Shadows under the Word-Subword Relation

R. Ahlswede ${ }^{\dagger}$ and V. S. Lebedev ${ }^{a 1}$
${ }^{a}$ Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
lebedev37@mail.ru

Received May 24, 2011; in final form, October 6, 2011

Abstract

We introduce a minimal shadow problem for a word-subword relation. We obtain upper and lower bounds for the minimal shadow cardinality.

DOI: 10.1134/S0032946012010048

1. INTRODUCTION

Quite surprisingly, it seems that the minimal shadow problem for the word-subword relation introduced here has not been studied before, whereas its analogs for sets [1-4], sequences [5], and vector spaces over finite fields [6] are well known.

For an alphabet $\mathcal{X}=\{0,1, \ldots, q-1\}$, we consider the set \mathcal{X}^{k} of words $x^{k}=x_{1} x_{2} \ldots x_{k}$ of length k. For a word $a^{k}=a_{1} a_{2} \ldots a_{k} \in \mathcal{X}^{k}$, we define its left shadow

$$
\begin{equation*}
\operatorname{shad}^{L}\left(a^{k}\right)=a_{2} \ldots a_{k}, \tag{1}
\end{equation*}
$$

i.e., the subword resulting from deleting the first letter a_{1} in a^{k}, and its right shadow

$$
\begin{equation*}
\operatorname{shad}^{R}\left(a^{k}\right)=a_{1} \ldots a_{k-1}, \tag{2}
\end{equation*}
$$

i.e., the subword resulting from deleting the last letter a_{k} in a^{k}. Note that $\operatorname{shad}^{L}\left(a^{k}\right)=\operatorname{shad}^{R}\left(a^{k}\right)$ if and only if $a^{k}=a a \ldots a, a \in \mathcal{X}$, because $a_{2} a_{3} \ldots a_{k}=a_{1} a_{2} \ldots a_{k-1}$ implies $a_{1}=a_{2}=a_{3}=\ldots=a_{k}$.

We define the shadow of a^{k} by

$$
\begin{equation*}
\operatorname{shad}\left(a^{k}\right)=\operatorname{shad}^{L}\left(a^{k}\right) \cup \operatorname{shad}^{R}\left(a^{k}\right) . \tag{3}
\end{equation*}
$$

Unless a^{k} has identical letters, $\operatorname{shad}\left(a^{k}\right)$ consists of two elements.
Now for any subset $A \subset \mathcal{X}^{k}$ we define its left shadow

$$
\begin{equation*}
\operatorname{shad}^{L}(A)=\bigcup_{a^{k} \in A} \operatorname{shad}^{L}\left(a^{k}\right) \tag{4}
\end{equation*}
$$

right shadow

$$
\begin{equation*}
\operatorname{shad}^{R}(A)=\bigcup_{a^{k} \in A} \operatorname{shad}^{R}\left(a^{k}\right) \tag{5}
\end{equation*}
$$

and shadow

$$
\begin{equation*}
\operatorname{shad}(A)=\operatorname{shad}^{L}(A) \cup \operatorname{shad}^{R}(A) . \tag{6}
\end{equation*}
$$

We are interested in finding the minimal shadow of N-sets $A \subset \mathcal{X}^{k}$, i.e., the function

$$
\begin{equation*}
\triangle_{k}(q, N)=\min \left\{|\operatorname{shad}(A)|: A \subset \mathcal{X}^{k},|A|=N\right\} . \tag{7}
\end{equation*}
$$

We write for short $\triangle_{k}(N)$ if q is fixed, and $\triangle(N)$ if k is also fixed. We also use the functions $\triangle_{k}^{L}(N)$ and $\triangle_{k}^{R}(N)$ (respectively, $\triangle^{L}(N)$ and $\triangle^{R}(N)$), where the minimization is over left and right shadows, respectively.

[^0]
2. PRELIMINARY RESULTS

We denote by $a b$ the concatenation of words a and b (the length of this word is the sum of lengths of a and b). Denote by $A B$ the set of all words $a b$ where $a \in A$ and $b \in B$. For example, the set $\mathcal{X} b \mathcal{X}$ consists of q^{2} words that have any symbols in the first and last positions and have the word b in the middle.

Consider the following configurations:
(i) Words $x x x \ldots x, x \in \mathcal{X}$, whose number is $q=|\mathcal{X}|$. Their shadow has cardinality 1 .
(ii) Words

$$
\begin{aligned}
& a^{k}=c d c d \ldots c d, \quad \text { if } k \text { is even }, \\
& b^{k}=d c d c \ldots d c \quad, \quad \text {, }
\end{aligned}
$$

and analogously

$$
\begin{aligned}
& a^{k}=c d \ldots c, \quad \text { if } k \text { is odd. } \\
& b^{k}=d c \ldots d
\end{aligned}
$$

Shadows of these words have cardinality 2 .
(iii) In the set $\mathcal{X} B \mathcal{X}$, all the q words of the form $x b y$, where x is a fixed element, $b \in \mathcal{B}$, and $y \in \mathcal{X}$, have identical right shadows. Similarly for left shadows.

Note that for all these configurations we have $\triangle(N) \leq N$; let us prove this in general.
First consider the binary case.
Lemma 1. For $q=2$ and $k \geq 3$ we have

$$
\triangle(N) \leq N, \quad \text { for all } \quad N \leq 2^{k}
$$

Proof. Write N in the form $N=4 M+p$, where $0 \leq p<4$.
Case $p=0$. Choose any $B \subset \mathcal{X}^{k-2}$ with $|B|=M$; then $A=\mathcal{X} B \mathcal{X}$ is of cardinality N. It is easily seen that

$$
|\operatorname{shad}(A)|=|\mathcal{X} B \cup B \mathcal{X}| \leq|B \mathcal{X}|+|\mathcal{X} B|=4 M=N .
$$

Case $3 \geq p \geq 1$. Choose $\mathcal{B} \subset \mathcal{X}^{k-2} \backslash\left\{0^{k-2}\right\}$ with $|\mathcal{B}|=M$ and $A_{p}=\mathcal{X} \mathcal{B} \mathcal{X} \cup C_{p}$, where $C_{1}=\left\{00^{k-2} 0\right\}, C_{2}=\left\{00^{k-2} 0,00^{k-2} 1\right\}$, and $C_{3}=\left\{00^{k-2} 0,00^{k-2} 1,10^{k-2} 0\right\}$. It is clear that $\left|\operatorname{shad}\left(A_{p}\right)\right| \leq 4 M+p . \triangle$

For a q-ary case, we have the following fact.
Lemma 2. Consider $\mathcal{X}=\{0,1, \ldots, q-1\}, k \geq 3$, and $N \leq q^{k}$. Write $N=q^{2} M+p, 0 \leq p<q^{2} ;$ then

$$
\Delta(N) \leq 2 q M+ \begin{cases}0 & \text { if } p=0 \tag{8}\\ \lceil\sqrt{p}\rceil+\lfloor\sqrt{p}\rfloor-1 & \text { if }\lceil\sqrt{p}\rceil\lfloor\sqrt{p}\rfloor \geq p>0 \\ 2\lceil\sqrt{p}\rceil-1 & \text { otherwise }\end{cases}
$$

and

$$
\Delta(N) \leq \frac{2}{q} N-\frac{2}{q} p+ \begin{cases}0 & \text { if } p=0 \tag{9}\\ \lceil\sqrt{p}\rceil+\lfloor\sqrt{p}\rfloor-1 & \text { if }\lceil\sqrt{p}\rceil\lfloor\sqrt{p}\rfloor \geq p>0 \\ 2\lceil\sqrt{p}\rceil-1 & \text { otherwise. }\end{cases}
$$

Proof. Case $p=0$. Choose any $\mathcal{B} \subset \mathcal{X}^{k-2}$ with $|\mathcal{B}|=M$ and $A=\mathcal{X B X}$. Then $|\operatorname{shad}(A)| \leq$ $2 q M$, and we obtain (8).

