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Abstract

We consider two generalizations of group testing: threshold group testing
(introduced by Damaschke [7]) and majority group testing (a further gen-
eralization, including threshold group testing and a model introduced by
Lebedev [14]).
We show that each separating code gives a nonadaptive strategy for threshold
group testing for some parameters. This is a generalization of a result in [2]
on “guessing secrets”, introduced in [5].
We introduce threshold codes and show that each threshold code gives a
nonadaptive strategy for threshold group testing. We show that there exist
threshold codes such that we can improve the lower bound of [3] for the rate
of threshold group testing.
We consider majority group testing if the number of defective elements is
unknown (otherwise it reduces to threshold group testing). We show that
cover-free codes and separating codes give strategies for majority group test-
ing. We give a lower bound for the rate of majority group testing.
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1. Introduction

Group testing is of interest for many applications like in molecular biology.
For an overview of results and applications we refer to the books [8] and [9].

The classical group testing problem is to find the unknown subset D of
all defective elements in the set [N ] = {1, 2, . . . , N}.

For a subset S ⊂ [N ] a test tS is the function tS : 2[N ] → {0, 1} defined
by

tS(D) =

{

0 , if |S ∩ D| = 0
1 , otherwise.

We define search strategies as in [1]. A strategy is called successful, if we
can uniquely determine D. We remind the reader of the concepts of adaptive
and nonadaptive strategies.

Strategies are called adaptive if the results of the first k−1 tests determine
the kth test. Strategies in which we choose all tests independently are called
nonadaptive.

In the present paper we study two generalizations of group testing which
are quite natural.

In threshold group testing the integers 0 ≤ l < u are given and a test
tS is the function tS : 2[N ] → {0, 1, {0, 1}}, defined by

tS(D) =















0 , if |S ∩ D| ≤ l
1 , if |S ∩ D| ≥ u
{0, 1} , otherwise

(meaning that the result can be arbitrary 0 or 1).

In threshold group testing it is not possible to find the set D of all defective
elements exactly if the gap g = u− l − 1 > 0 (see [7]). It is only possible to
find a set F of subsets of [N ] which includes D and ∀P ,P ′ ∈ F : |P ′\P| ≤
g and |P\P ′| ≤ g.

Inmajority group testing there are two functions f1, f2 : {0, 1, . . . , N} →
R

+ which put weights on the number D = |D| ∈ {0, 1, . . . , N} of defective
elements and f1(D) < f2(D) ∀D ∈ [0, 1, . . . , N ].

They describe the structure of tests tS : 2[N ] → {0, 1, {0, 1}} as follows

tS(D) =















0 , if |S ∩ D| ≤ f1(D)
1 , if |S ∩ D| ≥ f2(D)
{0, 1} , otherwise

(meaning that the result can be arbitrary 0 or 1).
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Clearly majority group testing is a generalization of threshold group testing.
We get threshold group testing as a special case by setting f1(D) = l and
f2(D) = u. Furthermore the models are equivalent if the number D of
defectives is known. In majority group testing, in particular also for threshold
group testing, it is not possible to find the set D of all defective elements.
We can find a set of subsets F ⊂ 2[N ], which contains D. This set depends
on f1 and f2, on D, and on the strategy used. In this case we call a strategy
successful, if we can find an F with the smallest possible size in the worst
case.

A special case of majority group testing was introduced by Lebedev [14]
as follows

tS(D) =







0 , if |S ∩ D| < D
2

1 , if |S ∩ D| > D
2

{0, 1} , if |S ∩ D| = D
2
.

It was shown in [14] that a (w,w) separating code gives a successful non-
adaptive strategy if it is assumed that D is odd and that D < 2w. (See
Section 5 for other special cases studied in [14]).

In [2] it was shown that for guessing secrets (that means l = 0 and
u = D for threshold group testing) a (D,D) separating code gives a successful
nonadaptive strategy. We prove in Section 2 that for threshold group testing
a (u,D − l) separating code gives a successful nonadaptive strategy if D =
u+ l. This improves the result of [3] for this special case, because the authors
use a (u,D− l) cover-free code for the strategy, which has a smaller rate than
a separating code.

In Section 3 we introduce threshold codes and show that these codes
give nonadaptive strategies for threshold group testing, if the number of
defectives are known. We improve the lower bound for the rate of threshold
group testing of [3]. In Section 4 we give a list of values for the bound of
Section 3 by computer calculation.

Finally, in Section 5 we consider majority group testing for f1(D) =
⌈D
k
⌉ − 1 and f2(D) = ⌊D

k
⌋+ 1 where 2 ≤ k ∈ N. We first give conditions for

a successful nonadaptive strategy. Then we give a lower bound for its rate.
Again we find relations to separating codes and cover-free codes.

We call a set S ⊂ [N ] a test set if it is used in defining the test tS . We
assume that D ≥ u, because otherwise it is not possible to find any defective
element.
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2. Nonadaptive threshold group testing using separating codes

It is obvious that it is not possible to find defective elements if D ≤ u−1.
In [7] it is shown that if D ≥ u we can find a set P such that

|D\P| ≤ g and |P\D| ≤ g (1)

or we can even find a set F of subsets of [N ] with

D ∈ F and ∀P ,P ′ ∈ F : |P ′\P| ≤ g and |P\P ′| ≤ g. (2)

We say that a strategy for threshold group testing is successful if we found
a set F satisfying condition (2). The size of F cannot be reduced. It is shown
in [7] that all answers given for a strategy can be the same for all sets in
the set F as for the set D of defective elements. Thus we cannot distinguish
these sets. First we consider the case where the number D of defectives is
known.

