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Abstract We present a new class of error-tolerant pooling designs by constructing dz−disjunct
matrices associated with subspaces of a finite vector space.
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1 Introduction

Combinatorial group testing has various practical applications [8], [9]. In the classical group
testing model we have a set [n] = {1, . . . , n} of n items containing at most d defective items.
The basic problem of group testing is to identify the set of all defective items with a small
number of group tests. Each group test, also called a pool, is a subset of items. It is assumed
that there is a testing mechanism that for each subset A ⊂ [n] gives one of two possible
outcomes : negative or positive. The outcome is positive if A contains at least one defective
and is negative otherwise.

A group testing algorithm is called nonadaptive if all tests are specified without knowledge
of the outcomes of other tests. Traditionally, a nonadaptive group testing algorithm is called
a pooling design. Pooling designs have many applications in molecular biology, such as DNA
screening, nonunique probe selection, gene detection, etc. (see [9], [10]).

A pooling design is associated with a (0, 1)− inclusion matrix M = {mij}, where the rows
are indexed by tests A1, . . . , At ⊂ [n], the columns are indexed by items 1, . . . , n, and mij = 1
if and only if j ∈ Ai. The major tool used for construction of pooling designs are d−disjunct
matrices. Let M be a binary t × n matrix where the columns C1, . . . , Cn are viewed as
subsets of [t] = {1, . . . , t} represented by their characteristic vectors. Then M is called d–
disjunct if no column is contained in the union of d others. The notion of d−disjunctness
was introduced by Kautz and Singleton [14]. They proved that a d–disjunct matrix M can
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identify up to d defective items. d−disjunct matrices are also known as d−cover free families
studied in extremal set theory [7].

The maximal d for which M is d–disjunct is called the degree of disjunctness and is denoted
by dmax. Note that d–disjunctness of a pooling design is a sufficient, but not a necessary
condition for identification of d defectives. However a d−disjunct pooling design has an
advantage of a very simple decoding. Removing from the set of items all items in negative
pools we get all defectives (see [9] for details).

A pooling design is called error-tolerant if it can detect/correct some errors in test outcomes.
Biological experiments are known to be unreliable (see [9]), which, in fact, is a practical
motivation for constructing efficient error-tolerant pooling designs.

For error correction in tests the notion of a dz–disjunct matrix was introduced in [17]. A
d−disjunct matrix is called dz–disjunct if for any d + 1 of its columns Ci1 , . . . , Cid+1

we have
|Ci1 \ (Ci2 ∪ . . . ∪ Cid+1

)| ≥ z. In fact, the d1−disjunctness is simply the d−disjunctness.
A dz–disjunct matrix can detect z − 1 errors and correct ⌊ z−1

2
⌋ errors (see e.g. [10] or [9]).

Constructions of dz−disjunct matrices are given by many authors (see [2], [17], [18], [10]).

Most known constructions of dz−disjunct matrices are matrices with a constant column
weight. Let M be a binary t × n matrix with a constant column weight k and let s be
the maximum size of intersection (number of common ones) between two different columns.
Kautz and Singleton [14] observed that then M is d–disjunct with d = ⌊k−1

s
⌋. Moreover, for

integers 0 ≤ s < k < t the maximum number n(d, t, w) for which there exists such a disjunct
matrix is upper bounded by

n(d, t, k) ≤

(

t

s + 1

)

/

(

k

s + 1

)

. (1.1)

Note that the columns of M considered as the family F of k–subsets of [t] (called blocks)
form an (s+1, k, t)–packing, that is each (s+1)–subset of [t] is contained in at most one block
of F . Note also that equality in (1.1) is attained if and only if F is an (s + 1, k, t)–Steiner
system (each (s + 1)−subset is contained in precisely one block).

Thus, packing designs can be used for construction of d–disjunct matrices. However, con-
struction of good (s + 1, k, t)–packings, in general, is known to be a difficult combinatorial
problem. Several other constructions (see [9, Ch.3]) of disjunct matrices are also based on
combinatorial structures or error correcting codes. We note that (s + 1, k, t)–packings can
also be described in terms of codes in the Johnson graph J(n, k) (or Johnson scheme) with
minimum distance dJ = k − s. It seems natural to try other distance regular graphs (see [4]
for definitions), for construction of d–disjunct matrices, using the idea of packings.