Case $q^{2}-1 \geq p \geq 1$. Choose $\mathcal{B} \subset \mathcal{X}^{k-2} \backslash\left\{0^{k-2}\right\}$ with $|\mathcal{B}|=M$ and $A_{p}=\mathcal{X} \mathcal{B} \mathcal{X} \cup D_{p}$, where D_{p} is a balanced subset of $\mathcal{X} 0^{k-2} \mathcal{X}$ with p elements. This means that we take $D_{p}=\mathcal{Y} 0^{k-2} \mathcal{Y}^{\prime}$, where the difference $\left|\left\{\mathcal{Y} \backslash \mathcal{Y}^{\prime}\right\} \cup\left\{\mathcal{Y}^{\prime} \backslash \mathcal{Y}\right\}\right|$ between $|\mathcal{Y}|$ and $\left|\mathcal{Y}^{\prime}\right|$ is the minimum possible. Then

$$
\left|\operatorname{shad}\left(A_{p}\right)\right| \leq 2 q M+2\lceil\sqrt{p}\rceil-1
$$

and (8) is proved. From this, an easy computation yields (9).
Remark 1. For $q=2$ bound (8) is equal to N. Hence, Lemma 2 implies Lemma 1.
Remark 2. For $N=q^{\ell}<q^{k}$ we may choose $A=\mathcal{X}^{\ell-1} 0^{k-\ell} \mathcal{X}$ to obtain $|\operatorname{shad}(A)|=\left(\frac{2}{q}-\frac{1}{q^{2}}\right) q^{\ell}=$ $\left(\frac{2}{q}-\frac{1}{q^{2}}\right) N$, which is better than (8). For $q=2$ we get $\triangle_{k}\left(2^{\ell}\right) \leq \frac{3}{4} 2^{\ell}$.

3. CONCEPT OF BASIC SETS

In Section 2 we have obtained our first upper bounds on minimal shadows for sets with the structure $A=\mathcal{X} B \mathcal{X}$. We generalize this structure by taking unions of such sets. Consider the sets

$$
\begin{equation*}
\mathcal{X}^{\ell} 0^{m} \mathcal{X}^{r} \tag{10}
\end{equation*}
$$

Now we define our main concept.
Definition 1. For nonnegative integers ℓ, m, and r satisfying

$$
\begin{equation*}
\ell \geq r \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
k=\ell+m+r \tag{12}
\end{equation*}
$$

we define a basic set $\mathcal{B}(k, \ell, r)$ in \mathcal{X}^{k} as the following union:

$$
\begin{equation*}
\mathcal{B}(k, \ell, r)=\bigcup_{s=0}^{\ell-r} \mathcal{X}^{\ell-s} 0^{m} \mathcal{X}^{r+s} \tag{13}
\end{equation*}
$$

For instance, $\mathcal{B}(7,3,1)$ is the union of rows of the matrix

$$
\begin{array}{ccccccc}
\mathcal{X} & \mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}
$$

and $\mathcal{B}(8,3,2)$ is the union of rows of the matrix

$$
\begin{array}{llllllll}
\mathcal{X} & \mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} & \mathcal{X} .
\end{array}
$$

We denote these matrices by $[\mathcal{B}(7,3,1)]$ and $[\mathcal{B}(8,3,2)]$, and in the general case, by $[\mathcal{B}(k, \ell, r)]$.
Here are key properties of such sets.
Lemma 3. For all $\ell \geq r \geq 1, m+r>\ell$ (i.e., $k=\ell+m+r>2 \ell$), and $q=2$, we have
(i) $|\mathcal{B}(k, \ell, r)|=2^{\ell+r}+2^{\ell+r-1}(\ell-r)=2^{\ell+r-1}(\ell-r+2)$,
(ii) $\operatorname{shad} \mathcal{B}(k, \ell, r)=\mathcal{B}(k-1, \ell, r-1)$,
(iii) $\mathcal{B}(k, \ell, r) \subset \mathcal{B}(k, \ell+1, r-1)$,
(iv) $|\operatorname{shad} \mathcal{B}(k, \ell, r)|=|\mathcal{B}(k-1, \ell, r-1)|=\frac{|\mathcal{B}(k, \ell, r)|}{2}+2^{\ell+r-2}$,
(v) $|\operatorname{shad} \mathcal{B}(k, \ell, r)|=2^{\ell+r-2}(\ell-r+3)$.

Example. Let $k=9, \ell=4$, and $r=1$. Then

$$
\begin{gathered}
|\mathcal{B}(9,4,1)|=2^{5}+2^{4} 3=32+48=80 \\
\triangle_{9}(80) \leq 2^{4+1-2}(4-1+3)=48
\end{gathered}
$$

This is clearly better than the bound in Lemma 1.

An important consequence is as follows.
Corollary 1. For $N=2^{\ell+r-1}(\ell-r+2)$ and $k=\ell+m+r>2 \ell \geq 2 r \geq 2$, we have

$$
\begin{equation*}
\triangle_{k}(N) \leq \frac{1}{2} \frac{\ell-r+3}{\ell-r+2} N \tag{14}
\end{equation*}
$$

Proof of Lemma 3. (i) First, as an example of a basic set $\mathcal{B}(k, \ell, r)$, consider $(k, \ell, r)=$ $(9,4,2)$:

$$
\begin{array}{lllllllll}
\mathcal{X} & \mathcal{X} & \mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}
$$

Note that $\mathcal{B}(9,4,2)$ equals the union of the following sets:

$$
\begin{array}{lllllllll}
\mathcal{X} & \mathcal{X} & \mathcal{X} & \mathcal{X} & 0 & 0 & 0 & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} & 0 & 0 & 0 & 1 & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & 0 & 0 & 0 & 1 & \mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}
$$

These row sets have the total cardinality of $2^{6}+2^{5}+2^{5}$.
For the general case of $\ell \leq m+r$, we find that the first set has cardinality $2^{\ell+r}$, and the other $\ell-r$ sets have cardinality $2^{\ell+r-1}$. Hence,

$$
|\mathcal{B}(k, \ell, r)|=2^{\ell+r}+2^{\ell+r-1}(\ell-r)
$$

(ii) We illustrate the claim by the following example:

\[

\]

If we add the first row of the second matrix to the first matrix (respectively, the last row of the first matrix to the second matrix), then $\operatorname{shad} \mathcal{B}(9,4,2)=\mathcal{B}(8,4,1)$, so k and r are reduced by 1 .