Definition 1. nTh(N, l, u,D) is the minimal number of tests of a nonadap-
tive strategy for threshold group testing with lower bound l and upper bound
u (see the definition in the introduction) to find a set F which fulfills (2),
if there are D defective elements. RTh = RTh(l, u,D) = supN

logN
nTh(N,l,u,D)

denotes the maximal achievable rate of a nonadaptive strategy for threshold
group testing for given D, u, l.

Definition 2. An n×N matrix (mij)1≤i≤n,1≤j≤N is called a (w, r) separating
code of size n × N , if for any pair of subsets I, J ⊂ [N ] such that |I| = w,
|J | = r, and I ∩ J = ∅, there exists a row index k ∈ [n] such that mki = 1
∀i ∈ I and mkj = 0 ∀j ∈ J or vice versa.

By nS(N,w, r) we denote the minimal number of rows of a (w, r) separat-
ing code with N columns and by RS the corresponding maximal achievable
rate.

Theorem 1. Let D = u+ l, then nTh(N, l, u,D) ≤ nS(N, u,D − l).

Proof. Let (mij) i=1,...,n
j=1,...,N

be a (u,D − l) separating code of size n×N .

We use the n rows as test sets (written in binary representation) for our
strategy and show that we can find a set F of sets such that (2) is fulfilled.
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Let F0 = {A1,A2, . . . ,A(ND)
} be the set of all D element subsets of

{1, 2, . . . , N}.
First consider A1 and search for the set Ai with the smallest index i > 1,

such that |A1\Ai| > g = u− l − 1.
Now we compare these two sets.

Case 1: u− l ≤ |A1\Ai| < u.
Set I = (A1\Ai) ∪ B, where B ⊂ Ai ∩ A1, such that |I| = u
and set J ⊂ Ai\B, such that |J | = D − l. This is possible because

|B| ≤ l.

Case 2: |A1\Ai| ≥ u.
Set I ⊂ A1\Ai such that |I| = u and set J ⊂ Ai, such that |J | = D− l.

There exists a row (a test set S), because of the properties of separating
codes, such that I ⊂ S and J 6⊂ S or vice versa, where S is the subset which
corresponds to the row.

If the result is 1 and (I ⊂ S and J 6⊂ S) then we continue our strat-
egy with the set F1 = F0\{Ai}. Otherwise we continue with the set F1 =
F0\{A1}. If the result is 1 and (I 6⊂ S and J ⊂ S) then we continue our
strategy with the set F1 = F0\{A1}. Otherwise we continue with the set
F1 = F0\{Ai}.

If A1 ∈ F1 we search again for the set with the smallest index i > 1, such
that |A1\Ai| > g = u− l − 1, if such a set exists.
Otherwise we continue with A2. We stop at step s if there are no sets A and
B in the set such that |A\B| > g and |B\A| > g. The remaining set Fs has
the claimed properties:

We did not exclude the set D which contains all defective elements from
our set for the following reason. If we compare D and A and the result of our
test is 1, we remove A, because more than u elements of D are in the test
set. If the result is 0 we also remove A, because then less than l elements
are in the test set S. Therefore our remaining set Fs contains the set with
all defective elements and for Fs (2) holds. �

The following is an upper bound for nS (the authors use the terminology
(N, u)-universal sets, which are (u, u)-separating codes).

Theorem [16] nS(N, u, u) ≤ 2u22u logN .
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In conjunction with our Theorem 1 this implies (this was shown in [2] for
l = 0 only)

Corollary 1. If D = u + l, then nTh(N, l, u,D) ≤ 2u2u logN and RTh ≥
1

2u22u
.

By random choice of a separating code (see [6]) we get a lower bound on
RS and thus we get from Theorem 1

Corollary 2.

RTh ≥ RS ≥ − log(1− 2−(2u))

2u− 1
. (3)

3. A general lower bound for nonadaptive threshold group testing

In the previous section we got a lower bound for threshold group testing
if D = u + l. The best known bound for general D was given in [3] using
cover-free codes.

Definition 3. An n×N matrix (mij)1≤i≤n,1≤j≤N is called a (w, r) cover-free
code of size n ×N , if for any pair of subsets I,J ⊂ [N ] such that |I| = w,
|J | = r, and I ∩ J = ∅, there exists a row index k ∈ [n] such that mki = 1
∀i ∈ I and mkj = 0 ∀j ∈ J .

nc(N,w, r) denotes the minimal number of rows among all (w, r) cover-
free codes with N columns.

Threshold group testing without gap is a special case of the complex
group testing model, which was introduced in [20]. In complex group testing
we have a set of N elements and a family P of defective subsets of this set.
The test gives a positive result, if it includes all elements of a defecive subset.
The goal is to find all defective subsets.

Let D the set of defective elements in threshold group testing with the
upper bound u and the lower bound l. If we choose P =

(

D
u

)

then threshold
group testing and complex group testing are the same. Therefore the bounds
for complex group testing in [11] can be used for threshold group testing
without gap. For u = 3 it is the same bound like in [3].

In [3] it is shown that every (u,D′ − l) cover-free code is a nonadaptive
strategy for threshold group testing, if D is unknown but bounded by D′.
This implies
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Theorem [3] n′
Th(N, l, u,D′) ≤ nc(N, u,D′ − l), where n′

Th denotes the
minimal number of tests of a nonadaptive strategy for threshold group testing
with lower bound l, upper bound u, and D bounded by D′.

Applying a bound for cover-free codes it is shown in [3]

Theorem [3]

n′
Th(N, l, u,D′) ≤

(

u+D′ − l

D′ − l

)D′−l (
u+D′ − l

u

)u

·
(

1 + (u+D′ − l) log

(

N

u+D′ − l
+ 1

))

.

