The Restricted Word Shadow Problem

R. Ahlswede ${ }^{1}$ and V. Lebedev ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, University of Bielefeld
${ }^{2}$ IPPI (Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute))

September 21, 2012

Abstract

Recently we introduced and studied the shadow minimization problem under word-subword relation. In this paper we consider this problem for the restricted case and give optimal solution.

1 Introduction

In [1], [2] the minimal shadow problem for the word-subword relation was introduced. The shadow problem for words has not been studied before, whereas its analogs for sets ([3], [4], [5], [6]), sequences ([7]), and vector spaces for finite fields ([8]) are well-known.

For an alphabet $\mathcal{X}=\{0,1, \cdots, q-1\}$ we consider the set \mathcal{X}^{k} of words $x^{k}=x_{1} x_{2} \cdots x_{k}$ of length k. A word x^{n} is an n-subword of y^{k} if there exist a^{i} and b^{k-n-i} such that $y^{k}=a^{i} x^{n} b^{k-n-i}$, where $i \in\{0,1, \cdots, k-n\}$.

Definition 1 [2]. The shadow of y^{k} is the set of all its n-subword:

$$
\begin{equation*}
\operatorname{shad}_{k, n}\left(y^{k}\right)=\left\{x^{n}: x^{n} \text { is an n-subword of } y^{k}\right\} \tag{1}
\end{equation*}
$$

and for any subset $A \subset \mathcal{X}^{k}$ we define its shadow

[^0]\[

$$
\begin{equation*}
\operatorname{shad}_{k, n}(A)=\bigcup_{a^{k} \in A} \operatorname{shad}_{k, n}\left(a^{k}\right) . \tag{2}
\end{equation*}
$$

\]

In [2] we studied the problem of finding optimal or at least asymptotically optimal lower bounds on the cardinality of N-sets $A \subset \mathcal{X}^{k}$, that is the function

$$
\begin{equation*}
\triangle_{k, n}(q, N)=\min \left\{\left|\operatorname{shad}_{k, n}(A)\right|: A \subset \mathcal{X}^{k},|A|=N\right\} \tag{3}
\end{equation*}
$$

Theorem 1 [2]. For integers $N=q^{l+v}+q^{l+v-1}(l-v)(q-1)$ and $k=$ $l+m+v>2 l \geq 2 v$, where $v=k-n$, we have

$$
\begin{equation*}
\frac{1}{q^{v}} N \leq \triangle_{k, n}(q, N) \leq \frac{1}{q^{v}}\left(1+\frac{v}{l-v+1}\right) N . \tag{4}
\end{equation*}
$$

In this paper we are interested in the restricted word shadow problem.
Let us denote by \mathcal{X}_{w}^{k} the set of words $a^{k} \in \mathcal{X}^{k}$ of weight (the number of nonzero symbols) $w t\left(a^{k}\right)=w$.

We consider first the binary case, so $\mathcal{X}=\{0,1\}$.
Definition 2. For integers k, n, w, N with $1 \leq w \leq n<k$ and $1 \leq N \leq$ $\binom{k}{w}$ we define

$$
\begin{equation*}
S(k, n, w, N)=\min \left\{\left|\operatorname{shad}_{k, n}^{w}(A)\right|: A \subset \mathcal{X}_{w}^{k},|A|=N\right\} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{shad}_{k, n}^{w}(A)=\bigcup_{a^{k} \in A} \operatorname{shad}_{k, n}^{w}\left(a^{k}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{shad}_{k, n}^{w}\left(y^{k}\right)=\left\{x^{n}: x^{n} \in \mathcal{X}_{w}^{n} \text { is an } n \text {-subword of } y^{k}\right\} \tag{7}
\end{equation*}
$$

When k, n and w are specified we also use sometimes $S(N)$ for $S(k, n, w, N)$.
In this paper we solve the restricted word shadow minimization problem, namely, we determine the function $S(k, n, w, N)$ for all parameters. We also observe that our result can be easily generalized to arbitrary alphabet size.