In this paper we construct new error-tolerant pooling designs associated with finite vector
spaces. In Section 2 we briefly review some known constructions of disjunct matrices based
on partial orders and determine the degree of disjunctness for the construction proposed
by Ngo and Du [18]. Our main results are stated and proved in Section 3. We present
a construction of dz–disjunct matrices based on packings in finite projective spaces. For
certain parameters the construction gives better performance than previously known ones.
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2 dz–disjunct matrices from partial orders

Macula [16] proposed a simple direct construction of d−disjunct matrices. Given integers
1 ≤ d < k < m, let M = (mij) be an

(

m

d

)

×
(

m

k

)

matrix where the rows are indexed by

elements of
(

[m]
d

)

, the columns are indexed by the elements of
(

[m]
k

)

, and mij = 1 if we have
containment relation between the subsets corresponding to the ith row and the jth column,
otherwise mij = 0. Note that each column has weight

(

k

d

)

and each row has weight
(

m−d

k−d

)

.
Macula showed that M is a d–disjunct matrix and dmax = d.

Similar constructions, using different posets, were given by several authors. Ngo and Du [18]
extended Macula’s construction to some geometric structures. In particular they considered
the following construction of a d−disjunct matrix Mq(m, d, k) associated with finite vector
spaces. Let GF (q)m be the m–dimensional vector space over GF (q). The set of all subspaces
of GF (q)m, called projective space, is denoted by Pq(m). Recall that Pq(m) ordered by
containment is known as the poset of linear spaces (or linear lattice). Given an integer
0 ≤ k ≤ m, the set of all k-dimensional subspaces (k–spaces for short) of GF (q)m is called
a Grassmannian and denoted by Gq(m, k). Thus, we have

⋃

0≤k≤m Gq(m, k) = Pq(m). A
graph associated with Gq(m, k) is called the Grassmann graph, when two vertices (elements
of Gq(m, k)) V and U are adjacent iff dim(V ∩ U) = k − 1 (see [4] for more insight). It is
known that the size of the Grassmannian |Gq(m, k)| is determined by the q-ary Gaussian
coefficient

[

m

k

]

q
; k = 0, 1, . . . ,m (

[

m

0

]

q
, 1)),

|Gq(m, k)| =
[m

k

]

q
=

(qm − 1)(qm−1 − 1) · · · (qm−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
. (2.1)

For integers 1 ≤ r < k < m, the
[

m

r

]

q
×

[

m

k

]

q
incidence matrix Mq(m, r, k) = (mij) is

defined as follows. The rows and the columns are indexed by the elements of Gq(m, r)
and Gq(m, k) (given in a fixed ordering), respectively, and mij = 1 if we have containment
relation, otherwise mij = 0. Note that each column of Mq(m, r, k) has weight

[

k

r

]

q
and

each row has weight
[

m−r

k−r

]

q
. Ngo and Du showed that Mq(m, r, k) is an r–disjunct matrix.

However D’yachkov et al. [10] observed that the degree of disjunctness of Mq(m, r, k) can
be much bigger than r. Moreover, the construction can in general tolerate many errors.

Theorem DHMVW [10]

For k − r ≥ 2 and d < q(qk−1−1)
qk−r−1

, the matrix Mq(m, r, k) is dz–disjunct with

z ≥

[

k

r

]

q

− d

[

k − 1

r

]

q

+ (d − 1)

[

k − 2

r

]

q

. (2.2)

The bound is tight for d ≤ q + 1.

Note that the maximum number d in (2.2) for which z > 0 is d = q(qk−1−1)
qk−r−1

. Thus, the

theorem tells us that dmax ≥ q(qk−1−1)
qk−r−1

. In fact, we determine dmax for every Mq(m, r, k).

Theorem 1 For integers 1 ≤ r < k < m, the degree of disjunctness of Mq(m, r, k) equals

dmax =
q(qr − 1)

q − 1
. (2.3)
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Proof. Let V ∈ Gq(m, k). We wish to determine the minimum size of a set of k–spaces
which cover (contain) all r–spaces of V . Suppose U1, . . . , Up ∈ Gq(m, k) is a minimal covering
of the r–spaces of V . Without loss of generality, we may assume that dim(Ui∩V ) = k−1 for
i = 1, . . . , p. Therefore, W1 = U1∩V, . . . ,Wp = Up∩V can be viewed as a set of hyperplanes
of Pq(k) that cover all r–spaces of Pq(k). Let now Ai ∈ Pq(k) be the orthogonal space of Wi;
i = 1, . . . , p. Thus, A = {A1, . . . , Ap} is a set of one dimensional subspaces, that is points,
in Pq(k). By the principle of duality, every (k− r)–space of Pq(k) contains an element of A.
To complete the proof we use the following result.