For the rate this gives

R ≥

(

(

D′−l
D′−l+u

)D′−l ( u
D′−l+u

)u
)

D′ − l + u
. (4)

The best known lower bound using cover-free codes for the rate of thresh-
old group testing is given in [10] (see also [18], [19] for constructions of cover-
free codes) by

R ≥
− log

(

1−
(

D′−l
D′−l+u

)D′−l ( u
D′−l+u

)u
)

D′ − l + u− 1
. (5)

One gets this lower bound by random choice of a (u,D′ − l) cover-free
code.

We first consider the case whenD is given and derive another lower bound
for threshold group testing. Let (mij)1≤i≤n,1≤j≤N be an n × N matrix. We
denote by ri = (mi1, . . . ,miN) the ith row and by cj = (m1j, . . . mnj) the jth
column.

Definition 4. We call an n×N matrix a (D, u, l)-threshold code, if for all
A,B ⊂ {1, 2, . . . , N}, |A| = |B| = D, and |A\B| ≥ u − l there exists an
i ∈ {1, 2, . . . , n} such that

(
∑

a∈A mia ≥ u and
∑

b∈B mib ≤ l)
or

(
∑

a∈A mia ≤ l and
∑

b∈B mib ≥ u).
(6)

We call the rows of the matrix tests and the columns codewords.
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In the previous section we have shown how to get a nonadaptive group
testing strategy in case D = u+l by an (u,D−l) separating code. A (D, u, l)
threshold code is defined in such a way that it gives a nonadaptive strategy
for threshold group testing for every u, l,D. Therefore we get the following

Lemma 1. Every (D, u, l) threshold code gives a nonadaptive strategy for
threshold group testing if the number D of defectives is known.

Now we want to find a lower bound for the rate R = logN
n

of a (D, u, l)
threshold code by random choice. First we calculate the rate for codes with a
weaker condition (6’), that is if (6) holds only for all A and B with |A∩B| = z
for some z fixed.

Given an integer N , what is the minimal number (of rows) n such that a
threshold code of size n×N fulfills this weaker condition?

We say that cj is bad if there exists a pair of sets A,B ⊂ {1, 2, . . . , N}
with |A| = |B| = D and for which (6’) is not true for any row. Otherwise
we call cj good. Consider a random matrix (Xij)1≤i≤n,1≤j≤N where the Xij’s
are independent identical distributed random variables. We choose P (Xij =
1) = p and P (Xij = 0) = q.

Let A,B ⊂ [N ] with |A ∩ B| = D − u + l. Then every test (row) of
a (D, u, l)-threshold code contains exactly l 1s inside of the positions corre-
sponding to |A ∩ B|. If there are less, then in the first set we cannot have
more than u 1s, and if there are more then in the second set we will have
more than l 1s. Therefore in this case

P (cj is bad ∧ |A ∩ B| = D − u+ l) =

(

N−1
D+u−l−1

)

·
(

D+u−l−1
D

)

·
(

1− 2
(

D−u+l

l

)

plqD−upu−lqu−l
)n

.
(7)

If we assign

n = n∗ = −
log

((

N−1
D+u−l−1

)(

D+u−l−1
D

))

log
(

1− 2
(

D−u+l

l

)

puqD−l
) + 1

then the right-hand side of (7) does not exceed 1
2
and the average number

of bad columns does not exceed N
2
. Thus there exists a matrix which has at

least N
2
good columns. By using R ≥ limN→∞

log N
2

n∗

we get

R ≥ − log
(

1− 2
(

D−u+l

l

)

puqD−l
)

D + u− l − 1
. (8)
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We want to consider the general case. We say that cj is bad if there exists
a pair of sets A,B ⊂ {1, 2, . . . , N} with |A| = |B| = D and for which (6) is
not true for any row. Clearly

P (cj is bad) =
D−u+l
∑

k=0

P (cj is bad ∧ |A ∩ B| = k). (9)

If |A ∩ B| = k we get

P (cj is bad ∧ |A ∩ B| = k) =
(

N−1
2D−k−1

)

·
(

2D−k−1
D

)

·
(

1− 2(
∑min{k,l}

j=0

(

k

j

)

pjqk−j(
∑D−k

i=u−j

(

D−k

i

)

piqD−k−i)(
∑l−j

t=0

(

D−k

h

)

ptqD−k−t))
)n

.

(10)
Now we need an upper bound

P (cj is bad) ≤ (D−u+ l+1) max
k∈{0,1,...,D−u+l}

P (cj is bad∧|A∩B| = k). (11)

We calculate for each k the rate like for k = D − u + l. The factor
(D − u + l + 1) in (11) does not change the rate. Therefore the minimal of
these rates gives a bound for the rate in the general case.

Hence we get

Theorem 2. Let 0 ≤ l < u ≤ D be given, then

RTh ≥ RT = max
0≤p≤1

min
0≤k≤D−u+l

(12)

− log(1− 2(
∑min{k,l}

j=0

(

k

j

)

pjqk−j(
∑D−k

i=u−j

(

D−k

i

)

pkqD−k−i)(
∑l−j

t=0

(

D−k

t

)

ptqD−k−t)))

2D − k − 1
.