In the general case, right shadow deletes from the basic set one \mathcal{X} from the right, and left shadow, from the left. Hence, in the general case k and r are reduced by 1 too.
(iii) Simply note that for $\ell>r$ the matrix $[\mathcal{B}(k, \ell, r)]$ is obtained from $[\mathcal{B}(k-1, \ell, r-1)]$ by deleting the first and last row.
(iv) Note that in $\operatorname{shad}^{L} \mathcal{B}(k, \ell, r)$ we have one \mathcal{X} less than in $\mathcal{B}(k, \ell, r)$ in each row. Also, we have an extra row; this row $\mathcal{X}^{\ell} 0^{m} \mathcal{X}^{r-1}$ in $\operatorname{shad}^{R} \mathcal{B}(k, \ell, r)$ corresponds to $\mathcal{X}^{\ell-1} 10^{m} \mathcal{X}^{r-1}$ of cardinality $2^{\ell+r-2}$.

Formally, (iv) follows from the equality

$$
2^{\ell+r-2}(\ell-r+2)+2^{\ell+r-2}=2^{\ell+(r-1)-1}(\ell-(r-1)+2)
$$

(v) Follows from (i) and (ii). \triangle

Generalization to the \boldsymbol{q}-ary case. It is easily seen that (i) and (iv) in Lemma 3 can be extended to (i^{\prime}) and (iv') in Lemma 4. In (i) one should take any nonzero element instead of 1 , so the first row has cardinality $q^{\ell+r}$ and the other $\ell-r$ rows have cardinality $q^{\ell+r-1}(q-1)$. Hence, we have the following result.

Lemma 4. For all $\ell \geq r \geq 1, m+r>\ell$ (i.e., $k=\ell+m+r>2 \ell$), and $q \geq 2$, we have

$$
|\mathcal{B}(k, \ell, r)|=q^{\ell+r}+q^{\ell+r-1}(\ell-r)(q-1)
$$

(iv') $\quad|\operatorname{shad} \mathcal{B}(k, \ell, r)|=|\mathcal{B}(k-1, \ell, r-1)|=\frac{|\mathcal{B}(k, \ell, r)|}{q}+q^{\ell+r-2}(q-1)$

$$
\begin{equation*}
=q^{\ell+r-2}((\ell-r+2)(q-1)+1) . \tag{16}
\end{equation*}
$$

For $N=|\mathcal{B}(k, \ell, r)|=q^{\ell+r}+q^{\ell+r-1}(\ell-r)(q-1)$, from $|\operatorname{shad} \mathcal{B}(k, \ell, r)|=\frac{N}{q}+q^{\ell+r-2}(q-1)$ we obtain

$$
\begin{align*}
& \frac{\triangle_{k}(q, N)}{N} \leq \frac{1}{q}+\frac{1}{q} \frac{(q-1)}{q+(\ell-r)(q-1)}=\frac{1}{q}\left(1+\frac{q-1}{(\ell-r+1)(q-1)+1}\right) \\
& \quad \leq \frac{1}{q}\left(1+\frac{1}{\ell-r+1}\right) . \tag{17}
\end{align*}
$$

Hence follows an important consequence.
Corollary 2. For $N=q^{\ell+r}+q^{\ell+r-1}(\ell-r)(q-1)$ and $k=\ell+m+r>2 \ell \geq 2 r \geq 2$, we have

$$
\begin{equation*}
\triangle_{k}(q, N) \leq \frac{1}{q}\left(1+\frac{1}{\ell-r+1}\right) N . \tag{18}
\end{equation*}
$$

Remark 3. For $q=2$ we had a smaller factor $1+\frac{1}{\ell-r+2}$ in Corollary 1.

4. LOWER BOUND

For any $A \subset \mathcal{X}^{k}$ and $\mathcal{Y} \subset \mathcal{X}$, define

$$
\begin{equation*}
A_{\mathcal{Y}}^{1}=\left\{x_{2} \ldots x_{k} \in \mathcal{X}^{k-1}: \mathcal{Y} x_{2} \ldots x_{k} \subset A \text { and } x x_{2} \ldots x_{k} \notin A \text { for all } x \in \mathcal{X} \backslash \mathcal{Y}\right\} \tag{19}
\end{equation*}
$$

Clearly, these sets are contained in \mathcal{X}^{k-1} and are disjoint. Moreover,

$$
\begin{gather*}
\operatorname{shad}(A) \supset \operatorname{shad}^{L}(A)=\bigcup_{\mathcal{Y} \subset \mathcal{X}} A_{\mathcal{Y}}^{1}, \tag{20}\\
A=\bigcup_{\mathcal{Y} \subset \mathcal{X}} \mathcal{Y} A_{\mathcal{Y}}^{1}, \tag{21}
\end{gather*}
$$

and since $|\mathcal{Y}| \leq q$, we get

$$
\begin{equation*}
|\operatorname{shad}(A)| \geq \frac{1}{q}|A| . \tag{22}
\end{equation*}
$$

Hence, with the use of Corollary 2, we obtain the following result.
Theorem 1. For $N=q^{\ell+r}+q^{\ell+r-1}(\ell-r)(q-1)$ and $k=\ell+m+r>2 \ell \geq 2 r \geq 2$, we have

$$
\begin{equation*}
\frac{1}{q} N \leq \triangle_{k}(q, N) \leq \frac{1}{q}\left(1+\frac{1}{\ell-r+1}\right) N . \tag{23}
\end{equation*}
$$

Moreover, the lower bound holds for all N.

5. CARDINALITY OF BASIC SETS FOR $\ell>m$

Note that $|\mathcal{B}(k, \ell, r)|=|\mathcal{B}(k-2 r, \ell-r, 0)| q^{2 r}$. Hence, we are interested in the cardinality of $\mathcal{B}(k, \ell, 0)$ for an arbitrary ℓ and $m=k-\ell-r, \ell>m$ (the case of $\ell \leq m$ was considered in Lemma 4).

Theorem 2. For any ℓ and m such that $\ell>m$, we have

$$
|\mathcal{B}(k, \ell, 0)|=q^{\ell-1}(\ell(q-1)+q)-(q-1) \sum_{i=1}^{\ell-m} q^{\ell-m-i}|\mathcal{B}(m+i-1, i-1,0)|
$$

and for $N=|\mathcal{B}(k, \ell, 1)|=q^{2}|\mathcal{B}(k-2, \ell-1,0)|$,

$$
\frac{\triangle(N)}{N} \leq \frac{1}{q}\left(1+\frac{1}{\ell}\right)
$$

Proof. Denote by $H(\ell, m, a)$ the number of sequences from $\mathcal{X}^{\ell+m}$ that are not covered by the first a rows of the matrix $[\mathcal{B}(k, \ell, 0)]$. Consider the j th row $\mathcal{X}^{\ell-j+1} 0^{m} \mathcal{X}^{j-1}$ in $[\mathcal{B}(k, \ell, 0)]$. How many new sequences does it add? Using our notation, we obtain

$$
q^{\ell-j+1}(q-1) H(\ell, m, j-m-1)
$$

such sequences.
We have

$$
\begin{equation*}
H(\ell, m, a)=q^{m+a-1}-|\mathcal{B}(m+a-1, a-1,0)| \tag{24}
\end{equation*}
$$

