′) because

dS−1
2 e
S

+
dT−1

2 e
T

≥ dS′−1
2 e
S′

+
dT ′−1

2 e
T ′

holds, since it is true the inequality

1
2
− 1

2S
+

1
2
− 1

2T
≥ 1

2
− 1

2S′
+

1
2
− 1

2T ′

as a consequence of S′ + T ′ ≥ S + T .

5 A diametric theorem in Zn
pk for homogeneous distance

According to [7] the homogeneous weight of i ∈ Zpk is given by

whom(i) =





0 if i = 0,
p− 1 if i ∈ Zpk r (pk−1),

p if i ∈ (pk−1)r {0}.
(5.1)

For u = (u1, u2, . . . , un) ∈ Zn
pk , whom(u) =

n∑
i=1

whom(ui) and for u, v ∈ Zn
pk

the homogeneous distance between u and v is dhom(u, v) = whom(u − v). The
homogeneous diameter we define as

Dhom(U) = max
u,v∈U

dhom(u, v)



and for any two sets U ,V ⊂ Zn
pk the homogeneous cross-diameter is

Dhom(U ,V) = max
u∈U ,v∈V

dhom(u, v).

Lemma 4′. (Homogeneous diameter of a subgroup of Zpk) For any integer
i ∈ {1, 2, . . . , k − 1} we have Dhom((pi)) = Dhom(Zpk) = p, where (pi) =
{0, pi, 2pi, . . . , (pk−i − 1)pi} has pk−i elements.

Proof. Since pk−i−1 ≤ pk−i − 1 and pk−i−1pi = pk−1 we have pk−1 ∈ (pi) for
any i ∈ {1, 2, . . . , k − 1}. Therefore by (5.1)

p = Dhom((pi)) ≤ Dhom(Zpk) = p.

It is easy to see that both Lemmas 6 and 7 have corresponding Lemmas 6′

and 7′, we just have to replace in the proofs 2k−1 by p and note that a subgroup
U < Zpk is of the form (pi) for some i.

Using this and Lemma 4′ we get for

A′Zn
pk(d) = max{|U| : U < Zn

pk with Dhom(U) ≤ d} the following

Theorem 2. For any cyclic group Zpk , k ≥ 1, it is true A′Zn
pk(d) = pk min(n,b d

p c).

6 A diametric theorem in Zn
m, m = 4l, for Krotov-type

distance

For the cyclic group Zm the Krotov-type weight wK : Zm → R+ is defined by

wK(i) =





0 if i = 0,
1 if i is odd,
2 otherwise

(6.1)

(see also [13]). For any word u = (u1, u2, . . . , un) from Zn
m we define the Krotov-

type weight wK(u) =
k∑

i=1

wK(ui), distance dK(u, v) = wK(u − v), diameter

DK(U), and cross-diameter DK(U ,V).

As analog to Lemma 4 we get

Lemma 4′′. (Diameter of a subgroup of Zm for Krotov-type distance) For any
non-trivial U < Zm, m ≥ 2, we have

DK

((m

s

))
=

{
1 if s = 2 and m

2 is odd,
2 otherwise.

The proof easily follows from (6.1) and the fact that any subgroup (m
s ) has

an even element with the one exception if s = 2 and m
2 is odd. Lemmas 6′′, 7′′,

the analogs to Lemmas 6, 7, are valid for the case 4|m. Using these facts and
Lemma 4′′ we get



Theorem 3. For any cyclic group Zm with 4|m with respect to the Krotov-type
distance it is true A′′Zn

m(d) = mmin(n, d
2 ).
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