This formula is better than the known one, because every (u,D−l) cover-
free code is a (D, u, l) threshold code. The bound for the rate of cover-free
codes is derived in the same way as we did for threshold codes. Recall that
the best known bound for the rate, using cover-free codes is

RTh ≥ RC =
− log

(

1−
(

D−l
D−l+u

)D−l ( u
D−l+u

)u
)

D − l + u− 1
. (13)
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It holds − log(1− x) ∼ x if x is small. Thus we want to compare

RT = max
0≤p≤1

min
0≤k≤D−u+l

(14)

2(
∑min{k,l}

j=0

(

k

j

)

pjqk−j(
∑D−k

i=u−j

(

D−k

i

)

piqD−k−i)(
∑l−j

t=0

(

D−k

t

)

ptqD−k−t)))

2D − k − 1

and

RC =

(

D−l
D−l+u

)D−l ( u
D−l+u

)u

D − l + u− 1
. (15)

Note first that, since u ≥ l + 1, for all 0 ≤ k ≤ D − u+ l

FT =
2

2D − k − 1
≥ 2

2D − 1
≥ FC =

1

D − l + u− 1
≥ 1

D
. (16)

We have FT

FC
> 1, for instance for u = l + 1 and k = D − 1 FT

FC
= 2, or λ = 0,

µ = 1, and therefore κ = 0, as it occurs in the result of [2].
We start with our analysis for u = l + 1, that is in relative quantities

λ =
l

D
, µ =

u

D
, κ =

k

D
, (17)

and for the probabilities in (15)

u

D − l + u
=

µ

1− λ+ µ
= µ = p, 1− µ = q. (18)

We begin first with the entropy description of the lower bounds for
u = l + 1

RC = FCµ
µD(1− µ)1−µD = FC2

−h(µ)D, (19)

RT ≥ FT min
0≤k≤D−u+l

min{k,l}
∑

j=0

(

k

j

)

pjqk−j · (20)

(
D−k
∑

i=u−j

(

D − k

i

)

piqD−k−i) ·

(

l−j
∑

t=0

(

D − k

t

)

ptqD−k−t).
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For u = l + 1 we have

RT (l) ≥ FT min
0≤k≤l

k
∑

j=0

(

k

j

)

µj(1− µ)k−j

(1− ∗)
l−j
∑

t=0

(

D − k

t

)

µt(1− µ)k−j,

where (1− ∗)SUM stands for (1− SUM)SUM .
Argument We choose the optimal j for all sums (max. entropy princi-

ple). If j∗ = µk = λκD, then
(

k

j∗

)

µj∗(1− µ)k−j∗ ≥ 1

k + 1
≥ 1

D
(21)

(

D − k

u− j∗

)

µu−j∗(1− µ)D−k−u+j∗ ≥ 1

D − k + 1
≥ 1

D
(

D − k

l − j∗

)

µl−j∗(1− µ)D−k−l+j∗ ≥ 1

D − k + 1
≥ 1

D
.

Consequently

RT (l)

RC

≥ FT

FC

2h(µ)D−o(D). (22)

Therefore we have

Theorem 3. In the case without gap, that is u = l + 1, it holds

RT

RC

≥ 2h(µ)D−o(D). (23)

We write now
RT = FT min

0≤k≤D−u+l
E1E2E3

with E1 =
∑min{k,l}

j=0

(

k

j

)

pjqk−j, E2 =
∑D−k

i=u−j

(

D−k

i

)

piqD−k−i,

and E3 =
∑l−j

t=0

(

D−k

t

)

ptqD−k−t.
To approximate E1 for all k observe first that we need

j(κ) ≤ κpD and j(κ) ≤ λD. (24)
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Let κ ≤ 1− µ+ λ and

p = p(µ, λ) =
λ

1− µ+ λ
(25)

then for j = λ
1−µ+λ

κD the inequalities in (24) hold.

Lemma 2. 1. λ ≤ p(µ, λ) ≤ µ.

2. p(µ, λ) ≤ µ+λ

2
for µ ≤ 1

2
.

3. The inequality
√
λµ ≤ p(µ, λ) does not hold.

Proof.

1. Since µ ≥ λ, 1− µ+ λ ≤ 1 and λ ≤ p(µ, λ) then

λ = (1− µ+ λ)p(µ, λ) ≤ (1 + (λ− µ))µ

or equivalently
λ− µ ≤ (λ− µ)µ,

which holds, because 0 ≤ µ ≤ 1 and λ− µ is negative.

2. The inequality is equivalent to

λ ≤ µ+ λ

2
− µ2 − λ2

2
(26)

or to
λ− λ2 ≤ µ− µ2,

which holds, because λ ≤ µ ≤ 1
2
and thus

λ(1− λ) ≤ µ(1− µ).

3. Counterexample: µ = 1
2
and λ = 1

4
.

It remains to estimate E2 and E3 from below

E2 =
D−k
∑

i=u−j(κ)

(

D − k

i

)

piqD−k−i,

where u− j(κ) = (µ− λ
1−µ+λ

κ)D ≤ p(1− κ)D.

E2 ≥
(

(1− κ)D

(µ− pκ)D

)

p(µ−pκ)D(1− p)(1−µ−(1−p)κ)D
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E2 ≥ 2D(1−κ)[h(µ−pκ
1−κ

)+µ−pκ
1−κ

log p+
1−µ−(1−pκ)

1−κ
log(1−p)].

We set

f(κ, µ, λ, p) = h(
µ− pκ

1− κ
) +

µ− pκ

1− κ
log p+

1− µ− (1− pκ)

1− κ
log(1− p)]

and want to find minκ f(κ, µ, λ, p). Let r =
µ−pκ

1−κ
, then we have

−r log r − (1− r) log(1− r) + r log p+ (1− r) log
1− p

1− r

= r log
p

r
+ (1− r) log

1− p

1− r
= −D((r, 1− r)||(p, 1− p)),

where D((r, 1 − r)||(p, 1 − p)) is called information divergence. For E3 we
have

E3 =

l−j(κ)
∑

t=0

(

D − k

t

)

ptqD−k−t,

where l − j(κ) = (λ− pκ)D. Therefore

E3 ≥ 2D(1−κ)[h(λ−pκ
1−κ

)+λ−pκ
1−κ

log p+
1−κ−lambda+pκ)

1−κ
log(1−p)].