Let $i=j-m-1$; then for $i=1,2, \ldots, \ell-m$ we add

$$
q^{\ell-i-m}(q-1)\left(q^{m+i-1}-|\mathcal{B}(m+i-1, i-1,0)|\right)
$$

sequences, and this proves that

$$
|\mathcal{B}(k, \ell, 0)|=q^{\ell}+q^{\ell-1} m(q-1)+\sum_{i=1}^{\ell-m} q^{\ell-m-i}(q-1)\left(q^{m+i-1}-|\mathcal{B}(m+i-1, i-1,0)|\right)
$$

Hence,

$$
|\mathcal{B}(k, \ell, 0)|=q^{\ell}+q^{\ell-1} m(q-1)+q^{\ell-1}(\ell-m)(q-1)-\sum_{i=1}^{\ell-m} q^{\ell-m-i}(q-1)|\mathcal{B}(m+i-1, i-1,0)|
$$

We obtain

$$
\triangle(N) \leq \frac{1}{q} \frac{|\mathcal{B}(k, \ell, 0)|}{q|\mathcal{B}(m+\ell-1, \ell-1,0)|} N
$$

Therefore,

$$
\frac{\triangle(N)}{N} \leq \frac{1}{q}\left(1+\frac{(q-1) q^{\ell-1}-(q-1)|\mathcal{B}(\ell-1, \ell-m-1,0)|}{q^{\ell-1}(q+(\ell-1)(q-1))-(q-1) \sum_{i=1}^{\ell-m-1} q^{\ell-m-i}|\mathcal{B}(m+i-1, i-1,0)|}\right)
$$

We have obtained this formula using the equality

$$
\operatorname{shad}(\mathcal{B}(m+\ell+1, \ell, 1))=\mathcal{B}(m+\ell, \ell, 0)
$$

One can prove that for such N

$$
\frac{(q-1)\left(q^{\ell-1}-|\mathcal{B}(\ell-1, \ell-m-1,0)|\right)}{q^{\ell-1}((\ell-1)(q-1)+q)-(q-1) \sum_{i=1}^{\ell-m-1} q^{\ell-m-i}|\mathcal{B}(m+i-1, i-1,0)|} \leq \frac{1}{\ell}
$$

Indeed,

$$
\begin{aligned}
\left(q^{\ell-1}-\mid \mathcal{B}(\ell-1, \ell\right. & -m-1,0) \mid)(q-1) \ell \\
& \leq q^{\ell-1}((\ell-1)(q-1)+q)-(q-1) \sum_{i=1}^{\ell-m-1} q^{\ell-m-i}|\mathcal{B}(m+i-1, i-1,0)|
\end{aligned}
$$

if

$$
\sum_{i=1}^{\ell-m-1} q^{\ell-m-i}|\mathcal{B}(m+i-1, i-1,0)| \leq|\mathcal{B}(\ell-1, \ell-m-1,0)| \ell
$$

It is clear that for any natural u

$$
q|\mathcal{B}(m+u-1, u-1,0)|<|\mathcal{B}(m+u, u, 0)| .
$$

Therefore,

$$
\sum_{i=1}^{\ell-m-1} q^{\ell-m-i}|\mathcal{B}(m+i-1, i-1,0)| \leq|\mathcal{B}(\ell-1, \ell-m-1,0)|(\ell-m-1)
$$

which proves the theorem.
Remark 4. For the binary case one can prove that for $N=|\mathcal{B}(k, \ell, 1)|=4|\mathcal{B}(k-2, \ell-1,0)|$ and $\ell>m$ one has

$$
\frac{\triangle(N)}{N} \leq \frac{1}{2}\left(1+\frac{1}{\ell+1}\right)
$$

Extended basic sets. For basic sets $\mathcal{B}(k, \ell, r)$ we used building sets

$$
\begin{equation*}
\mathcal{X}^{\ell} 0^{m} \mathcal{X}^{r} \tag{25}
\end{equation*}
$$

and took unions of such sets. Now we define a dual building set as

$$
0^{m} \mathcal{X}^{k-2 m} 0^{m}
$$

We add these dual building sets to the basic set and define an extended basic set $\widetilde{\mathcal{B}}(k, \ell, 1)$ as

$$
\begin{equation*}
\widetilde{\mathcal{B}}(k, \ell, 1)=\left(\bigcup_{s=0}^{\ell-1} \mathcal{X}^{\ell-s} 0^{m} \mathcal{X}^{1+s}\right) \cup 0^{m} \mathcal{X}^{k-2 m} 0^{m}=\mathcal{B}(k, \ell, r) \cup 0^{m} \mathcal{X}^{k-2 m} 0^{m} . \tag{26}
\end{equation*}
$$

The set $\widetilde{\mathcal{B}}(k, \ell, 1)$ has a larger cardinality than $|\mathcal{B}(k, \ell, 1)|$, but their shadows coincide!
Theorem 3. For $\ell \geq m$ we have
(i) $\widetilde{\mathcal{B}}(k, \ell, 1)=|\mathcal{B}(k, \ell, 1)|+1$ for $\ell=m$,
(ii) $\widetilde{\mathcal{B}}(k, \ell, 1)=|\mathcal{B}(k, \ell, 1)|+2^{\ell-m-1}$ for $m<\ell \leq 2 m$,
(iii) $\widetilde{\mathcal{B}}(k, \ell, 1)=|\mathcal{B}(k, \ell, 1)|+2^{\ell-m-1}-|\mathcal{B}(\ell-m-1, \ell-2 m-1,0)|$ for $\ell>2 m$,
(iv) $\operatorname{shad}(\widetilde{\mathcal{B}}(k, \ell, 1))=|\mathcal{B}(k-1, \ell, 0)|$.

Proof. For $\ell=m$ we add a new word $0^{m} 10^{m}$ to the basic set. In case (ii), a new block is $0^{m} 1 \mathcal{X}^{\ell-m-1} 10^{m}$. Since it has a 1 in the $(m+1)$ st coordinate, it is not covered by the last m rows of the basic matrix $[\mathcal{B}(k, \ell, 1)]$. Since it has a 1 in the $(\ell+1)$ st coordinate, it is not covered by the first m rows of the basic matrix $[\mathcal{B}(k, \ell, 1)]$. In total, we have ℓ rows in $[\mathcal{B}(k, \ell, 1)]$; hence, this proves case (ii). In the case of $\ell>2 m$, there is also a 1 in both the $(m+1)$ st and $(\ell+1)$ st rows, but in this case we obtain $H(\ell-2 m-1, m, \ell-2 m)$ new sequences. Using (24), this proves case (iii). Dual building sets $0^{m} \mathcal{X}^{k-2 m} 0^{m}$ yield a shadow which is a subset of the basic set $\mathcal{B}(k-1, \ell, 0)$, whence follows (iv). \triangle

6. SHADOWS, UP-SHADOWS, AND THEIR INTERRELATION

Consider a word $b^{k-1} \in \mathcal{X}^{k-1}$. Then

$$
\operatorname{up}-\operatorname{shad}\left(b^{k-1}\right)=\left\{a^{k}: a^{k} \in \mathcal{X}^{k}, b^{k-1} \in \operatorname{shad}\left(a^{k}\right)\right\} .
$$