2 The restricted word shadow problem

Let $a=a_{1} a_{2} \cdots a_{m} \in \mathcal{X}^{m}$ and $b=b_{1} b_{2} \cdots b_{n} \in \mathcal{X}^{n}$ then we denote by $a b=c=c_{1} c_{2} \cdots c_{m+n} \in \mathcal{X}^{m+n}$ with

$$
c_{1}=a_{1}, \cdots, c_{m}=a_{m}, c_{m+1}=b_{1}, \cdots, c_{m+n}=b_{n}
$$

For a subset $A \subset \mathcal{X}^{n}$ we denote by $A B=\{a b: a \in A, b \in B\}$.
It turns out to be very convenient to introduce the sets

$$
\begin{equation*}
A(\epsilon, \delta)=\epsilon \mathcal{X}_{w-\epsilon-\delta}^{k-2} \delta \text { for } \epsilon, \delta \in \mathcal{X}=\{0,1\} \tag{8}
\end{equation*}
$$

So words in $A(\epsilon, \delta)$ are from \mathcal{X}_{w}^{k}, start with ϵ, end with δ, and between these two letters have a word of length $k-2$ and weigth $w-\epsilon-\delta$.

Thus we have the partition

$$
\begin{equation*}
\mathcal{X}_{w}^{k}=\bigcup_{\epsilon, \delta \in \mathfrak{X}} A(\epsilon, \delta), \text { where }|A(\epsilon, \delta)|=\binom{k-2}{w-\epsilon-\delta} \tag{9}
\end{equation*}
$$

or explicitly

$$
|A(1,1)|=\binom{k-2}{w-2},|A(1,0)|=|A(0,1)|=\binom{k-2}{w-1},|A(0,0)|=\binom{k-2}{w}
$$

Consider the following partition of \mathcal{X}_{w}^{k}

$$
\begin{equation*}
\mathcal{X}_{w}^{k}=\bigcup_{s} J_{s} \tag{10}
\end{equation*}
$$

where
$J_{1}=A(1,1), J_{2}=A(1,10) \cup A(01,1), J_{3}=A(1,100) \cup A(01,10) \cup A(001,1)$,
and so on.
Thus, for J_{s+1} we have

$$
J_{s+1}=\bigcup_{i=0}^{s} A\left(0^{i} 1,10^{s-i}\right)
$$

Finally, for the last partition class $J_{k-w=1}$ we have

$$
J_{k-w+1}=\bigcup_{i=0}^{k-w} A\left(0^{i} 1,10^{k-w-i}\right)
$$

In other words, we have the following partition classes:

$$
\begin{array}{lll}
1 & b & 1 \tag{11}
\end{array}
$$

$$
\begin{array}{llll}
1 & b & 1 & 0 \\
0 & 1 & b & 1 \tag{12}
\end{array}
$$

1	b	1	0	0
0	1	b	1	0
0	0	1	b	1

for any b from $\mathcal{X}_{w-2}^{k-2}, \mathcal{X}_{w-2}^{k-3}$ and \mathcal{X}_{w-2}^{k-4} respectively.
We continue this procedure and for any b from $\mathcal{X}_{w-2}^{k-c-1}$ we take

$$
\begin{equation*}
\bigcup_{i=0}^{s} 0^{i} 1 b 10^{s-i} . \tag{14}
\end{equation*}
$$

For example if $s=4$ then we take

$$
\begin{array}{lllllll}
1 & b & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & b & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & b & 1 & 0 & 0 \tag{15}\\
0 & 0 & 0 & 1 & b & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & b & 1
\end{array}
$$

The last partition class is given by

$$
\begin{equation*}
\bigcup_{i=0}^{k-w} 0^{i} 1^{w} 0^{k-w-i} \tag{16}
\end{equation*}
$$

2.1 Case $n=k-1$

Note that for the case $n=k-1$ the shadow of $A \subset \mathcal{X}_{w}^{k}$ can be defined as $\operatorname{shad}^{w}(A)=\operatorname{shad}_{L}^{w}(A) \cup \operatorname{shad}_{R}^{w}(A)$ where $\operatorname{shad}_{L}^{w}(A)=\left\{a_{2} a_{3} \cdots a_{k} \quad\right.$: $\left.w t\left(a_{2} \cdots a_{k}\right)=w\right\}$ and $\operatorname{shad}_{R}(A)=\left\{a_{1} a_{3} \cdots a_{k-1}: w\left(a_{1} a_{3} \cdots a_{k-1}\right)=w\right\}$.