We set

g(κ, µ, λ, p) = h(
λ− pκ

1− κ
) +

λ− pκ

1− κ
log p+

1− κ− λ+ pκ

1− κ
log(1− p)]

and want to find minκ f(κ, µ, λ, p). Let s =
λ−pκ

1−κ
, then we have

−s log s− (1− s) log(1− s) + s log p+ (1− s) log
1− p

1− s

= s log
p

s
+ (1− s) log

1− p

1− s
= −D((s, 1− s)||(p, 1− p)).

It follows
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Proposition 1.

RT ∼ FT2
(−D((r,1−r)||(p,1−p))−D((s,1−s)||(p,(1−p)))(1−κ).

Therefore we compare

−D((r, 1−r)||(p, 1−p))−D((s, 1−s)||(p, (1−p)))(1−κ) with−max(h(λ), h(µ)).

We need some basic calculation for the bound on RC .

Lemma 3. Denote P = P (λ, µ) = µ

1−λ+µ
, then

RC/FC =

(

u

D − l + u

)u (
D − l

D − l + u

)D−l

= 2−h(P )(1−λ+µ)D.

Proof. We have

(

µ

1− λ+ µ

)µD (

1− λ

1− λ+ µ

)(1−λ)D

= P PD(1−λ+µ)(1− P )(1−P )D(1−λ+µ)

= 2−h(P )(1−λ+µ)D.

We note that 1− λ+ µ > 1 and P > µ.
So far 1

2
≥ P = µ

1−λ+µ
and we have

h(P )(1− λ+ µ) > h(µ) > h(λ).

Now we want to show that

h(P )(1−λ+µ) > max
κ

(1−κ)(D((r, 1−r)||(p, 1−p)+D((s, 1−s)||(p, 1−p))

with P = µ

1−λ+µ
, r = µ−pκ

1−κ
, s = λ−pκ

1−κ
, and p = λ

1−µ+λ
.

We consider the special case D = u + l. Then we have 1 = µ + λ,
0 ≤ κ ≤ 2λ, P = 1

2
, and p = 1

2
.

For µ = λ we have

h(P )(1− λ+ µ) = 2µ > 0 = (1− κ)2D((
1

2
,
1

2
)||(1

2
,
1

2
)).
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For λ < µ we have r = 2µ−κ

2−2κ
and s = 2λ−κ

2−2κ
.

We have to show that for 0 ≤ κ ≤ λ

2µ > max
κ

−(1−κ)(D((
2µ− κ

2− 2κ
, 1−2µ− κ

2− 2κ
)||(1

2
,
1

2
)+D((

2λ− κ

2− 2κ
, 1−2λ− κ

2− 2κ
)||(1

2
,
1

2
)).

This is equivalent to (because λ = 1− µ)

2 ≤ h(
2µ− κ

2− 2κ
) + h(

2(1− µ)− κ

2− 2κ
) +

2µ

1− κ
(27)

2 ≤ h(
2µ− κ

2− 2κ
) + h(1− 2µ− κ

2− 2κ
) +

2µ

1− κ

2 ≤ 2h(1− 2µ− κ

2− 2κ
) +

2µ

1− κ

1− 2µ

2− 2κ
≤ h(1− 2µ− κ

2− 2κ
). (28)

(27) is true for µ > 1− κ. For µ ≤ 1− κ it holds 1
2
≤ 2µ−κ

2−2κ
≤ 1. Therefore

1− 2µ− κ

2− 2κ
≤ h(1− 2µ− κ

2− 2κ
)

and (28) holds.
For κ = 0 and µ = 1, that means λ = 0, the two terms are the same. In

general we get

Theorem 4. Let 1 = µ+ λ and λ ≤ µ, then

RT ≥ 22λ)RC .

4. Computer Results

We set RT = FT · E1 · E2 · E3 and RC = FCE0 with
E0 =

(

D−l
D−l+u

)D−l ( u
D−l+u

)u

E1 =
∑min{k,l}

j=0

(

k

j

)

pjqk−j

E2 =
∑D−k

i=u−j

(

D−k

i

)

piqD−k−i

15



E3 =
∑l−j

t=0

(

D−k

t

)

ptqD−k−t

We set µD = u, λD = l, κD = k, αD = j
E0 = 2De0 with e0 = −h( µ

(1−λ+µ)
)(1− λ+ µ)

E1 = 2De1 with e1 = κh(α
κ
) + α log(p) + (κ− α) log(1− p)

E2 = 2De2 with e2 = (1− κ)h( f2
1−κ

) + (1− κ− f2) log(1− p) + f2 log(p)
where f2 = (µ− α)β + (1− κ)(1− β).

E3 = 2De3 with e3 = (1− κ)h( f3
1−κ

) + f3 log(p) + (1− κ− f3) log(1− p)
where f3 = (λ− α)γ.

The computer calculates now for given µ and λ:

max
0≤p≤1

min
0≤κ≤1−µ+λ

max
0≤γ,β≤1,max{0,µ+κ−1}≤α≤min{κ,λ}

e1 + e2 + e3 − e0.

We have RT

RC
= 2D(e1+e2+e3−e0).

Observations:

• 0 ≤ e1 + e2 + e3 − e0 ≤ 1

• The biggest value for e1 + e2 + e3 − e0 we have for µ = λ = 1
2

• The smallest value for e1 + e2 + e3 − e0 we have for (λ = 0 and µ
arbitrary) and for (µ = 1 and λ arbitrary).

• For µ = λ (13) gives the correct value.