Now for any subset $B \subset \mathcal{X}^{k-1}$ we define its up-shadow:

$$
\operatorname{up}-\operatorname{shad}(B)=\bigcup_{b^{k-1} \in B} \text { up-shad }\left(b^{k-1}\right) .
$$

For a fixed k we are interested in the function

$$
\nabla(M)=\min \left\{|\operatorname{up}-\operatorname{shad}(B)|: B \subset \mathcal{X}^{k-1},|B|=M\right\} .
$$

The following function is important for finding a relation between the shadows.
Definition 2. Consider a set C of sequences of length n with cardinality M. Let $s_{n}(C, M)$ be the number of pairs $\left(z, x^{n}\right), z \in \mathcal{X}, x^{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C$, such that $\left(z, x_{1}, x_{2}, \ldots, x_{n-1}\right) \in C$. Denote

$$
\begin{equation*}
s_{n}(M)=\max _{C} s_{n}(C, M) . \tag{27}
\end{equation*}
$$

Lemma 5. The following conditions are equivalent for $C \subseteq \mathcal{X}^{n}$:
(i) $|C| \neq q^{n}$;
(ii) $\exists z \in \mathcal{X}$ and $c^{n}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C$ such that $\left(z, c_{1}, c_{2}, \ldots, c_{n-1}\right) \notin C$;
(iii) $\triangle(\nabla(C)) \neq C$;
(iv) $\nabla(\triangle(C)) \neq C$.

Proof. (ii) \Rightarrow (iii). Consider $c \in C$ satisfying (ii). Then $\left(z, c_{1}, c_{2}, \ldots, c_{n}\right) \in \nabla(C)$, and therefore $y^{n}=\left(z, c_{1}, c_{2}, \ldots, c_{n-1}\right) \in \triangle(\nabla(C))$. However, (ii) implies $y^{n} \notin C$. Hence, $\triangle(\nabla(C)) \neq C$.
(iii) \Rightarrow (i). The set $\nabla\left(c^{n}\right)$ consists of $\mathcal{X} c_{1}, c_{2}, \ldots, c_{n} \cup c_{1}, c_{2}, \ldots, c_{n} \mathcal{X}$. Hence,

$$
\triangle\left(\nabla\left(c^{n}\right)\right)=c_{1}, c_{2}, \ldots, c_{n} \cup \mathcal{X} c_{1}, c_{2}, \ldots, c_{n-1} \cup c_{2}, \ldots, c_{n} \mathcal{X} .
$$

Therefore, $C \subseteq \triangle(\nabla(C))$. Thus, (i) is proved.
(ii) \Rightarrow (iv). Consider $c^{n} \in C$ satisfying (ii). Then we have $\left(c_{1}, c_{2}, \ldots, c_{n-1}\right) \in \triangle(C)$, and therefore $y^{n}=\left(z, c_{1}, c_{2}, \ldots, c_{n-1}\right) \in \nabla(\triangle(C))$. However, (ii) implies $y^{n} \notin C$.
(iv) \Rightarrow (i). For any $c^{n} \in C$ we have

$$
\triangle\left(c^{n}\right)=c_{2}, \ldots, c_{n} \cup c_{1}, c_{2}, \ldots, c_{n-1}
$$

and

$$
\nabla\left(\triangle\left(c^{n}\right)\right)=\mathcal{X}_{c_{2}}, \ldots, c_{n} \cup c_{2}, \ldots, c_{n} \mathcal{X} \cup \mathcal{X} c_{1}, c_{2}, \ldots, c_{n-1} \cup c_{1}, c_{2}, \ldots, c_{n-1} \mathcal{X}
$$

Thus,

$$
C \subseteq \triangle(\nabla(C)) \subseteq \nabla(\triangle(C)) .
$$

Hence, we get (i).
(i) \Rightarrow (ii). Assume that for all $z \in \mathcal{X}$ and all $c^{n} \in C$ property (ii) is fulfilled. Then $\mathcal{X} c_{1}, c_{2}, \ldots, c_{n-1} \in C$. Hence, $\mathcal{X} \mathcal{X} c_{1}, c_{2}, \ldots, c_{n-2} \in C, \mathcal{X X X}{ }_{c}, c_{2}, \ldots, c_{n-3} \in C$, etc. Therefore, $\mathcal{X X X} \ldots \mathcal{X} \mathcal{X} \in C$, and we get a contradiction to (i). \triangle

Property (ii) and Definition 2 immediately imply the following result.
Corollary 3. If $M^{\prime}<M$, then

$$
s\left(M^{\prime}\right)<s(M)
$$

Thus, $s(M)$ is a strictly monotone increasing function.
Theorem 4. For any q, k, and $M \leq q^{k-1}$, we have

$$
\triangle_{k}\left(s_{k-1}(M)\right)=M .
$$

Proof. Let $C(|C|=M)$ be a set maximizing (27). We add a sequence $\left(z, x_{1}, x_{2}, \ldots, x_{n}\right)$ to the set D, if the condition from Definition 2 holds for this z and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C$. Then $|D|=s_{n}(M)$ and $\operatorname{shad}(D)=C$. Hence,

$$
\triangle_{k}\left(s_{k-1}(M)\right) \leq M
$$

If there existed a set C^{\prime} of a smaller cardinality $M^{\prime}, M^{\prime}<M$, and such that $s\left(M^{\prime}\right)=s(M)$, this would contradict Corollary 3. Hence, $\triangle_{k}\left(s_{k-1}(M)\right)=M . \triangle$

From this and Lemma 5, we have the following fact.
Corollary 4. If $N<q^{k}$, then

$$
\begin{equation*}
\frac{1}{q} N<\triangle_{k}(q, N) . \tag{28}
\end{equation*}
$$

7. ISOPERIMETRIC NUMBERS OF GRAPHS

Problems on isoperimetric numbers of graphs have been studied for a long time (see, e.g., [7,8]).
Consider a graph $G(V, E)$ with the set of vertices V and set of edges E. If $X \subseteq V$ is some set of vertices, then ∂X denotes the set of edges that have one end in X and the other in $V \backslash X$. Thus,

$$
\partial X=\{(x, y) \in E ; x \in X, y \in V \backslash X\}
$$

The edge-isoperimetric number of this graph is defined to be

$$
i(G)=\min \frac{|\partial X|}{|X|}
$$

where the minimum is over all nonempty subsets $X \subset V$ satisfying $|X| \leq|V| / 2$.
Denote by $N(X)$ the set of vertices of $V \backslash X$ adjacent to some vertex in X. Thus,

$$
N(X)=\{y \in V \backslash X ; x \in X,(x, y) \in E\}
$$

The vertex-isoperimetric number of this graph is defined to be

$$
i_{v}(G)=\min \frac{|N(X)|}{|X|}
$$

where the minimum is over all nonempty subsets $X \subset V$ satisfying $|X| \leq|V| / 2$.

We want to consider graphs related to the word-subword relation: a U-D graph and a D-U graph. Vertices of these graphs are all sequences of \mathcal{X}^{n}.

