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1. INTRODUCTION

Quite surprisingly, it seems that the minimal shadow problem for the word-subword relation
introduced here has not been studied before, whereas its analogs for sets [1–4], sequences [5], and
vector spaces over finite fields [6] are well known.

For an alphabet X = {0, 1, . . . , q − 1}, we consider the set X k of words xk = x1x2 . . . xk of
length k. For a word ak = a1a2 . . . ak ∈ X k, we define its left shadow

shadL(ak) = a2 . . . ak, (1)

i.e., the subword resulting from deleting the first letter a1 in ak, and its right shadow

shadR(ak) = a1 . . . ak−1, (2)

i.e., the subword resulting from deleting the last letter ak in ak. Note that shadL(ak) = shadR(ak) if
and only if ak = aa . . . a, a ∈ X , because a2a3 . . . ak = a1a2 . . . ak−1 implies a1 = a2 = a3 = . . . = ak.

We define the shadow of ak by

shad(ak) = shadL(ak) ∪ shadR(ak). (3)

Unless ak has identical letters, shad(ak) consists of two elements.

Now for any subset A ⊂ X k we define its left shadow

shadL(A) =
⋃

ak∈A
shadL(ak), (4)

right shadow
shadR(A) =

⋃

ak∈A
shadR(ak), (5)

and shadow
shad(A) = shadL(A) ∪ shadR(A). (6)

We are interested in finding the minimal shadow of N -sets A ⊂ X k, i.e., the function

�k(q,N) = min
{
|shad(A)| : A ⊂ X k, |A| = N

}
. (7)

We write for short �k(N) if q is fixed, and �(N) if k is also fixed. We also use the functions
�L

k (N) and �R
k (N) (respectively, �L(N) and �R(N)), where the minimization is over left and

right shadows, respectively.

1 Supported in part by the Russian Foundation for Basic Research, project no. 09-01-00536.
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32 AHLSWEDE, LEBEDEV

2. PRELIMINARY RESULTS

We denote by ab the concatenation of words a and b (the length of this word is the sum of
lengths of a and b). Denote by AB the set of all words ab where a ∈ A and b ∈ B. For example,
the set X bX consists of q2 words that have any symbols in the first and last positions and have the
word b in the middle.

Consider the following configurations:

(i) Words xxx . . . x, x ∈ X , whose number is q = |X |. Their shadow has cardinality 1.
(ii) Words

ak = cdcd . . . cd,
bk = dcdc . . . dc

if k is even,

and analogously
ak = cd . . . c,
bk = dc . . . d

if k is odd.

Shadows of these words have cardinality 2.
(iii) In the set XBX , all the q words of the form xby, where x is a fixed element, b ∈ B, and y ∈ X ,

have identical right shadows. Similarly for left shadows.

Note that for all these configurations we have �(N) ≤ N ; let us prove this in general.

First consider the binary case.

Lemma 1. For q = 2 and k ≥ 3 we have

�(N) ≤ N, for all N ≤ 2k.

Proof. Write N in the form N = 4M + p, where 0 ≤ p < 4.

Case p = 0. Choose any B ⊂ X k−2 with |B| = M ; then A = XBX is of cardinality N . It is
easily seen that

|shad(A)| = |XB ∪BX| ≤ |BX|+ |XB| = 4M = N.

Case 3 ≥ p ≥ 1. Choose B ⊂ X k−2 \ {0k−2} with |B| = M and Ap = XBX ∪ Cp, where
C1 = {00k−20}, C2 = {00k−20, 00k−21}, and C3 = {00k−20, 00k−21, 10k−20}. It is clear that
|shad(Ap)| ≤ 4M + p. �

For a q-ary case, we have the following fact.

Lemma 2. Consider X = {0, 1, . . . , q−1}, k ≥ 3, and N ≤ qk. Write N = q2M+p, 0 ≤ p < q2;
then

�(N) ≤ 2qM +

⎧
⎪⎪⎨

⎪⎪⎩

0 if p = 0,

�√p
+ �√p� − 1 if �√p
�√p� ≥ p > 0,

2�√p
 − 1 otherwise

(8)

and

�(N) ≤ 2

q
N − 2

q
p+

⎧
⎪⎪⎨

⎪⎪⎩

0 if p = 0,

�√p
+ �√p� − 1 if �√p
�√p� ≥ p > 0,

2�√p
 − 1 otherwise.

(9)

Proof. Case p = 0. Choose any B ⊂ X k−2 with |B| = M and A = XBX . Then |shad(A)| ≤
2qM , and we obtain (8).