• p = µ

1−λ+µ
gives always the biggest value (therefore it is not listed in

the table below).
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λ µ e1 + e2 + e3 − e0 λ µ e1 + e2 + e3 − e0
0 x 0.00 0.4 0.4 0.97
0.1 0.1 0.47 0.4 0.5 0.89
0.1 0.2 0.45 0.4 0.6 0.80
0.1 0.3 0.43 0.4 0.7 0.69
0.1 0.4 0.41 0.4 0.8 0.55
0.1 0.5 0.39 0.4 0.9 0.36
0.1 0.6 0.36 0.4 1.0 0.00
0.1 0.7 0.32 0.5 0.5 1.00
0.1 0.8 0.27 0.5 0.6 0.89
0.1 0.9 0.21 0.5 0.7 0.76
0.1 1.0 0.00 0.5 0.8 0.60
0.2 0.2 0.72 0.5 0.9 0.39
0.2 0.3 0.69 0.5 1.0 0.00
0.2 0.4 0.65 0.6 0.6 0.97
0.2 0.5 0.60 0.6 0.7 0.83
0.2 0.6 0.55 0.6 0.8 0.65
0.2 0.7 0.49 0.6 0.9 0.41
0.2 0.8 0.40 0.6 1.0 0.00
0.2 0.9 0.28 0.7 0.7 0.88
0.2 1.0 0.00 0.7 0.8 0.69
0.3 0.3 0.88 0.7 0.9 0.43
0.3 0.4 0.83 0.7 1.0 0.00
0.3 0.5 0.76 0.8 0.8 0.72
0.3 0.6 0.69 0.8 0.9 0.45
0.3 0.7 0.60 0.8 1.0 0.00
0.3 0.8 0.49 0.9 0.9 0.47
0.3 0.9 0.32 0.9 1.0 0.00
0.3 1.0 0.00 1.0 1.0 0.00

5. Majority group testing

We remind the reader of the definition of majority group testing in Sec-
tion 1.

This is a generalization of the model considered in [14].
Furthermore the author introduced and analyzed the following test:
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1.

tS(D) =

{

0 , if |S ∩ D| < D
2

1 , if |S ∩ D| ≥ D
2
.

He mentioned as other tests:

2.

tS(D) =















0 , if |S ∩ D| < D
2

, or |N\S| > |S| and |S ∩ D| = D
2

1 , if |S ∩ D| > D
2

, or |N\S| ≤ |S| and |S ∩ D| = D
2
.

3.

tS(D) =







0 , if |S ∩ D| < D
2

1 , if |S ∩ D| > D
2

∗ , otherwise.

It is clear that the test 1. is included in our definition of majority group
testing. The other two are not included.

We will now consider the case f1(D) = ⌈D
k
⌉− 1 and f2(D) = ⌊D

k
⌋+1 and

write f(D) = D
k
.

tS(D) =







0 , if |S ∩ D| < D
k
= f(D)

1 , if |S ∩ D| > D
k
= f(D)

{0, 1} , otherwise.

If D is known this problem can be reduced to threshold group testing:

1. For D mod k ≡ 0 we set l = D
k
− 1 and u = D

k
+ 1. Therefore we get

a strategy by a (D
k
+ 1, k−1

k
D + 1) cover-free code, by a (D

2
+ 1, D

2
+ 1)

separating code for k = 2, or by a (D, D
k
+1, k−1

k
D+1) threshold code.

2. For D mod k ≡ s with 0 < s < k we set l = D−s
k

and u = D+k−s
k

.

Therefore we get strategy by a (D+k−s
k

, (k−1)D+s

k
) cover-free code, by

a (D+1
2

, D+1
2

) separating code for k = 2, or by a (D, D+k−s
k

, (k−1)D+s

k
)

threshold code.

Now we will consider the case when D is bounded by some D′ < N . The
number of tests depends on D′.

First we consider the case k = 2.
It is clear that as in threshold group testing it is not always possible to

determine the set of defectives.
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Definition 5. We say that two sets A,B of possible defective elements are
indistinguishable if for all strategies the results can be the same for both A
and B. We call a set F of subsets of [N ] a solution, if the set of all defective
elements D ∈ F and the sets in F are pairwise indistinguishable. The next
theorem gives conditions for a solution.

Theorem 5. Let D ⊂ [N ] be the set of defectives and f(D) = D
2
. We can

determine a solution F such that for every sets P1,P ∈ F with |P1| ≥ |P| the
following holds

1. If P ⊂ P1 and P is even then

|P1\P| ≤ 2. (29)

2. If P ⊂ P1 and P is odd then

|P1\P| ≤ 1. (30)

3. If |P\P1| = 1 and P is even then

|P1\P| ≤ 1. (31)

4. In all other cases we can distinguish two sets A,B with A 6= B.

Proof. First we show that there exists a strategy, such that we get a set F
which satisfies (29), (30), and (31). We consider the set F0 = ∪D′

j=0

(

[N ]
j

)

of
all possible sets of defectives. If there are two sets in F0 which do not fulfill
(29), (30), and (31) we show that there exists a test such that one will be
removed and we show that the set of defectives will not be removed.

1. Let P ⊂ P1 and |P| = 2a.
It is enough to have a test set S which includes exactly a− 1 elements
of P and the remaining w elements of P1\P . If the result of this
test is “1” we continue with F1 = F0\P , otherwise we continue with
F1 = F0\{P1}. Now we have to show that we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2
= a and the result is “0”.

If P1 = D then |S∩D| = a−1+w > D
2
= a+w

2
, because |P1\P| = w ≥ 3

by assumption and the result is “1”.
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2. Let P ⊂ P1 and |P| = 2a+ 1.
It is enough to have a test set S which includes exactly a elements of
P and the remaining w elements of P1\P . If the result of this test
is “1” we continue with F1 = F0\{P}, otherwise we continue with
F1 = F0\{P1}. Now we have to show that we will not remove D.
If P = D then |S ∩ D| = a < D

2
= a+ 1

2
and the result is “0”.