For the U-D graph, vertices $a^{n}=a_{1} a_{2} \ldots a_{n}$ and $b^{n}=b_{1} b_{2} \ldots b_{n}\left(a^{n} \neq b^{n}\right)$ are adjacent if and only if there exists c^{n+1} such that

$$
c^{n+1} \in \operatorname{up-shad}\left(a^{n}\right), \quad b^{n} \in \operatorname{shad}\left(c^{n+1}\right) .
$$

We would like to have a bijection between edges of the U-D graph and all words from \mathcal{X}^{n+1}.
To this end, for $a^{n}=b^{n}$ we draw a single edge (loop) in the graph if and only if $a_{1}=a_{2}=$ $a_{3}=\ldots=a_{n}$. Then we get a bijection between edges of the U-D graph and all words from \mathcal{X}^{n+1}. Under this definition of the graph, its edges can be identified with sequences of length $n+1$, and vertices connected by an edge are the right and left shadows of this sequence. Such a definition of the graph seems to be extremely natural.

Note that a vertex degree in this graph is $2 q-1$ for a^{n} with $a_{1}=a_{2}=a_{3}=\ldots=a_{n}$, and $2 q$ for all other vertices.

For the D-U graph, an edge connects vertices $a^{n}=a_{1} a_{2} \ldots a_{n}$ and $b^{n}=b_{1} b_{2} \ldots b_{n}$ with $a^{n} \neq b^{n}$ if and only if there exists a word d^{n-1} such that

$$
d^{n-1} \in \operatorname{shad}\left(a^{n}\right), \quad b^{n} \in \operatorname{up}-\operatorname{shad}\left(d^{n-1}\right) .
$$

The total number of edges in the D-U graph is $q^{n-1} q(q-1)+q^{n+1}=q^{n}(2 q-1)$.
In this paper we do not consider properties of the D-U graph.

8. RELATION TO DE BRUIJN GRAPHS

Recall that for a fixed n and $k=n+1$ we are interested in

$$
\triangle(N)=\min \left\{|\operatorname{shad}(A)|: A \subset \mathcal{X}^{k},|A|=N\right\}
$$

In graph theory, an n-dimensional De Bruijn graph of q symbols is a directed graph with q^{n} vertices consisting of all possible n-sequences of the given symbols. If one of the vertices can be obtained from another by shifting all symbols by one position to the left and adding a new symbol at the end, then the latter vertex has a directed edge to the former. Thus, the set of (directed) edges is

$$
E=\left\{\left(\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right): v_{2}=w_{1}, v_{3}=w_{2}, \ldots, v_{n}=w_{n-1}\right\} .
$$

Each vertex has exactly q incoming and q outgoing edges. Consider an undirected $(k-1)$ dimensional De Bruijn graph. The graph is very close to the U-D graph. (Sequences a^{k} from \mathcal{X}^{k} are edges in the graph. The left shadow shad ${ }^{L}\left(a^{k}\right)$ and right shadow $\operatorname{shad}^{R}\left(a^{k}\right)$ are vertices incident to this edge.) For a^{n} with $a_{1}=a_{2}=a_{3}=\ldots=a_{n}$ we have a loop in the U-D graph and two loops in the De Bruijn graph.

The minimal shadow problem is equivalent to the problem of finding N edges incident to a minimum possible number of vertices. Theorem 4 shows that the problem of finding M vertices in the U-D graph that give the maximum possible number of edges between them is the inverse problem. Thus, the function $s_{k-1}(M)$ is very important for us. It is also related to the up-shadow problem.

Theorem 5. For any q, k, and $M \leq q^{k-1}$, we have

$$
\nabla(M)=2 q M-s_{k-1}(M) .
$$

Proof. The de Bruijn graph is regular. The vertex degree is $2 q$. Hence, there are $2 q M$ edges incident to M vertices from a set C, but some of them were calculated twice. The number of edges calculated twice is $s_{k-1}(M)$, and therefore the number of edges incident to C is $2 q M-s_{k-1}(M) . \triangle$

Theorem 6. For any $M \leq q^{k-1}$ we have

$$
s_{k-1}\left(q^{k-1}-M\right)=q^{k}-2 q M+s_{k-1}(M) .
$$

Proof. Let $C(|C|=M)$ be a set of vertices that maximizes (27). Let a set B of cardinality $|B|=\nabla_{k-1}(M)$ consist of edges incident to M vertices of C. Then any edge out of B gives a shadow out of C. Hence,

$$
\triangle_{k}\left(q^{k}-\nabla(M)\right) \leq q^{k-1}-M .
$$

Theorem 5 implies

$$
\nabla(M)=2 q M-s_{k-1}(M) .
$$

From this and Corollary 4, we obtain

$$
s_{k-1}\left(q^{k-1}-M\right) \geq q^{k}-2 q M+s_{k-1}(M) .
$$

If we do the same with the set $\mathcal{X}^{k-1} \backslash C$, we get

$$
\triangle_{k}\left(q^{k}-\nabla_{k-1}\left(q^{k-1}-M\right)\right) \leq M
$$

Therefore,

$$
s_{k-1}(M) \geq q^{k}-2 q\left(q^{k-1}-M\right)+s_{k-1}\left(q^{k-1}-M\right)
$$

whence we find

$$
s_{k-1}\left(q^{k-1}-M\right) \leq q^{k}-2 q M+s_{k-1}(M)
$$

Using this theorem, we can compute the rate $R=\triangle(N) / N$ for large N.
Proposition 1. For $N=2^{k}-2^{\ell}(\ell+3)$ and $\ell<k / 2$ in the binary case we have

$$
R \leq 1 / 2\left(1+\frac{1}{2^{k-\ell}-\ell-3}\right) .
$$

Proof. For $\ell<k / 2$ and $M=2^{\ell-1}(\ell+2)$ we obtain $s(M)=2^{\ell}(\ell+1)$. Theorem 6 implies

$$
s_{k-1}\left(2^{k-1}-2^{\ell-1}(\ell+2)\right)=2^{k}-2^{\ell-1} 4(\ell+2)+2^{\ell}(\ell+1)=2^{k}-2^{\ell}(\ell+3) .
$$

Hence,

$$
R \leq \frac{2^{k-1}-2^{\ell-1}(\ell+2)}{2^{\ell}\left(2^{k-\ell}-\ell-3\right)}=1 / 2\left(1+\frac{1}{2^{k-\ell}-\ell-3}\right)
$$

Proposition 2. For $N=q^{k}-q^{\ell}(q+(q-1)(\ell+1))$ and $\ell<k / 2$ in a q-ary case we have

$$
R \leq \frac{1}{q}\left(1+\frac{q-1}{q^{k-\ell}-(q+(q-1)(\ell+1))}\right) .
$$

Proof. For $\ell<k / 2$ and $M=q^{\ell-1}(q+\ell(q-1))$ we obtain $s(M)=q^{\ell}(q+(q-1)(\ell-1))$. Theorem 6 implies

$$
\begin{aligned}
s_{k-1}\left(q^{k-1}-q^{\ell-1}(q+\ell(q-1))\right) & =q^{k}-2 q q^{\ell-1}(q+\ell(q-1))+q^{\ell}(q+(q-1)(\ell-1)) \\
& =q^{k}-q^{\ell}(q+(q-1)(\ell+1)) .
\end{aligned}
$$

Hence,

$$
R \leq \frac{q^{k-1}-q^{\ell-1}(q+\ell(q-1))}{q^{k}-q^{\ell}(q+(q-1)(\ell+1))}=\frac{1}{q}\left(1+\frac{q-1}{q^{k-\ell}-(q+(q-1)(\ell+1))}\right) .
$$

Denote by i (U-D) the edge-isoperimetric number of the U-D graph. For any q and k we have the following fact.