Theorem BB [3] Let A ⊂ GF (q)m \{0} have a non-empty intersection with every (k− r)–
space of Pq(k). Then |A| ≥ (qr+1 − 1)/(q − 1), with equality if and only if A consists of
(qr+1 − 1)/(q − 1) points of an (r + 1)–space of Pq(k).

It is clear now that dmax = (qr+1 − 1)/(q − 1) − 1. �

3 New construction

Our construction of a disjunct matrix M is based on packings in Pq(m). For integers 0 ≤
s < k < m, a subset C ⊂ G(m, k) (with the elements called blocks) is called an [s+1, k,m]q–
packing if each (s + 1)–space of Pq(m) is contained in at most one block of C. This clearly
means that dim(V ∩ U) ≤ s for every distinct pair V, U ∈ C. C is called an [s + 1, k,m]q–
Steiner structure if each (s + 1)–space of Pq(m) is contained in precisely one block of C. Let
N(m, k, s) denote the maximum size of an [s + 1, k,m]q–packing.
An equivalent definition of an [s + 1, k,m]q–packing can be given in terms of the subspace
distance dS(V, U) defined (in general for any V, U ∈ Pq(m)) by dS(V, U) = dim V + dim U −
2 dim(V ∩U) ([1], [15]). Then clearly dS(V, U) ≥ 2(k−s) for every pair of elements V, U ∈ C.
The following simple observation is an analogue of (1.1) for projective spaces. Let M be the
incidence matrix of an [s+1, k,m]q–packing C with s ≥ 1, that is the t×n matrix where the
rows (resp. columns) are indexed by the nonzero elements of GF (q)n (resp. by the blocks
of C) given in a fixed ordering.

Lemma 1 (i) For d ≤ qk−s, the matrix M is dz–disjunct with z = qk − 1 − d(qs − 1).
(ii) The number of columns

n ≤ N(m, k, s) ≤

[

m

s + 1

]

q

/

[

k

s + 1

]

q

(3.1)

with both equalities if and only if C is an [s + 1, k,m]q–Steiner structure.

Proof. (i) By the definition of an [s+1, k,m]q–packing, each (s+1)–space is contained in at
most one k–space of C. Therefore, any two columns in M have at most qs − 1 common ones.

Hence, a column in M can be covered by at most ⌈ qk−1
qs−1

⌉ > qk−s other columns. Note that

in case s | k, the space GF (q)k can be partitioned by s–spaces (see [5]) and dmax = qk−1
qs−1

− 1.

(ii) Since the number of (s+1)–spaces contained in a k–space is
[

k

s+1

]

q
, we have the following
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packing bound N(m, k, s) ≤
[

m

s+1

]

q
/
[

k

s+1

]

q
(see [1], [20], [15]). The equality in (3.1) is

attained iff we have a partition of all (s + 1)–spaces by the blocks of C. �

A challenging problem is to find Steiner structures in Pq(n). Note that no nontrivial Steiner
structures, except for the case s = 0 when we have a partition of GF (q)m by k–spaces, are
known. Properties of Steiner structures in Pq(n), introduced in [1] are studied in [19].

Theorem WXS [20] (KK [15]) Given integers 1 < k < m, there exists an explicit con-
struction of an [s + 1, k,m]q–packing C with

|C| =

{

q(s+1)(m−k) if m ≥ 2k, 0 ≤ s < k

qk(s+1) if m < 2k, 0 ≤ s < m − k.
(3.2)

The construction of such packings is based on Gabidulin codes [13] The explicit description
(in terms of subspace codes) is given in [20] and in [15]. For completeness we describe
this construction here (in terms of [s + 1, k,m]q–packings). Let F

k×r
q denote the set of all

k × t matrices over GF (q). For X,Y ∈ F
k×r
q the rank distance between X and Y is defined

as dR(X,Y ) = rank(X − Y ). It is known that the rank-distance is a metric [13]. Codes
in metric space (Fk×r

q , dR) are called rank-metric codes. It is known [13] that for a rank-
metric code C ⊆ F

k×r
q with minimum distance dR(C) one has the Singleton bound logq |C| ≤

min{k(r − dR(C) + 1), r(k − dR(C) + 1)}. Codes attaining this bound are called maximum-
rank-distance codes (MRD). An important class of rank-metric codes are Gabidulin codes
[13]. They are linear MRD codes, which exist for all parameters k, r and dR ≤ min{k, r}.
The construction of an [s + 1, k,m]q–packing from an MRD code is as follows. Consider the

space F
k×(m−k)
q (m ≥ k). Let first m ≥ 2k. Then for any integer 0 ≤ s ≤ k there exists a