Case q2 − 1 ≥ p ≥ 1. Choose B ⊂ X k−2 \ {0k−2} with |B| = M and Ap = XBX ∪Dp, where Dp

is a balanced subset of X0k−2X with p elements. This means that we take Dp = Y0k−2Y ′, where
the difference |{Y \ Y ′} ∪ {Y ′ \ Y}| between |Y| and |Y ′| is the minimum possible. Then

|shad(Ap)| ≤ 2qM + 2�√p
 − 1,
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SHADOWS UNDER THE WORD-SUBWORD RELATION 33

and (8) is proved. From this, an easy computation yields (9). �
Remark 1. For q = 2 bound (8) is equal to N . Hence, Lemma 2 implies Lemma 1.

Remark 2. For N = q� < qk we may choose A = X �−10k−�X to obtain |shad(A)| =
(2
q
− 1

q2

)
q� =(2

q
− 1

q2

)
N , which is better than (8). For q = 2 we get �k(2

�) ≤ 3

4
2�.

3. CONCEPT OF BASIC SETS

In Section 2 we have obtained our first upper bounds on minimal shadows for sets with the
structure A = XBX . We generalize this structure by taking unions of such sets. Consider the sets

X �0mX r. (10)

Now we define our main concept.

Definition 1. For nonnegative integers �, m, and r satisfying

� ≥ r (11)

and
k = �+m+ r, (12)

we define a basic set B(k, �, r) in X k as the following union:

B(k, �, r) =
�−r⋃

s=0

X �−s0mX r+s. (13)

For instance, B(7, 3, 1) is the union of rows of the matrix

X X X 0 0 0 X
X X 0 0 0 X X
X 0 0 0 X X X ,

and B(8, 3, 2) is the union of rows of the matrix

X X X 0 0 0 X X
X X 0 0 0 X X X .

We denote these matrices by [B(7, 3, 1)] and [B(8, 3, 2)], and in the general case, by [B(k, �, r)].
Here are key properties of such sets.

Lemma 3. For all � ≥ r ≥ 1, m+ r > � (i.e., k = �+m+ r > 2�), and q = 2, we have

(i) |B(k, �, r)| = 2�+r + 2�+r−1(�− r) = 2�+r−1(�− r + 2),
(ii) shadB(k, �, r) = B(k − 1, �, r − 1),
(iii) B(k, �, r) ⊂ B(k, �+ 1, r − 1),
(iv) |shadB(k, �, r)| = |B(k − 1, �, r − 1)| = |B(k, �, r)|

2
+ 2�+r−2,

(v) |shadB(k, �, r)| = 2�+r−2(�− r + 3).

Example. Let k = 9, � = 4, and r = 1. Then

|B(9, 4, 1)| = 25 + 243 = 32 + 48 = 80,

�9(80) ≤ 24+1−2(4− 1 + 3) = 48.

This is clearly better than the bound in Lemma 1.
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34 AHLSWEDE, LEBEDEV

An important consequence is as follows.

Corollary 1. For N = 2�+r−1(�− r + 2) and k = �+m+ r > 2� ≥ 2r ≥ 2, we have

�k(N) ≤ 1

2

�− r + 3

�− r + 2
N. (14)

Proof of Lemma 3. (i) First, as an example of a basic set B(k, �, r), consider (k, �, r) =
(9, 4, 2):

X X X X 0 0 0 X X
X X X 0 0 0 X X X
X X 0 0 0 X X X X .

Note that B(9, 4, 2) equals the union of the following sets:

X X X X 0 0 0 X X
X X X 0 0 0 1 X X
X X 0 0 0 1 X X X .

These row sets have the total cardinality of 26 + 25 + 25.

For the general case of � ≤ m+ r, we find that the first set has cardinality 2�+r, and the other
�− r sets have cardinality 2�+r−1. Hence,

|B(k, �, r)| = 2�+r + 2�+r−1(�− r).

(ii) We illustrate the claim by the following example:

shadL B(9, 4, 2) shadR B(9, 4, 2)
X X X X 0 0 0 X

X X X 0 0 0 X X = X X X 0 0 0 X X
X X 0 0 0 X X X = X X 0 0 0 X X X
X 0 0 0 X X X X .

(15)

If we add the first row of the second matrix to the first matrix (respectively, the last row of the
first matrix to the second matrix), then shadB(9, 4, 2) = B(8, 4, 1), so k and r are reduced by 1.

In the general case, right shadow deletes from the basic set one X from the right, and left
shadow, from the left. Hence, in the general case k and r are reduced by 1 too.

(iii) Simply note that for � > r the matrix [B(k, �, r)] is obtained from [B(k − 1, �, r − 1)] by
deleting the first and last row.

