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Abstract

Recently we introduced and studied the shadow minimization prob-
lem under word-subword relation. In this paper we consider this prob-
lem for the restricted case and give optimal solution.

1 Introduction

In [1], [2] the minimal shadow problem for the word-subword relation was
introduced. The shadow problem for words has not been studied before,
whereas its analogs for sets ([3], [4], [5], [6]), sequences ([7]), and vector
spaces for finite fields ([8]) are well-known.

For an alphabet X = {0, 1, · · · , q − 1} we consider the set X k of words
xk = x1x2 · · · xk of length k. A word xn is an n-subword of yk if there exist
ai and bk−n−i such that yk = aixnbk−n−i, where i ∈ {0, 1, · · · , k − n}.

Definition 1 [2]. The shadow of yk is the set of all its n-subword:

shadk,n(y
k) = {xn : xnis an n-subword of yk} (1)

and for any subset A ⊂ X k we define its shadow
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shadk,n(A) =
⋃

ak∈A

shadk,n(a
k). (2)

In [2] we studied the problem of finding optimal or at least asymptotically
optimal lower bounds on the cardinality of N -sets A ⊂ X k, that is the
function

△k,n(q,N) = min{|shadk,n(A)| : A ⊂ X k, |A| = N}. (3)

Theorem 1 [2]. For integers N = ql+v + ql+v−1(l − v)(q − 1) and k =
l +m+ v > 2l ≥ 2v, where v = k − n, we have

1

qv
N ≤ △k,n(q,N) ≤

1

qv

(

1 +
v

l − v + 1

)

N. (4)

In this paper we are interested in the restricted word shadow problem.
Let us denote by X k

w the set of words ak ∈ X k of weight (the number of
nonzero symbols) wt(ak) = w.

We consider first the binary case, so X = {0, 1}.

Definition 2. For integers k,n,w,N with 1 ≤ w ≤ n < k and 1 ≤ N ≤
(

k

w

)

we define

S(k, n, w,N) = min{|shadwk,n(A)| : A ⊂ X k
w, |A| = N} (5)

where

shadwk,n(A) =
⋃

ak∈A

shadwk,n(a
k) (6)

and

shadwk,n(y
k) = {xn : xn ∈ X n

w is an n-subword of yk} (7)

When k, n and w are specified we also use sometimes S(N) for S(k, n, w,N).

In this paper we solve the restricted word shadow minimization problem,
namely, we determine the function S(k, n, w,N) for all parameters. We also
observe that our result can be easily generalized to arbitrary alphabet size.
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2 The restricted word shadow problem

Let a = a1a2 · · · am ∈ Xm and b = b1b2 · · · bn ∈ X n then we denote by
ab = c = c1c2 · · · cm+n ∈ Xm+n with

c1 = a1, · · · , cm = am, cm+1 = b1, · · · , cm+n = bn.

For a subset A ⊂ X n we denote by AB = {ab : a ∈ A, b ∈ B}.

It turns out to be very convenient to introduce the sets

A(ǫ, δ) = ǫX k−2

w−ǫ−δδ for ǫ, δ ∈ X = {0, 1}. (8)

So words in A(ǫ, δ) are from X k
w, start with ǫ, end with δ, and between

these two letters have a word of length k − 2 and weigth w − ǫ− δ.
Thus we have the partition

X k
w =

⋃

ǫ,δ∈X

A(ǫ, δ), where |A(ǫ, δ)| =

(

k − 2

w − ǫ− δ

)

, (9)

or explicitly

|A(1, 1)| =

(

k − 2

w − 2

)

, |A(1, 0)| = |A(0, 1)| =

(

k − 2

w − 1

)

, |A(0, 0)| =

(

k − 2

w

)

.

Consider the following partition of X k
w

X k
w =

⋃

s

Js (10)

where

J1 = A(1, 1), J2 = A(1, 10) ∪A(01, 1), J3 = A(1, 100) ∪A(01, 10) ∪A(001, 1),

and so on.
Thus, for Js+1 we have

Js+1 =
s
⋃

i=0

A(0i1, 10s−i).

Finally, for the last partition class Jk−w=1 we have

Jk−w+1 =
k−w
⋃

i=0

A(0i1, 10k−w−i).
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In other words, we have the following partition classes:

1 b 1 (11)

1 b 1 0
0 1 b 1

(12)

1 b 1 0 0
0 1 b 1 0
0 0 1 b 1

(13)

for any b from X k−2

w−2, X
k−3

w−2 and X k−4

w−2 respectively.
We continue this procedure and for any b from X k−c−1

w−2 we take

s
⋃

i=0

0i1b10s−i. (14)

For example if s = 4 then we take

1 b 1 0 0 0 0
0 1 b 1 0 0 0
0 0 1 b 1 0 0
0 0 0 1 b 1 0
0 0 0 0 1 b 1

(15)

The last partition class is given by

k−w
⋃

i=0

0i1w0k−w−i. (16)

2.1 Case n = k − 1

Note that for the case n = k − 1 the shadow of A ⊂ X k
w can be defined

as shadw(A) = shadw
L(A) ∪ shadw

R(A) where shadw
L(A) = {a2a3 · · · ak :

wt(a2 · · · ak) = w} and shadR(A) = {a1a3 · · · ak−1 : w(a1a3 · · · ak−1) = w}.
In this case we have a nice graph illustration for our partition.
Consider a graph G = (V,E) associated with this word-subword relation:

the vertex set V is X k
w. Two vertices ak and bk form an edge (ak, bk) ∈ E if

and only if shadw
k,k−1(a

k) ∩ shadw
k,k−1(b

k) 6= ∅. Note that there is one to one
correspondence between edges in E and elements from X k−1

w .
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It follows from the partition described above that the graph G consists of
(

k−2

w−2

)

isolated vertices P0,
(

k−3

w−2

)

paths of length 1: P1,
(

k−4

w−2

)

paths of length
2: P2 and so on.