If P1 = D then |S∩D| = a+w > D
2
= a+ w+1

2
, because |P1\P| = w ≥ 2

by assumption and the result is “1”.

3. Let P 6⊂ P1, |P\P1| = 1, and |P| = 2a. It is enough to have a test
set S which includes exactly a − 1 elements of P and the remaining
w elements of P1\P . If the result of this test is “1” we continue with
F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2
= a and the result is “0”.

If P1 = D then |S ∩D| = a− 1 +w > D
2
= a+ w−1

2
, because |P1\P| =

w ≥ 2 by assumption and the result is “1”.

4. Let P 6⊂ P1, |P\P1| > 1, and |P| = 2a.
(a) |P ∩ P1| = l ≥ a− 1.

It is enough to have a test set S which includes exactly a − 1
elements of P ∩ P1, no other elements of P and the remaining w
elements of P1\P . If the result of this test is “1” we continue with
F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we
have to show that we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2
= a and the result is “0”.

If P1 = D then |S ∩ D| = a− 1 + w > D
2
= a+ w−|P\P1|

2
, because

|P\P1| > 1 by assumption and the result is “1”.
(b) |P ∩ P1| = l < a− 1.

It is enough to have a test set S which includes all elements of
P ∩ P1, a − 1 − |P ∩ P1| elements of P , and the remaining w
elements of P1\P . If the result of this test is “1” we continue with
F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we
have to show that we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2
= a and the result is “0”.

If P1 = D then |S ∩ D| = D > D
2
and the result is “1”.

5. Let P 6⊂ P1, |P\P1| > 1, and |P| = 2a+ 1.
(a) |P ∩ P1| = l ≥ a.

It is enough to have a test set S which includes exactly a elements
of P ∩ P1, no other elements of P and the remaining w elements
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of P\P1. If the result of this test is “1” we continue with F1 =
F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a < D

2
= a+ 1

2
and the result is “0”.

If P1 = D then |S ∩ D| = a + w > D
2
= a + w−|P\P1|

2
, because

|P\P1| > 0 by assumption and the result is “1”.
(b) |P ∩ P1| = l < a.

It is enough to have a test set S which includes all elements of
P ∩P1, a−|P ∩P1| elements of P , and the remaining w elements
of P1\P . If the result of this test is “1” we continue with F1 =
F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a < D

2
= a+ 1

2
and the result is “0”.

If P1 = D then |S ∩ D| = D > D
2
and the result is “1”.

In all cases it is not possible to distinguish the sets of possible solutions. �
Remarks:

1. In the corresponding matrix of a strategy for majority group testing
with f(D) = D

2
it is possible to exchange the zeros and the ones.

2. The proof of Theorem 5 shows that for a successful strategy we have
to have for all disjoint pairs J , I ⊂ [N ] with the size

⌊

D′

2

⌋

+1 two test
sets such that the elements of J are contained in one test set and no
element of I is contained in the other test set or vice versa. This is
exactly a separating code and therefore we have the following

Theorem 6. Let f(D) = D
2
and D be bounded by D′, which is known, then a

(
⌊

D′

2

⌋

+1,
⌊

D′

2

⌋

+1) separating code gives a nonadaptive strategy for majority
group testing.

Now let us consider the case k > 2.
As before we have conditions for a solution. They are given by the fol-

lowing

Theorem 7. Let D ⊂ [N ] be the set of defectives and f(D) = D
k
. We can

determine a solution F such that for every sets P1,P ∈ F with |P1| ≥ |P| =
ak + s (0 ≤ s ≤ k − 1) the following holds
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1. If P ⊂ P1 and s = 0 or s = k − 1 then

|P1\P| ≤ 1. (32)

2. If |P\P1| = 1 and s = 0 then

|P1\P| ≤ 1. (33)

3. In all other cases we can distinguish two sets A,B with A 6= B.
Proof.

The proof follows the same ideas as the proof of Theorem 5. First we
show that there exists a strategy, such that we get a set F which fulfills (32)
and (33). We consider the set F0 = ∪D′

j=0

(

[N ]
j

)

of all possible sets of defectives.

If there are two sets in F0 which do not fulfill (32) and (33) we show that
there exists a test such that one will be removed and we show that the set
of defectives will not be removed.

1. Let P ⊂ P1 and |P| = ak + s with 0 ≤ s ≤ k − 1.

(a) s = 0:
It is enough to have a test set S which includes exactly a − 1
elements of P and the remaining w elements of P1\P . If the
result of this test is “1” we continue with F1 = F0\{P}, otherwise
we continue with F1 = F0\{P1}. Now we have to show that we
will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2
= a and the result is “0”.

If P1 = D then |S ∩ D| = a − 1 + w > D
2

= a + w
k
, because

|P1\P| = w ≥ 2 by assumption and k > 2. Thus the result is “1”.
(b) s = k − 1:

It is enough to have a test set S which includes exactly a elements
of P and the remaining w elements of P1\P . If the result of this
test is “1” we continue with F1 = F0\{P}, otherwise we continue
with F1 = F0\{P1}. Now we have to show that we will not remove
D.
If P = D then |S ∩ D| = a < D

2
= a+ k−1

k
and the result is “0”.

If P1 = D then |S ∩ D| = a + w > D
2

= a + w+k−1
k

, because
|P1\P| = w ≥ 2 by assumption and the result is “1”.

2. Let P 6⊂ P1, |P\P1| = 1, and s = 0.
It is enough to have a test set S which includes exactly a− 1 elements
of P ∩ P1 and the remaining w elements of P1\P . If the result of this
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test is “1” we continue with F1 = F0\{P}, otherwise we continue with
F1 = F0\{P1}. Now we have to show that we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

k
= a and the result is “0”.