Theorem 7. For $|N| \leq q^{k} / 2-i(\mathrm{U}-\mathrm{D}) q^{k-1} / 4$ we have

$$
\begin{equation*}
\frac{\triangle_{k}(N)}{N} \geq \frac{1}{q}\left(1+\frac{i(\mathrm{U}-\mathrm{D})}{2 q-i(\mathrm{U}-\mathrm{D})}\right) . \tag{29}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\min \{|\partial X|:|X|=M\}=\nabla(M)-s(M)=2 q M-2 s(M), \tag{30}
\end{equation*}
$$

for $M \leq q^{k-1} / 2$ we have

$$
2 q-\frac{2 s(M)}{M} \geq i(\mathrm{U}-\mathrm{D})
$$

Hence,

$$
s(M) \leq q M-i(\mathrm{U}-\mathrm{D}) M / 2 .
$$

Therefore,

$$
\frac{\triangle_{k}(q M-i(\mathrm{U}-\mathrm{D}) M / 2)}{q M-i(\mathrm{U}-\mathrm{D}) M / 2} \geq \frac{M}{q M-i(\mathrm{U}-\mathrm{D}) M / 2}=\frac{1}{q-i(\mathrm{U}-\mathrm{D}) / 2}=\frac{1}{q}\left(1+\frac{i(\mathrm{U}-\mathrm{D})}{2 q-i(\mathrm{U}-\mathrm{D})}\right)
$$

In [9] it was proved that

$$
i(\mathrm{U}-\mathrm{D}) \geq \frac{q}{2(n-1)}
$$

Hence we get the following result.
Corollary 5. For $|N| \leq q^{k} / 2-\frac{q^{k}}{8(k-2)}$ we have

$$
\begin{equation*}
\frac{\triangle_{k}(N)}{N} \geq \frac{1}{q}\left(1+\frac{1}{4 k-9}\right) . \tag{31}
\end{equation*}
$$

9. EDGE-ISOPERIMETRIC NUMBER OF THE DE BRUIJN GRAPH

In [9] there was obtained the following upper bound for the edge-isoperimetric number of the De Bruijn graph:

$$
i(B(n, q)) \leq \frac{2 q \pi}{n+1}
$$

Here is an improvement of this bound.
Theorem 8. The isoperimetric number of the de Bruijn graph satisfies the inequality

$$
i(B(n, q)) \leq \frac{2 q}{n-2 \log _{q} n+1},
$$

and in the binary case,

$$
i(B(n, q)) \leq \frac{4}{n-\log n+2} .
$$

Proof. From (30) it follows that for $M=|\mathcal{B}(n, \ell, 0)|$ we obtain

$$
i(B(n, q)) \leq 2 q-\frac{2 s(M)}{M}
$$

It follows from Theorem 2 that

$$
\frac{M}{s(M)} \leq \frac{|\mathcal{B}(n, \ell, 0)|}{|\mathcal{B}(k, \ell, 1)|} \leq \frac{1}{q}\left(1+\frac{1}{\ell}\right)
$$

and in the binary case,

$$
\frac{M}{s(M)} \leq \frac{|\mathcal{B}(n, \ell, 0)|}{|\mathcal{B}(k, \ell, 1)|} \leq \frac{1}{2}\left(1+\frac{1}{\ell+1}\right)
$$

Hence,

$$
i(B(n, q)) \leq 2 q-\frac{2 q \ell}{\ell+1}=\frac{2 q}{\ell+1}
$$

and in the binary case,

$$
i(B(n, 2)) \leq 4-\frac{4(\ell+1)}{\ell+2}=\frac{4}{\ell+2}
$$

From Lemma 3 we obtain

$$
|\mathcal{B}(n, \ell, 0)| \leq 2^{\ell-1}(\ell+2)
$$

Hence, for $m \geq \log n$ we have $\ell \leq n-\log n$, and for $n \geq 4$,

$$
|\mathcal{B}(n, \ell, 0)| \leq \frac{2^{n}(n-\log n+4)}{2 n} \leq \frac{2^{n}}{2}
$$

Hence, in the binary case we obtain

$$
i(B(n, 2)) \leq \frac{4}{n-\log n+2}
$$

Lemma 4 implies

$$
|\mathcal{B}(n, \ell, 0)| \leq q^{\ell-1}(\ell(q-1)+q)
$$

Hence, for $m \geq 2 \log n$ we have $\ell \leq n-2 \log n$, and for $n \geq q$,

$$
|\mathcal{B}(n, \ell, 0)| \leq \frac{q^{n}((n-2 \log n+1) q)}{n^{2} q} \leq \frac{q^{n}}{2} .
$$

Therefore,

$$
i(B(n, q)) \leq \frac{2 q}{n-2 \log _{q} n+1}
$$

10. VERTEX-ISOPERIMETRIC NUMBER

In [9] there was given the the following upper bound for the vertex-isoperimetric number:

$$
i_{v}(B(n, q)) \leq \frac{2 \sqrt{q} \pi}{(n+1) \sqrt{1-((2 q \pi) /(n+1))^{2}}}
$$

In [10] it was improved as follows:

$$
i_{v}(B(n, q)) \leq \frac{4}{n-2}
$$

for $n \geq 9$.
Consider a basic set $\mathcal{B}(n, \ell, 1)$, where $\ell+m+1=n$:

$$
N(\mathcal{B}(n, \ell, 1))=\mathcal{X}^{\ell} 10^{m} \cup 0^{m} 1 \mathcal{X}^{\ell}
$$

Then

$$
|N(\mathcal{B}(n, \ell, 1))|=2^{\ell}+\left|0^{m} 1 \mathcal{X}^{\ell-m-1} 0 \mathcal{X}^{m}\right|+\left|0^{m} 1 \mathcal{X}^{\ell-m-1} 1 \mathcal{X}^{m}\right|
$$

Therefore,

$$
|N(\mathcal{B}(n, \ell, 1))|=2^{\ell}+2^{\ell-1}+2^{\ell-m-1}\left(2^{m}-1\right)=2^{\ell+1}-2^{\ell-m-1}
$$

From bounds on the cardinality of basic sets, we have

$$
|\mathcal{B}(n, \ell, 1)| \geq 2^{\ell}(\ell+1)-2^{\ell-m-1}(\ell-m+1)(\ell-m-1)
$$

Hence,

$$
\frac{|N(\mathcal{B}(n, \ell, 1))|}{|\mathcal{B}(n, \ell, 1)|} \leq \frac{2^{\ell+1}-2^{\ell-m-1}}{2^{\ell}(\ell+1)-2^{\ell-m-1}(\ell-m+1)(\ell-m-1)}
$$

Put $m=2 \log n$; then $\ell=n-2 \log n-1$, and we obtain as $n \rightarrow \infty$

$$
\frac{|N(\mathcal{B}(n, \ell, 1))|}{|\mathcal{B}(n, \ell, 1)|} \leq \frac{2}{n}(1+o(1))
$$