Given integer 1 ≤ N ≤
(

n

w

)

the restricted word shadow problem for the
case n = k−1 is equivalent to the problem of finding N vertices of the graph
G that are incident with minimal number of edges.

We order all vertices of the graph G in the following way. We start
with vertices from P0 in arbitrary order. Then we consider set P1 from the
first partition class in arbitrary order and order vertices from P1 in compli-
ance with (12): (first 1b10 and then 01b1). Then we do the same with sets
P2, P3, . . . , Pk−w+1. We take sets from (s + 1)-th partition class in arbitrary
order and for the set Ps order vertices from Ps in compliance with (14).

It is not hard to see now that first N vertices, in the described ordering,
have minimum number of edges incident with them.This clearly dives us an
optimal solution to the problem.

Hence for N ≤
(

k−2

w−2

)

we have S(k, k − 1, w,N) = 0 and for
(

k−2

w−2

)

< N

≤
(

k−2

w−2

)

+ 2
(

k−3

w−2

)

we have

S(k, k − 1, w,N) =

{

z , if N = 2z +
(

k−2

w−2

)

z + 1 , if N = 2z + 1 +
(

k−2

w−2

)

.

Now easy calculation gives us the following numerical formulation of our
result.

Theorem 2. For
(

k − 2

w − 2

)

+. . .+(c−1)

(

k − c

w − 2

)

≤ N ≤

(

k − 2

w − 2

)

+. . . (c−1)

(

k − c

w − 2

)

+c

(

k − c− 1

w − 2

)

we have

Sc := S(

(

k − 2

w − 2

)

+ . . .+(c−1)

(

k − c

w − 2

)

) =

(

k − 3

w − 2

)

+ . . .+(c−2)

(

k − c

w − 2

)

and

S(k, k−1, w,N) =

{

Sc + (c− 1)z , if N = cz +
(

k−2

w−2

)

+ . . .+ (c− 1)
(

k−c

w−2

)

Sc + (c− 1)z +m , if N = cz +m+
(

k−2

w−2

)

+ . . .+ (c− 1)
(

k−c

w−2

)

where m = 1, 2, . . . , c− 1 and c = 2, 3, . . . , k − w + 1.
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2.2 General case: w ≤ n ≤ k − 1

For general case we have that

shadw
k,nJs+1(k) = Js−v+1(n) (17)

where v = k − n.

Thus the described above ordering of X k
w also gives us an optimal solution

to the problem in this general case. The set of first N vectors from X k
w has

the minimal possible restricted shadow and so we have

Theorem 3. For N ≤
(

k−2

w−2

)

+ . . .+ v
(

k−v−1

w−2

)

we have S(N) = 0 and for

(

k − 2

w − 2

)

+. . .+(c−1)

(

k − c

w − 2

)

≤ N ≤

(

k − 2

w − 2

)

+. . . (c−1)

(

k − c

w − 2

)

+c

(

k − c− 1

w − 2

)

we have

Sc = S(

(

k − 2

w − 2

)

+. . .+(c−1)

(

k − c

w − 2

)

) =

(

k − 2− v

w − 2

)

+. . .+(c−v−1)

(

k − c

w − 2

)

and

S(k, n, w,N) =

{

Sc + (c− 1)z , if N = cz +
(

k−2

w−2

)

+ . . .+ (c− 1)
(

k−c

w−2

)

Sc + (c− 1)z +m , if N = cz +m+
(

k−2

w−2

)

+ . . .+ (c− 1)
(

k−c

w−2

)

where m = 1, 2, . . . , c− 1, v = k −m and c = 2, 3, . . . , k − w + 1.

Remark. We note that our result can be easily extended to the q-ary
case X = {0, 1, . . . , q − 1}. Consider only the case n = k − 1.

For integers k, w,N ∈ N with 1 ≤ w ≤ k and 1 ≤ N ≤
(

k

w

)

we define

Sq(N) = min{|shadw(A)| : A ⊂ X k
w, |A| = N}

The proof goes along the same line as the proof of Theorem 2. We just
replace a symbol 1 in (11)-(16) to any nonzero symbol from X . So we have

Theorem 4. For

(q − 1)w
(

k − 2

w − 2

)

+ . . .+ (c− 1)(q − 1)w
(

k − c

w − 2

)

< N ≤
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≤ (q − 1)w
(

k − 2

w − 2

)

+ . . . (c− 1)(q − 1)w
(

k − c

w − 2

)

+ c(q − 1)w
(

k − c− 1

w − 2

)

we have

Sq(γ) = (q − 1)w
(

k − 3

w − 2

)

+ . . .+ (c− 2)(q − 1)w
(

k − c

w − 2

)

,

where

γ := (q − 1)w
(

k − 2

w − 2

)

+ . . .+ (c− 1)(q − 1)w
(

k − c

w − 2

)

and

Sq(N) =

{

Sq(γ) + (c− 1)z , if N = cz + γ

Sq(γ) + (c− 1)z +m , if N = cz +m+ γ,

where m = 1, 2, . . . , c− 1 and c = 2, 3, . . . , k − w + 1
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