Gabidulin code CG ⊂ F
k×(m−k)
q of minimum distance dR = k−s and size q(s+1)(m−k). To each

matrix A ∈ CG we put into correspondence the matrix [Ik|A] ∈ F
k×m
q (Ik is the k×k identity

matrix). We define now the set of k–spaces C(m, k, s)q = {rowspace([Ik|A]) : A ∈ CG}. It
can easily be observed now that dim(V ∩U) ≤ s for all pairs V, U ∈ C(m, k, s)q. This means
that C(m, k, s)q is an [s + 1, k,m]q–packing with |C(m, k, s)q| = |CG| = q(s+1)(m−k). Similarly
is described the [s + 1, k,m]q–packing C(m, k, s)q for m < 2k. Note that for our purposes
the case m ≥ 2k is more important.

The following is a useful estimate for the Gaussian coefficients. A proof can be found in [6]
(and in [15] for the case q = 2).

Lemma 2 For integers 1 ≤ k < m we have

q(m−k)k <
[m

k

]

q
< α(q) · q(m−k)k, (3.3)

where α(2) = 4 and α(q) = q

q−2
for q ≥ 3.

Note that Lemma 2 in conjunction with Theorem WXS applied to our upper bound (3.1)
shows that C(m, k, s)q is nearly optimal:

|C(m, k, s)q| ≤ |N(n, k, s)q < α(q) · q(s+1)(m−k) = α(q) · |C(m, k, s)q|.
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Here actually lim α(q) = 1, as q → ∞, yields asymptotic optimality.
Let P (m, k, s)q denote the incidence matrix of C(m, k, s)q. We summarize our findings in

Theorem 2 Given integers 1 ≤ s < k ≤ 1
2
m and a prime power q, we have

(i) P (m, k, s)q is a d–disjunct t × n matrix where t = qm − 1, n = q(s+1)(m−k), d = qk−s.
(ii) For any d ≤ qk−s, the matrix P (m, k, s)q is dz–disjunct with z = qk − 1 − d(qs − 1).

Finally, we explain how good our construction is. Let t(d, n) denote the minimum number
of rows for a d–disjunct matrix with n columns. In the literature known are the bounds
asymptotic in n

Ω(1/d2) ≤
log n

t(d, n)
≤ O((log d)/d2) (3.4)

(log is always of base 2). The lower bound is proved in [14], [11], [7] (see also [12], [9, ch.2])
using probabilistic methods. The upper bound is due to D’yachkov and Rykov [11].

Next we compare our construction with the construction in Ngo and Du [18], described
in Section 2 (both constructions we take over GF (q)). In their construction we have n ≤

α(q)q(m−k)k, t ≥ q(m−r)r (Lemma 2), d = q(qr−1)
q−1

(Theorem 2), and rate (log n)/t.

For the parameters in our construction we use the notation n0, k0, t0, d0. Thus, n0 =
q(s+1)(m0−k0), t0 = qm0 − 1, d0 ≥ qk0−s. We put m0 = m, k0 = k, s = k − r − 1. Then we
have n0 = q(k−r)(m−k), t0 = qm−1, d0 ≥ qr+1 > d, and rate (log n0)/t0. A simple calculation
shows that (log n0)/t0 exceeds (log n)/t by a factor qm(r−1)−r2

· k−r
k+1

.

Let us take now in our construction q = 2, m = 2k. Then we have d = 2k−s, t = 22k−1, n =
2(s+1)k and hence

log n

t
>

(s + 1)k

22k
>

s + 1

22s
·
log d

d2
.

Corollary 1 Given integer s ≥ 1, our construction gives a class of d–disjunct t×n matrices
with parameters d = 2k−s, t = 22k, n = 2(s+1)k attaining the upper bound in (3.4), that is
rate (log n)/t = Ω((log d)/d2).
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