(iv) Note that in shadL B(k, �, r) we have one X less than in B(k, �, r) in each row. Also, we have
an extra row; this row X �0mX r−1 in shadR B(k, �, r) corresponds to X �−11 0mX r−1 of cardinality
2�+r−2.

Formally, (iv) follows from the equality

2�+r−2(�− r + 2) + 2�+r−2 = 2�+(r−1)−1(�− (r − 1) + 2).

(v) Follows from (i) and (ii). �
Generalization to the q-ary case. It is easily seen that (i) and (iv) in Lemma 3 can be

extended to (i′) and (iv′) in Lemma 4. In (i) one should take any nonzero element instead of 1, so
the first row has cardinality q�+r and the other � − r rows have cardinality q�+r−1(q − 1). Hence,
we have the following result.
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SHADOWS UNDER THE WORD-SUBWORD RELATION 35

Lemma 4. For all � ≥ r ≥ 1, m+ r > � (i.e., k = �+m+ r > 2�), and q ≥ 2, we have

(i′) |B(k, �, r)| = q�+r + q�+r−1(�− r)(q − 1),

(iv′) |shadB(k, �, r)| = |B(k − 1, �, r − 1)| = |B(k, �, r)|
q

+ q�+r−2(q − 1)

= q�+r−2((�− r+2)(q − 1) + 1). (16)

For N = |B(k, �, r)| = q�+r + q�+r−1(�− r)(q − 1), from |shadB(k, �, r)| = N

q
+ q�+r−2(q − 1) we

obtain

�k(q,N)

N
≤ 1

q
+

1

q

(q − 1)

q + (�− r)(q − 1)
=

1

q

(
1 +

q − 1

(�− r + 1)(q − 1) + 1

)

≤ 1

q

(
1 +

1

�− r + 1

)
. (17)

Hence follows an important consequence.

Corollary 2. For N = q�+r + q�+r−1(�− r)(q − 1) and k = �+m+ r > 2� ≥ 2r ≥ 2, we have

�k(q,N) ≤ 1

q

(
1 +

1

�− r + 1

)
N. (18)

Remark 3. For q = 2 we had a smaller factor 1 +
1

�− r + 2
in Corollary 1.

4. LOWER BOUND

For any A ⊂ X k and Y ⊂ X , define

A1
Y = {x2 . . . xk ∈ X k−1 : Yx2 . . . xk ⊂ A and xx2 . . . xk ∈ A for all x ∈ X \ Y}. (19)

Clearly, these sets are contained in X k−1 and are disjoint. Moreover,

shad(A) ⊃ shadL(A) =
⋃

Y⊂X
A1

Y , (20)

A =
⋃

Y⊂X
YA1

Y , (21)

and since |Y| ≤ q, we get

|shad(A)| ≥ 1

q
|A|. (22)

Hence, with the use of Corollary 2, we obtain the following result.

Theorem 1. For N = q�+r + q�+r−1(�− r)(q − 1) and k = �+m+ r > 2� ≥ 2r ≥ 2, we have

1

q
N ≤ �k(q,N) ≤ 1

q

(
1 +

1

�− r + 1

)
N. (23)

Moreover, the lower bound holds for all N .
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36 AHLSWEDE, LEBEDEV

5. CARDINALITY OF BASIC SETS FOR � > m

Note that |B(k, �, r)| = |B(k − 2r, � − r, 0)|q2r . Hence, we are interested in the cardinality of
B(k, �, 0) for an arbitrary � and m = k−�−r, � > m (the case of � ≤ m was considered in Lemma 4).

Theorem 2. For any � and m such that � > m, we have

|B(k, �, 0)| = q�−1(�(q − 1) + q)− (q − 1)
�−m∑

i=1

q�−m−i|B(m+ i− 1, i− 1, 0)|,

and for N = |B(k, �, 1)| = q2|B(k − 2, �− 1, 0)|,

�(N)

N
≤ 1

q

(
1 +

1

�

)
.

Proof. Denote by H(�,m, a) the number of sequences from X �+m that are not covered by the
first a rows of the matrix [B(k, �, 0)]. Consider the jth row X �−j+10mX j−1 in [B(k, �, 0)]. How
many new sequences does it add? Using our notation, we obtain

q�−j+1(q − 1)H(�,m, j −m− 1)

such sequences.

We have

H(�,m, a) = qm+a−1 − |B(m+ a− 1, a− 1, 0)|. (24)

Let i = j −m− 1; then for i = 1, 2, . . . , �−m we add

q�−i−m(q − 1)
(
qm+i−1 − |B(m+ i− 1, i − 1, 0)|

)

sequences, and this proves that

|B(k, �, 0)| = q� + q�−1m(q − 1) +
�−m∑

i=1

q�−m−i(q − 1)
(
qm+i−1 − |B(m+ i− 1, i− 1, 0)|

)
.