In this case we have a nice graph illustration for our partition.
Consider a graph $G=(V, E)$ associated with this word-subword relation: the vertex set V is \mathcal{X}_{w}^{k}. Two vertices a^{k} and b^{k} form an edge $\left(a^{k}, b^{k}\right) \in E$ if and only if $\operatorname{shad}_{k, k-1}^{w}\left(a^{k}\right) \cap \operatorname{shad}_{k, k-1}^{w}\left(b^{k}\right) \neq \emptyset$. Note that there is one to one correspondence between edges in E and elements from \mathcal{X}_{w}^{k-1}.

It follows from the partition described above that the graph G consists of $\binom{k-2}{w-2}$ isolated vertices $P_{0},\binom{k-3}{w-2}$ paths of length 1: $P_{1},\binom{k-4}{w-2}$ paths of length 2: P_{2} and so on.

Given integer $1 \leq N \leq\binom{ n}{w}$ the restricted word shadow problem for the case $n=k-1$ is equivalent to the problem of finding N vertices of the graph G that are incident with minimal number of edges.

We order all vertices of the graph G in the following way. We start with vertices from P_{0} in arbitrary order. Then we consider set P_{1} from the first partition class in arbitrary order and order vertices from P_{1} in compliance with (12): (first $1 b 10$ and then 01b1). Then we do the same with sets $P_{2}, P_{3}, \ldots, P_{k-w+1}$. We take sets from $(s+1)$-th partition class in arbitrary order and for the set P_{s} order vertices from P_{s} in compliance with (14).

It is not hard to see now that first N vertices, in the described ordering, have minimum number of edges incident with them. This clearly dives us an optimal solution to the problem.

Hence for $\mathrm{N} \leq\binom{ k-2}{w-2}$ we have $S(k, k-1, w, N)=0$ and for $\binom{k-2}{w-2}<\mathrm{N}$ $\leq\binom{ k-2}{w-2}+2\binom{k-3}{w-2}$ we have

$$
S(k, k-1, w, N)= \begin{cases}z & , \text { if } N=2 z+\binom{k-2}{w-2} \\ z+1 & , \text { if } N=2 z+1+\binom{k-2}{w-2}\end{cases}
$$

Now easy calculation gives us the following numerical formulation of our result.

Theorem 2. For

$$
\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2} \leq N \leq\binom{ k-2}{w-2}+\ldots(c-1)\binom{k-c}{w-2}+c\binom{k-c-1}{w-2}
$$

we have
$S^{c}:=S\left(\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2}\right)=\binom{k-3}{w-2}+\ldots+(c-2)\binom{k-c}{w-2}$
and
$S(k, k-1, w, N)= \begin{cases}S^{c}+(c-1) z & , \text { if } N=c z+\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2} \\ S^{c}+(c-1) z+m & , \text { if } N=c z+m+\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2}\end{cases}$
where $m=1,2, \ldots, c-1$ and $c=2,3, \ldots, k-w+1$.

2.2 General case: $w \leq n \leq k-1$

For general case we have that

$$
\begin{equation*}
\operatorname{shad}_{k, n}^{w} J_{s+1}(k)=J_{s-v+1}(n) \tag{17}
\end{equation*}
$$

where $v=k-n$.
Thus the described above ordering of \mathcal{X}_{w}^{k} also gives us an optimal solution to the problem in this general case. The set of first N vectors from \mathcal{X}_{w}^{k} has the minimal possible restricted shadow and so we have