If P1 = D then |S ∩D| = a− 1 +w > D
2
= a+ w−1

k
, because |P1\P| =

w ≥ 2 by assumption and the result is “1”.

3. Let P 6⊂ P1, |P\P1| > 1, and s 6= 0.

(a) |P ∩ P1| = l ≥ a.
It is enough to have a test set S which includes exactly a elements
of P ∩ P1, no other elements of P and the remaining w elements
of P1\P . If the result of this test is “1” we continue with F1 =
F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a < D

k
= a+ s

k
and the result is “0”.

If P1 = D then |S ∩ D| = a + w > D
2
= a + w−|P\P1|+s

w
, because

|P\P1| ≥ 2 and s ≤ k − 1 by assumption and the result is “1”.
(b) |P ∩ P1| = l < a.

It is enough to have a test set S which includes all elements of
P ∩P1, a−|P ∩P1| elements of P , and the remaining w elements
of P1\P . If the result of this test is “1” we continue with F1 =
F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a < D

k
= a+ s

k
and the result is “0”.

If P1 = D then |S ∩ D| = D > D
2
= D

2
and the result is “1”.

If the sets fulfill (32) and (33) it is not possible to distinguish them, because
it is possible to get the same test results if P = D or if P1 = D. �

The proof of Theorem 7 shows that every (
⌊

D′

k

⌋

+1, D′−
⌈

D′

k

⌉

+1) cover-
free code gives a strategy and thus the following

Theorem 8. Let f(D) = D
k
and D be bounded by D′, which is known, then a

(
⌊

D′

k

⌋

+1, D′−
⌈

D′

k

⌉

+1) cover-free code is a nonadaptive strategy for majority
group testing.
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ments of the computer program.

23



References

[1] R. Ahlswede and I. Wegener, Suchprobleme, Teubner Verlag, Stuttgart,
1979, Russian Edition: Zadatsi Poiska, MIR, 1982, English Edition:
Search Problems, Wiley-Interscience Series in Discrete Mathematics and
Optimization, 1987.

[2] N. Alon, V. Guruswami, T. Kaufman, and M. Sudan, Guessing secrets
efficiently via list decoding, 13th SODA, 254-262, 2002.

[3] H.-B. Chen and H.-L. Fu, Nonadaptive algorithms for threshold group
testing, Discrete Appl. Math. 157, No. 7, 1581-1585, 2009.

[4] H.-B. Chen, H.-L. Fu, and F.K. Hwang, An upper bound of the number
of tests in pooling designs for the error-tolerant complex model, Opt.
Lett. 2, 425-431, 2008.

[5] F. Chung, R. Graham, and F.T. Leighton, Guessing secrets, Electronic
J. on Combinatorics, 8, 1-25, 2001.

[6] G. Cohen and H.G. Schaathun, Asymptotic overview on separating
codes, Technical report no. 248 from Department of Informatics, Uni-
versity of Bergen, 2003.

[7] P. Damaschke, Threshold group testing, General Theory of Information
Transfer and Combinatorics, R. Ahlswede et al. editors, Lecture Notes
in Computer Science, Vol. 4123, Springer Verlag, 707-718, 2006.

[8] D.Z. Du and F.K. Hwang, Combinatorial Group Testing and its Appli-
cations, 2nd edition, World Scientific Publishing Co. Pte. Ltd., Hacken-
sack, NJ, Series on Applied Mathematics, 12, 2000.

[9] D.Z. Du and F.K. Hwang, Pooling Designs and Nonadaptive Group
Testing. Important Tools for DNA Sequencing, World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, Series on Applied Mathematics,
18, 2006.

[10] A. D’yachkov, A. Macula, P. Vilenkin, and D. Torney, Families of finite
sets in which no intersection of l sets is covered by the union of s others,
J. Combin. Theory Ser. A 99, No. 2, 195–218, 2002.

24



[11] A. D’yachkov, A. Macula, P. Vilenkin, and D. Torney, Two models of
nonadaptive group testing for designing screening experiments, Proc.
6th Int.Workshop on Model-Orented Designs and Analysis, 63-75, 2001.

[12] W. Kautz and R. Singleton, Nonrandom binary superimposed codes,
IEEE Trans. Information Theory, Vol. 10, No. 4, 363-377, 1964.

[13] V.S. Lebedev, An asymptotic upper bound for the rate of (w, r)-cover-
free codes, Probl. Inf. Transm. 39, No. 4, 317-323, 2003.

[14] V.S. Lebedev, Separating codes and a new combinatorial search model,
Probl. Inf. Transm. 46, No. 1, 1-6, 2010.

[15] C.J. Mitchell and F.C. Piper, Key storage in secure networks, Discrete
Appl. Math. 21, No. 3, 215-228, 1988.

[16] M. Naor, L.J. Schulman, and A. Srinivasan, Splitters and near-optimal
derandomization, Proceedings. of th 36th Annual Symposium on Foun-
dations of Computer Science, 182-191, 1995.

[17] D.R. Stinson, Generalized cover-free families, In honour of Zhu Lie, Dis-
crete Math. 279, No. 1-3, 463-477, 2004.

[18] D.R. Stinson, T. van Trung, and R. Wei, Secure frameproof codes, key
distribution patterns, group testing algorithms and related structures,
Journal of Statistical Planning and Inference 86, 595-617, 2000.

[19] D.R. Stinson, R. Wei, and L. Zhu, Some new bounds for cover-free
families, J. Combin. Theory A. 90, 224-234, 2000.

[20] D.C. Torney, Sets pooling designs, Ann. Combin. 3, 95101, 1999.

25