Hence,

|B(k, �, 0)| = q� + q�−1m(q − 1) + q�−1(�−m)(q − 1)−
�−m∑

i=1

q�−m−i(q − 1)|B(m+ i− 1, i− 1, 0)|.

We obtain

�(N) ≤ 1

q

|B(k, �, 0)|
q|B(m+ �− 1, �− 1, 0)|N.

Therefore,

�(N)

N
≤ 1

q

⎛

⎜⎜⎜⎝1 +
(q − 1)q�−1 − (q − 1)|B(�− 1, �−m− 1, 0)|

q�−1(q + (�− 1)(q − 1))− (q − 1)
�−m−1∑
i=1

q�−m−i|B(m+ i− 1, i− 1, 0)|

⎞

⎟⎟⎟⎠ .

We have obtained this formula using the equality

shad(B(m+ �+ 1, �, 1)) = B(m+ �, �, 0).
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SHADOWS UNDER THE WORD-SUBWORD RELATION 37

One can prove that for such N

(q − 1)
(
q�−1 − |B(�− 1, �−m− 1, 0)|

)

q�−1((�− 1)(q − 1) + q)− (q − 1)
�−m−1∑
i=1

q�−m−i|B(m+ i− 1, i− 1, 0)|
≤ 1

�
.

Indeed,

(
q�−1 − |B(�− 1, �−m− 1, 0)|

)
(q − 1)�

≤ q�−1((�− 1)(q − 1) + q)− (q − 1)
�−m−1∑

i=1

q�−m−i|B(m+ i− 1, i− 1, 0)|

if
�−m−1∑

i=1

q�−m−i|B(m+ i− 1, i− 1, 0)| ≤ |B(�− 1, �−m− 1, 0)|�.

It is clear that for any natural u

q|B(m+ u− 1, u− 1, 0)| < |B(m+ u, u, 0)|.

Therefore,

�−m−1∑

i=1

q�−m−i|B(m+ i− 1, i− 1, 0)| ≤ |B(�− 1, �−m− 1, 0)|(� −m− 1),

which proves the theorem. �
Remark 4. For the binary case one can prove that for N = |B(k, �, 1)| = 4|B(k− 2, �− 1, 0)| and

� > m one has
�(N)

N
≤ 1

2

(
1 +

1

�+ 1

)
.

Extended basic sets. For basic sets B(k, �, r) we used building sets

X �0mX r (25)

and took unions of such sets. Now we define a dual building set as

0mX k−2m0m.

We add these dual building sets to the basic set and define an extended basic set B̃(k, �, 1) as

B̃(k, �, 1) =
(

�−1⋃

s=0

X �−s0mX 1+s

)
∪ 0mX k−2m0m = B(k, �, r) ∪ 0mX k−2m0m. (26)

The set B̃(k, �, 1) has a larger cardinality than |B(k, �, 1)|, but their shadows coincide!
Theorem 3. For � ≥ m we have

(i) B̃(k, �, 1) = |B(k, �, 1)| + 1 for � = m,
(ii) B̃(k, �, 1) = |B(k, �, 1)| + 2�−m−1 for m < � ≤ 2m,
(iii) B̃(k, �, 1) = |B(k, �, 1)| + 2�−m−1 − |B(�−m− 1, �− 2m− 1, 0)| for � > 2m,
(iv) shad(B̃(k, �, 1)) = |B(k − 1, �, 0)|.
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38 AHLSWEDE, LEBEDEV

Proof. For � = m we add a new word 0m10m to the basic set. In case (ii), a new block is
0m1X �−m−110m. Since it has a 1 in the (m+ 1)st coordinate, it is not covered by the last m rows
of the basic matrix [B(k, �, 1)]. Since it has a 1 in the (� + 1)st coordinate, it is not covered by
the first m rows of the basic matrix [B(k, �, 1)]. In total, we have � rows in [B(k, �, 1)]; hence, this
proves case (ii). In the case of � > 2m, there is also a 1 in both the (m+1)st and (�+1)st rows, but
in this case we obtain H(�− 2m− 1,m, � − 2m) new sequences. Using (24), this proves case (iii).
Dual building sets 0mX k−2m0m yield a shadow which is a subset of the basic set B(k − 1, �, 0),
whence follows (iv). �

6. SHADOWS, UP-SHADOWS, AND THEIR INTERRELATION

Consider a word bk−1 ∈ X k−1. Then

up-shad(bk−1) =
{
ak : ak ∈ X k, bk−1 ∈ shad(ak)

}
.