Theorem 3. For $N \leq\binom{ k-2}{w-2}+\ldots+v\binom{k-v-1}{w-2}$ we have $S(N)=0$ and for

$$
\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2} \leq N \leq\binom{ k-2}{w-2}+\ldots(c-1)\binom{k-c}{w-2}+c\binom{k-c-1}{w-2}
$$

we have
$S^{c}=S\left(\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2}\right)=\binom{k-2-v}{w-2}+\ldots+(c-v-1)\binom{k-c}{w-2}$
and
$S(k, n, w, N)= \begin{cases}S^{c}+(c-1) z & , \text { if } N=c z+\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2} \\ S^{c}+(c-1) z+m & , \text { if } N=c z+m+\binom{k-2}{w-2}+\ldots+(c-1)\binom{k-c}{w-2}\end{cases}$
where $m=1,2, \ldots, c-1, v=k-m$ and $c=2,3, \ldots, k-w+1$.
Remark. We note that our result can be easily extended to the q-ary case $\mathcal{X}=\{0,1, \ldots, q-1\}$. Consider only the case $n=k-1$.

For integers $k, w, N \in \mathbb{N}$ with $1 \leq w \leq k$ and $1 \leq N \leq\binom{ k}{w}$ we define

$$
S_{q}(N)=\min \left\{\left|\operatorname{shad}^{w}(A)\right|: A \subset \mathcal{X}_{w}^{k},|A|=N\right\}
$$

The proof goes along the same line as the proof of Theorem 2. We just replace a symbol 1 in (11)-(16) to any nonzero symbol from \mathcal{X}. So we have

Theorem 4. For

$$
(q-1)^{w}\binom{k-2}{w-2}+\ldots+(c-1)(q-1)^{w}\binom{k-c}{w-2}<N \leq
$$

$$
\leq(q-1)^{w}\binom{k-2}{w-2}+\ldots(c-1)(q-1)^{w}\binom{k-c}{w-2}+c(q-1)^{w}\binom{k-c-1}{w-2}
$$

we have

$$
S_{q}(\gamma)=(q-1)^{w}\binom{k-3}{w-2}+\ldots+(c-2)(q-1)^{w}\binom{k-c}{w-2},
$$

where

$$
\gamma:=(q-1)^{w}\binom{k-2}{w-2}+\ldots+(c-1)(q-1)^{w}\binom{k-c}{w-2}
$$

and

$$
S_{q}(N)= \begin{cases}S_{q}(\gamma)+(c-1) z & , \text { if } N=c z+\gamma \\ S_{q}(\gamma)+(c-1) z+m & , \text { if } N=c z+m+\gamma\end{cases}
$$

where $m=1,2, \ldots, c-1$ and $c=2,3, \ldots, k-w+1$

References

[1] Ahlswede R., Lebedev V., Shadows under the word-subword relation, Twelfth International Workshop on Algebraic and Combinatorial Coding Theory, September 5-11, 2010, Akademgorodok, Novosibirsk (Russia) pp. 16-19.
[2] Ahlswede R., Lebedev V., Shadows under the word-subword relation, Problems of Information Transmission, 2012. Vol. 48 (1), pp. 30-45.
[3] Schützenberger M.P., A characteristic property of certain polynomials of E.F. Moore and C.E. Shannon, in : RLE Quarterly Progress Report No. 55, Research Laboratory of Electronics, M.I.T., 117-118, 1959.
[4] Kruskal J.B., The number of simplices in a complex, in: Mathematical optimization Techniques, Berkeley and Los Angeles, 251-278, 1963.
[5] Katona G., A theorem on finite sets, in: Theory of Graphs, Proc. Colloq. Tihany 1966, Akadémiai Kiadó, 187-207, 1968.
[6] Lindström B.A. and Zetterström H.O., A combinatorial problem in the k-adic number systems, Proc. Amer. Math. Soc., Vol. 18, 166-170, 1967.
[7] Ahlswede R. and Cai N., Shadows and isoperimetry under the sequencesubsequence relation, Combinatorica 17 (1), 11-29, 1997.
[8] Chowdhury A. and Patkos B., Shadows and intersections in vector spaces, in: J. Combin. Theory Ser. A, 117(8), 1095-1106, 2010.

[^0]: *Supported in part by the Russian Foundation for Basic Research, project no 12-01-00905 and by the DFG, project AH46/7-1 "General Theory of Information Transfer".