Clearly,

$$
|\mathcal{B}(n, \ell, 1)| \leq 2^{\ell}(\ell+1)
$$

Therefore, for $m \geq \log n$ we get $\ell \leq n-\log n-1$, and

$$
|\mathcal{B}(n, \ell, 1)| \leq \frac{2^{n}(n-\log n)}{2 n} \leq \frac{2^{n}}{2}
$$

Hence, as $n \rightarrow \infty$, we get

$$
i_{v}(B(n, 2)) \leq \frac{2}{n}(1+o(1))
$$

Theorem 9. The vertex-isoperimetric number of the de Bruijn graph $B(n, q)$ satisfies the following inequality as $n \rightarrow \infty$:

$$
i_{v}(B(n, q)) \leq \frac{q+2}{q n}(1+o(1))
$$

Proof. For the binary case, this is already proved above. For a q-ary case, we again consider a basic set $\mathcal{B}(n, \ell, 1)$ with $\ell+m+1=n$:

$$
N(\mathcal{B}(n, \ell, 1))=\mathcal{X}^{\ell} \overline{\mathcal{X}} 0^{m} \cup 0^{m} \overline{\mathcal{X}} \mathcal{X}^{\ell}
$$

where $\overline{\mathcal{X}}$ denotes any nonzero element.
Then

$$
|N(\mathcal{B}(n, \ell, 1))|=q^{\ell}(q-1)+\left|0^{m} \overline{\mathcal{X}} \mathcal{X}^{\ell-m-1} 0 \mathcal{X}^{m}\right|+\left|0^{m} \overline{\mathcal{X}} \mathcal{X}^{\ell-m-1} \overline{\mathcal{X}}\left(\mathcal{X}^{m} \backslash 0^{m}\right)\right|
$$

Hence,

$$
|N(\mathcal{B}(n, \ell, 1))|=q^{\ell}(q-1)+2 q^{\ell-1}(q-1)-q^{\ell-m-1}(q-1)
$$

Put $m=2 \log n$; then, as in the binary case, one can check that for large n we have $|\mathcal{B}(n, \ell, 1)| \leq$ $\frac{q^{n}}{2}$ and

$$
i_{v}(B(n, q)) \leq \frac{q+2}{q n}(1+o(1))
$$

11. SHADOWS FROM \mathcal{X}^{k} TO \mathcal{X}^{n}

Definition 3. A sequence $x^{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an n-subword of $y^{k}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ if there exists $i, i \in\{0,1, \ldots, k-n\}$, such that

$$
y_{i+1}=x_{1}, \quad y_{i+2}=x_{2}, \quad \ldots, \quad y_{i+n}=x_{n} .
$$

Equivalently: x^{n} is an n-subword of y^{k} if there exist a^{i} and b^{k-n-i} such that $y^{k}=a^{i} x^{n} b^{k-n-i}$, where $i \in\{0,1, \ldots, k-n\}$.

The shadow of y^{k} is the set of all its n-subwords:

$$
\operatorname{shad}_{k, n}\left(y^{k}\right)=\left\{x^{n}: x^{n} \text { is an } n \text {-subword of } y^{k}\right\} .
$$

Now for any subset $A \subset \mathcal{X}^{k}$ we define its shadow

$$
\operatorname{shad}_{k, n}(A)=\bigcup_{a^{k} \in A} \operatorname{shad}_{k, n}\left(a^{k}\right)
$$

For fixed n and k we are interested in the function

$$
\triangle_{k, n}(q, N)=\min \left\{\left|\operatorname{shad}_{k, n}(A)\right|: A \subset \mathcal{X}^{k},|A|=N\right\} .
$$

The up-shadow of a sequence x^{n} is the following set:

$$
\operatorname{up}-\operatorname{shad}\left(x^{n}\right)=\left\{y^{k}: x^{n} \text { is an } n \text {-subword of } y^{k}\right\} .
$$

Now for any set $B \subset \mathcal{X}^{n}$ we define its up-shadow

$$
\text { up }-\operatorname{shad}(B)=\bigcup_{b^{n} \in B} \text { up-shad }\left(b^{n}\right) .
$$

For fixed n and k we are interested in the function

$$
\nabla(M)=\min \left\{|\operatorname{up}-\operatorname{shad}(B)|: B \subset \mathcal{X}^{n},|B|=M\right\} .
$$

Let $v=k-n$. For any $\ell \geq r \geq v$ such that $m+r>\ell$ (or $k=\ell+m+r>2 \ell$), we have

$$
\operatorname{shad}_{k, n} \mathcal{B}(k, \ell, r)=\mathcal{B}(k-v, \ell, r-v)
$$

Hence, we have the following result.
Theorem 10. For $N=q^{\ell+v}+q^{\ell+v-1}(\ell-v)(q-1)$ and $k=\ell+m+v>2 \ell \geq 2 v$ we have

$$
\frac{1}{q^{v}} N \leq \triangle_{k, n}(q, N) \leq \frac{1}{q^{v}}\left(1+\frac{v}{\ell-v+1}\right) N .
$$

REFERENCES

1. Katona, G., A Theorem of Finite Sets, Theory of Graphs (Proc. Colloq. on Graph Theory, Tihany, Hungary, 1966), Erdős, P. and Katona, G., Eds., New York: Academic, 1968, pp. 187-207.
2. Kruskal, J.B., The Number of Simplices in a Complex, Mathematical Optimization Techniques (Proc. Sympos. on Mathematical Optimization Techniques, Santa Monica, CA, 1960), Bellman, R., Ed., Berkeley: Univ. of California Press, 1963, pp. 251-278.
3. Lindström, B.A. and Zetterström, H.O., A Combinatorial Problem in the k-adic Number Systems, Proc. Amer. Math. Soc., 1967, vol. 18, no. 1, pp. 166-170.
4. Schützenberger, M.P., A Characteristic Property of Certain Polynomials of E.F. Moore and C.E. Shannon, RLE Quarterly Progress Report no. 55, MIT Research Laboratory of Electronics, 1959, pp. 117-118.
5. Ahlswede, R. and Cai, N., Shadows and Isoperimetry under the Sequence-Subsequence Relation, Combinatorica, 1997, vol. 17, no. 1, pp. 11-29.
6. Chowdhury, A. and Patkós, B., Shadows and Intersections in Vector Spaces, J. Combin. Theory, Ser. A, 2010, vol. 117, no. 8, pp. 1095-1106.
7. Mohar, B., Isoperimetric Numbers of Graphs, J. Combin. Theory, Ser. B, 1989, vol. 47, no. 3, pp. 274-291.
8. Bezrukov, S.L., Edge Isoperimetric Problems on Graphs, Graph Theory and Combinatorial Biology, Lovasz, L., Gyarfas, A., Katona, G.O.H., Recski, A., and Szekely, L., Eds., Budapest: János Bolyai Math. Soc., 1999, pp. 157-197.
9. Delorme, C. and Tillich, J-P., The Spectrum of de Bruijn and Kautz Graphs, European J. Combin., 1998, vol. 19, no. 3, pp. 307-319.
10. Bultermann, J., A New Upper Bound for the Isoperimetric Numbers of de Bruijn Networks, Appl. Math. Lett., 1997, vol. 10, no. 6, pp. 97-100.

[^0]: ${ }^{1}$ Supported in part by the Russian Foundation for Basic Research, project no. 09-01-00536.