Now for any subset B ⊂ X k−1 we define its up-shadow:

up-shad(B) =
⋃

bk−1∈B
up-shad(bk−1).

For a fixed k we are interested in the function

�(M) = min
{
|up-shad(B)| : B ⊂ X k−1, |B| = M

}
.

The following function is important for finding a relation between the shadows.

Definition 2. Consider a set C of sequences of length n with cardinality M . Let sn(C,M) be
the number of pairs (z, xn), z ∈ X , xn = (x1, x2, . . . , xn) ∈ C, such that (z, x1, x2, . . . , xn−1) ∈ C.
Denote

sn(M) = max
C

sn(C,M). (27)

Lemma 5. The following conditions are equivalent for C ⊆ X n:

(i) |C| = qn;
(ii) ∃z ∈ X and cn = (c1, c2, . . . , cn) ∈ C such that (z, c1, c2, . . . , cn−1) /∈ C;
(iii) �(�(C)) = C;
(iv) �(�(C)) = C.

Proof. (ii) ⇒ (iii). Consider c ∈ C satisfying (ii). Then (z, c1, c2, . . . , cn) ∈ �(C), and therefore
yn = (z, c1, c2, . . . , cn−1) ∈ �(�(C)). However, (ii) implies yn /∈ C. Hence, �(�(C)) = C.

(iii) ⇒ (i). The set �(cn) consists of X c1, c2, . . . , cn ∪ c1, c2, . . . , cnX . Hence,

�(�(cn)) = c1, c2, . . . , cn ∪ X c1, c2, . . . , cn−1 ∪ c2, . . . , cnX .

Therefore, C ⊆ �(�(C)). Thus, (i) is proved.

(ii) ⇒ (iv). Consider cn ∈ C satisfying (ii). Then we have (c1, c2, . . . , cn−1) ∈ �(C), and
therefore yn = (z, c1, c2, . . . , cn−1) ∈ �(�(C)). However, (ii) implies yn /∈ C.

(iv) ⇒ (i). For any cn ∈ C we have

�(cn) = c2, . . . , cn ∪ c1, c2, . . . , cn−1

and
�(�(cn)) = X c2, . . . , cn ∪ c2, . . . , cnX ∪ X c1, c2, . . . , cn−1 ∪ c1, c2, . . . , cn−1X .
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SHADOWS UNDER THE WORD-SUBWORD RELATION 39

Thus,
C ⊆ �(�(C)) ⊆ �(�(C)).

Hence, we get (i).

(i) ⇒ (ii). Assume that for all z ∈ X and all cn ∈ C property (ii) is fulfilled. Then
X c1, c2, . . . , cn−1 ∈ C. Hence, XX c1, c2, . . . , cn−2 ∈ C, XXX c1, c2, . . . , cn−3 ∈ C, etc. Therefore,
XXX . . .XX ∈ C, and we get a contradiction to (i). �

Property (ii) and Definition 2 immediately imply the following result.

Corollary 3. If M ′ < M , then
s(M ′) < s(M).

Thus, s(M) is a strictly monotone increasing function.

Theorem 4. For any q, k, and M ≤ qk−1, we have

�k(sk−1(M)) = M.

Proof. Let C (|C| = M) be a set maximizing (27). We add a sequence (z, x1, x2, . . . , xn) to
the set D, if the condition from Definition 2 holds for this z and (x1, x2, . . . , xn) ∈ C. Then
|D| = sn(M) and shad(D) = C. Hence,

�k(sk−1(M)) ≤ M.

If there existed a set C ′ of a smaller cardinality M ′, M ′ < M , and such that s(M ′) = s(M),
this would contradict Corollary 3. Hence, �k(sk−1(M)) = M . �

From this and Lemma 5, we have the following fact.

Corollary 4. If N < qk, then
1

q
N < �k(q,N). (28)

7. ISOPERIMETRIC NUMBERS OF GRAPHS

Problems on isoperimetric numbers of graphs have been studied for a long time (see, e.g., [7,8]).

Consider a graph G(V,E) with the set of vertices V and set of edges E. If X ⊆ V is some set of
vertices, then ∂X denotes the set of edges that have one end in X and the other in V \X. Thus,

∂X = {(x, y) ∈ E; x ∈ X, y ∈ V \X}.

The edge-isoperimetric number of this graph is defined to be

i(G) = min
|∂X|
|X| ,

where the minimum is over all nonempty subsets X ⊂ V satisfying |X| ≤ |V |/2.
Denote by N(X) the set of vertices of V \X adjacent to some vertex in X. Thus,

N(X) = {y ∈ V \X; x ∈ X, (x, y) ∈ E}.

The vertex-isoperimetric number of this graph is defined to be

iv(G) = min
|N(X)|
|X| ,

where the minimum is over all nonempty subsets X ⊂ V satisfying |X| ≤ |V |/2.
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We want to consider graphs related to the word-subword relation: a U-D graph and a D-U
graph. Vertices of these graphs are all sequences of X n.

For the U-D graph, vertices an = a1a2 . . . an and bn = b1b2 . . . bn (an = bn) are adjacent if and
only if there exists cn+1 such that

cn+1 ∈ up-shad(an), bn ∈ shad(cn+1).

We would like to have a bijection between edges of the U-D graph and all words from X n+1.

To this end, for an = bn we draw a single edge (loop) in the graph if and only if a1 = a2 =
a3 = . . . = an. Then we get a bijection between edges of the U-D graph and all words from X n+1.
Under this definition of the graph, its edges can be identified with sequences of length n + 1, and
vertices connected by an edge are the right and left shadows of this sequence. Such a definition of
the graph seems to be extremely natural.

Note that a vertex degree in this graph is 2q − 1 for an with a1 = a2 = a3 = . . . = an, and 2q
for all other vertices.

For the D-U graph, an edge connects vertices an = a1a2 . . . an and bn = b1b2 . . . bn with an = bn

if and only if there exists a word dn−1 such that

dn−1 ∈ shad(an), bn ∈ up-shad(dn−1).

The total number of edges in the D-U graph is qn−1q(q − 1) + qn+1 = qn(2q − 1).

In this paper we do not consider properties of the D-U graph.

8. RELATION TO DE BRUIJN GRAPHS

Recall that for a fixed n and k = n+ 1 we are interested in

�(N) = min
{
|shad(A)| : A ⊂ X k, |A| = N

}
.

In graph theory, an n-dimensional De Bruijn graph of q symbols is a directed graph with qn

vertices consisting of all possible n-sequences of the given symbols. If one of the vertices can be
obtained from another by shifting all symbols by one position to the left and adding a new symbol
at the end, then the latter vertex has a directed edge to the former. Thus, the set of (directed)
edges is

E = {((v1, v2, . . . , vn), (w1, w2, . . . , wn)) : v2 = w1, v3 = w2, . . . , vn = wn−1}.

Each vertex has exactly q incoming and q outgoing edges. Consider an undirected (k − 1)-
dimensional De Bruijn graph. The graph is very close to the U-D graph. (Sequences ak from X k

are edges in the graph. The left shadow shadL(ak) and right shadow shadR(ak) are vertices incident
to this edge.) For an with a1 = a2 = a3 = . . . = an we have a loop in the U-D graph and two loops
in the De Bruijn graph.

The minimal shadow problem is equivalent to the problem of finding N edges incident to a
minimum possible number of vertices. Theorem 4 shows that the problem of finding M vertices
in the U-D graph that give the maximum possible number of edges between them is the inverse
problem. Thus, the function sk−1(M) is very important for us. It is also related to the up-shadow
problem.

Theorem 5. For any q, k, and M ≤ qk−1, we have

�(M) = 2qM − sk−1(M).
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Proof. The de Bruijn graph is regular. The vertex degree is 2q. Hence, there are 2qM edges
incident to M vertices from a set C, but some of them were calculated twice. The number of edges
calculated twice is sk−1(M), and therefore the number of edges incident to C is 2qM −sk−1(M). �

Theorem 6. For any M ≤ qk−1 we have

sk−1(q
k−1 −M) = qk − 2qM + sk−1(M).

Proof. Let C (|C| = M) be a set of vertices that maximizes (27). Let a set B of cardinality
|B| = �k−1(M) consist of edges incident to M vertices of C. Then any edge out of B gives a
shadow out of C. Hence,

�k(q
k −�(M)) ≤ qk−1 −M.

Theorem 5 implies
�(M) = 2qM − sk−1(M).

From this and Corollary 4, we obtain

sk−1(q
k−1 −M) ≥ qk − 2qM + sk−1(M).

If we do the same with the set X k−1 \ C, we get

�k(q
k −�k−1(q

k−1 −M)) ≤ M.

Therefore,
sk−1(M) ≥ qk − 2q(qk−1 −M) + sk−1(q

k−1 −M),

whence we find
sk−1(q

k−1 −M) ≤ qk − 2qM + sk−1(M). �

Using this theorem, we can compute the rate R = �(N)/N for large N .

Proposition 1. For N = 2k − 2�(�+ 3) and � < k/2 in the binary case we have

R ≤ 1/2

(
1 +

1

2k−� − �− 3

)
.

Proof. For � < k/2 and M = 2�−1(�+ 2) we obtain s(M) = 2�(�+ 1). Theorem 6 implies

sk−1(2
k−1 − 2�−1(�+ 2)) = 2k − 2�−14(�+ 2) + 2�(�+ 1) = 2k − 2�(�+ 3).

Hence,

R ≤ 2k−1 − 2�−1(�+ 2)

2�(2k−� − �− 3)
= 1/2

(
1 +

1

2k−� − �− 3

)
. �

Proposition 2. For N = qk − q�(q + (q − 1)(�+ 1)) and � < k/2 in a q-ary case we have

R ≤ 1

q

(
1 +

q − 1

qk−� − (q + (q − 1)(� + 1))

)
.

Proof. For � < k/2 and M = q�−1(q + �(q − 1)) we obtain s(M) = q�(q + (q − 1)(� − 1)).
Theorem 6 implies

sk−1(q
k−1 − q�−1(q + �(q − 1))) = qk − 2qq�−1(q + �(q − 1)) + q�(q + (q − 1)(�− 1))

= qk − q�(q + (q − 1)(�+ 1)).

Hence,

R ≤ qk−1 − q�−1(q + �(q − 1))

qk − q�(q + (q − 1)(�+ 1))
=

1

q

(
1 +

q − 1

qk−� − (q + (q − 1)(� + 1))

)
. �
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Denote by i(U-D) the edge-isoperimetric number of the U-D graph. For any q and k we have
the following fact.

Theorem 7. For |N | ≤ qk/2− i(U-D)qk−1/4 we have

�k(N)

N
≥ 1

q

(
1 +

i(U-D)

2q − i(U-D)

)
. (29)

Proof. Since

min{|∂X| : |X| = M} = �(M)− s(M) = 2qM − 2s(M), (30)

for M ≤ qk−1/2 we have

2q − 2s(M)

M
≥ i(U-D).

Hence,

s(M) ≤ qM − i(U-D)M/2.

Therefore,

�k(qM − i(U-D)M/2)

qM − i(U-D)M/2
≥ M

qM − i(U-D)M/2
=

1

q − i(U-D)/2
=

1

q

(
1 +

i(U-D)

2q − i(U-D)

)
. �

In [9] it was proved that

i(U-D) ≥ q

2(n− 1)
.

Hence we get the following result.

Corollary 5. For |N | ≤ qk/2− qk

8(k − 2)
we have

�k(N)

N
≥ 1

q

(
1 +

1

4k − 9

)
. (31)

9. EDGE-ISOPERIMETRIC NUMBER OF THE DE BRUIJN GRAPH

In [9] there was obtained the following upper bound for the edge-isoperimetric number of the
De Bruijn graph:

i(B(n, q)) ≤ 2qπ

n+ 1
.

Here is an improvement of this bound.

Theorem 8. The isoperimetric number of the de Bruijn graph satisfies the inequality

i(B(n, q)) ≤ 2q

n− 2 logq n+ 1
,

and in the binary case,

i(B(n, q)) ≤ 4

n− log n+ 2
.

Proof. From (30) it follows that for M = |B(n, �, 0)| we obtain

i(B(n, q)) ≤ 2q − 2s(M)

M
.
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It follows from Theorem 2 that

M

s(M)
≤ |B(n, �, 0)|

|B(k, �, 1)| ≤
1

q

(
1 +

1

�

)
,

and in the binary case,
M

s(M)
≤ |B(n, �, 0)|

|B(k, �, 1)| ≤
1

2

(
1 +

1

�+ 1

)
.

Hence,

i(B(n, q)) ≤ 2q − 2q�

�+ 1
=

2q

�+ 1
,

and in the binary case,

i(B(n, 2)) ≤ 4− 4(�+ 1)

�+ 2
=

4

�+ 2
.

From Lemma 3 we obtain

|B(n, �, 0)| ≤ 2�−1(�+ 2).

Hence, for m ≥ log n we have � ≤ n− log n, and for n ≥ 4,

|B(n, �, 0)| ≤ 2n(n− log n+ 4)

2n
≤ 2n

2
.

Hence, in the binary case we obtain

i(B(n, 2)) ≤ 4

n− log n+ 2
.

Lemma 4 implies

|B(n, �, 0)| ≤ q�−1(�(q − 1) + q).

Hence, for m ≥ 2 log n we have � ≤ n− 2 log n, and for n ≥ q,

|B(n, �, 0)| ≤ qn((n − 2 log n+ 1)q)

n2q
≤ qn

2
.

Therefore,

i(B(n, q)) ≤ 2q

n− 2 logq n+ 1
. �

10. VERTEX-ISOPERIMETRIC NUMBER

In [9] there was given the the following upper bound for the vertex-isoperimetric number:

iv(B(n, q)) ≤ 2
√
qπ

(n+ 1)
√
1− ((2qπ)/(n + 1))2

.

In [10] it was improved as follows:

iv(B(n, q)) ≤ 4

n− 2
,

for n ≥ 9.

Consider a basic set B(n, �, 1), where �+m+ 1 = n:

N(B(n, �, 1)) = X �10m ∪ 0m1X �.
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Then

|N(B(n, �, 1))| = 2� + |0m1X �−m−10Xm|+ |0m1X �−m−11Xm|.

Therefore,

|N(B(n, �, 1))| = 2� + 2�−1 + 2�−m−1(2m − 1) = 2�+1 − 2�−m−1.

From bounds on the cardinality of basic sets, we have

|B(n, �, 1)| ≥ 2�(�+ 1)− 2�−m−1(�−m+ 1)(�−m− 1).

Hence,

|N(B(n, �, 1))|
|B(n, �, 1)| ≤ 2�+1 − 2�−m−1

2�(�+ 1)− 2�−m−1(�−m+ 1)(�−m− 1)
.

Put m = 2 log n; then � = n− 2 log n− 1, and we obtain as n → ∞

|N(B(n, �, 1))|
|B(n, �, 1)| ≤ 2

n
(1 + o(1)).

Clearly,

|B(n, �, 1)| ≤ 2�(�+ 1).

Therefore, for m ≥ log n we get � ≤ n− log n− 1, and

|B(n, �, 1)| ≤ 2n(n− log n)

2n
≤ 2n

2
.

Hence, as n → ∞, we get

iv(B(n, 2)) ≤ 2

n
(1 + o(1)).

Theorem 9. The vertex-isoperimetric number of the de Bruijn graph B(n, q) satisfies the fol-
lowing inequality as n → ∞:

iv(B(n, q)) ≤ q + 2

qn
(1 + o(1)).

Proof. For the binary case, this is already proved above. For a q-ary case, we again consider a
basic set B(n, �, 1) with �+m+ 1 = n:

N(B(n, �, 1)) = X �X 0m ∪ 0mXX �,

where X denotes any nonzero element.

Then

|N(B(n, �, 1))| = q�(q − 1) + |0mXX �−m−10Xm|+ |0mXX �−m−1X (Xm \ 0m)|.

Hence,

|N(B(n, �, 1))| = q�(q − 1) + 2q�−1(q − 1)− q�−m−1(q − 1).

Put m = 2 log n; then, as in the binary case, one can check that for large n we have |B(n, �, 1)| ≤
qn

2
and

iv(B(n, q)) ≤ q + 2

qn
(1 + o(1)). �
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11. SHADOWS FROM X k TO X n

Definition 3. A sequence xn = (x1, x2, . . . , xn) is an n-subword of yk = (y1, y2, . . . , yk) if there
exists i, i ∈ {0, 1, . . . , k − n}, such that

yi+1 = x1, yi+2 = x2, . . . , yi+n = xn.

Equivalently: xn is an n-subword of yk if there exist ai and bk−n−i such that yk = aixnbk−n−i,
where i ∈ {0, 1, . . . , k − n}.

The shadow of yk is the set of all its n-subwords:

shadk,n(y
k) = {xn : xn is an n-subword of yk}.

Now for any subset A ⊂ X k we define its shadow

shadk,n(A) =
⋃

ak∈A
shadk,n(a

k).

For fixed n and k we are interested in the function

�k,n(q,N) = min
{
|shadk,n(A)| : A ⊂ X k, |A| = N

}
.

The up-shadow of a sequence xn is the following set:

up-shad(xn) = {yk : xn is an n-subword of yk}.

Now for any set B ⊂ X n we define its up-shadow

up-shad(B) =
⋃

bn∈B
up-shad(bn).

For fixed n and k we are interested in the function

�(M) = min
{
|up-shad(B)| : B ⊂ X n, |B| = M

}
.

Let v = k − n. For any � ≥ r ≥ v such that m+ r > � (or k = �+m+ r > 2�), we have

shadk,n B(k, �, r) = B(k − v, �, r − v).

Hence, we have the following result.

Theorem 10. For N = q�+v + q�+v−1(�− v)(q − 1) and k = �+m+ v > 2� ≥ 2v we have

1

qv
N ≤ �k,n(q,N) ≤ 1

qv

(
1 +

v

�− v + 1

)
N.
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