THE NUMBER OF VALUES OF COMBINATORIAL FUNCTIONS

RUDOLF AHLSWEDE AND DAVID E. DAYKIN

1. Introduction

An important discovery of Marica-Schönheim [5] is

THEOREM 1. Any m distinct sets have at least m distinct differences.

This result has various generalisations [1-4] and one of a new kind is

THEOREM 2. If $S_1, ..., S_m$ are distinct sets, and $T_1, ..., T_n$ are sets such that each S_i has some T_i as a subset, then there are at least m distinct differences $S_i \setminus T_i$.

The form of this theorem led us to conjecture that *m* sets can be partitioned into \mathfrak{S} and \mathfrak{T} having m-1 differences $S \setminus T$ with $S \in \mathfrak{S}$, $T \in \mathfrak{T}$. Given an ordered sequence S_1, \ldots, S_m of sets let *d* be the number of differences $S_i \setminus S_j$ with i < j and *e* be the largest *n* for which there are $S_{i_1} \subset \ldots \subset S_{i_n}$ with $1 \leq i_1 < \ldots < i_n \leq m$. We believe *m*, *d*, *e* are related.

The generalisation of Theorem 1 by Daykin-Lovász [4] is

THEOREM 3. Any non-trivial Boolean function takes at least m distinct values when evaluated over m distinct sets.

We give a generalisation of this theorem, which also yields a new proof.

2. Proof of Theorem 2

We may assume all the sets S_i , T_j are subsets of $\{1, 2, ..., r\}$ and use induction on r. The case r = 1 is trivial. Put $\mathfrak{S} = \{S_1, ..., S_m\}, \mathfrak{T} = \{T_1, ..., T_n\}, \mathfrak{A} = \{S \setminus r : S \setminus r \in \mathfrak{S} \}$ and $S \cup r \in \mathfrak{S}\}, \mathfrak{B} = \{S \setminus r : S \in \mathfrak{S}\}, \mathfrak{C} = \{T : r \notin T \in \mathfrak{T}\}$ and $\mathfrak{D} = \{T \setminus r : T \in \mathfrak{T}\}.$ Then $m = |\mathfrak{U}| + |\mathfrak{B}|$, where |.| denotes cardinality. Also $\mathfrak{U}, \mathfrak{C}$ and $\mathfrak{B}, \mathfrak{D}$ satisfy the hypothesis on $\{1, 2, ..., r-1\}$ so $|\mathfrak{U}| \leq |\mathfrak{U} \setminus \mathfrak{C}|$ and $|\mathfrak{B}| \leq |\mathfrak{B} \setminus \mathfrak{D}|$. If $E \in \mathfrak{U} \setminus \mathfrak{C}$ then $E = A \setminus C$ for some $A \in \mathfrak{U}, C \in \mathfrak{C}$. Thus $A \setminus r, A \cup r \in \mathfrak{S}$ and $r \notin C \in \mathfrak{T}$ so $E \setminus r$, $E \cup r \in \mathfrak{S} \setminus \mathfrak{T}$. On the other hand if $E \in \mathfrak{B} \setminus \mathfrak{D}$ then clearly either $E \setminus r$ or $E \cup r$ is in $\mathfrak{S} \setminus \mathfrak{T}$. Hence $|\mathfrak{U} \setminus \mathfrak{C}| + |\mathfrak{B} \setminus \mathfrak{D}| \leq |\mathfrak{S} \setminus \mathfrak{T}|$ and the result follows.

3. Generalisation of Theorem 3

Let c be a fixed positive integer. If S is a set then S^c denotes the set of all c-dimensional vectors with elements in S, and a c-ary operation f on S is a mapping $f: S^c \to S$. Given such a map f for $A_1, \ldots, A_c \subset S$ put

$$f(A_1, ..., A_c) = \{ f(a_1, ..., a_c) : a_i \in A_i \text{ for } 1 \leq i \leq c \}.$$

Received 3 January 1978.

[[]BULL. LONDON MATH. SOC., 11 (1979), 49-51]

Call f expansive if

 $|A| \leq |f(A, ..., A)|$ for all $A \subset S$.

Call f c-expansive if

 $|A_1| \leq |f(A_1, ..., A_c)|$ for all $A_1, ..., A_c \subset S$ with $|A_1| = ... = |A_c|$.

Notice that when |S| = 2 expansive is the same as *c*-expansive and simply means non-constant Boolean function.

If S, T are sets and $f: S^c \to S$ while $g: T^c \to T$ we define the *direct product h* of f and g to be the map $h: (S \times T)^c \to S \times T$ such that

$$h((s_1, t_1), ..., (s_c, t_c)) = (f(s_1, ..., s_c), g(t_1, ..., t_c))$$
 for all $s_i \in S$ and $t_j \in T$.

The direct product of expansive maps is not expansive, for example let $c = 2, S = \{0, 1, 2\}$, $f(a, b) = \max \{0, a-b\}$, take the direct product of f with itself and $A = (S \times S) \setminus \{(0, 0), (2, 2)\}$. It would be interesting to have more results like

THEOREM 4. In the above notation, if f is expansive and g is c-expansive then h is expansive.

Proof. If $B \subset S \times T$ and *m* is a positive integer let B_m be the set of all $s \in S$ such that $(s, t) \in B$ for at least *m* different $t \in T$. Let $A \subset S \times T$ be given and $x \in f(A_m, ..., A_m)$. Thus there are $s_1, ..., s_c \in A_m$ with $x = f(s_1, ..., s_c)$. For $1 \leq i \leq c$ there are distinct $t_{i_1}, ..., t_{i_m} \in T$ with $(s_i, t_{i_j}) \in A$ for $1 \leq j \leq m$. By hypothesis on *g* we have

$$m \leq |\{g(t_{1j_1}, \dots, t_{cj_c}) : 1 \leq j_1, \dots, j_c \leq m\}|$$

and this means that $x \in (h(A, ..., A))_m$. Finally

$$|A| = \sum |A_m| \leq \sum |f(A_m, ..., A_m)| \leq \sum |(h(A, ..., A))_m| = |h(A, ..., A)|$$

and the proof is complete.

Now let |S| = 2 and $f_1, ..., f_n : S^c \to S$. Further let $\mathfrak{N}, \mathfrak{P}$ be the set of all matrices of order $n \times c$, $n \times 1$ respectively with elements in S. Define $e : \mathfrak{N} \to \mathfrak{P}$ by

$$e(a_{ij}) = \begin{pmatrix} f_1(a_{11}, \dots, a_{1c}) \\ \vdots \\ f_n(a_{n1}, \dots, a_{nc}) \end{pmatrix} \text{ for all } (a_{ij}) \in \mathfrak{N}.$$

By induction on *n* we immediately get from Theorem 4 that if $f_1, ..., f_n$ are non-constant then *e* is expansive. The case of this with $f_1 = ... = f_n$ is Theorem 3.

References

- 1. R. Ahlswede and D. E. Daykin, "An inequality for the weights of two families of sets, their unions and intersections", Z. Wahrecheinlichkeitstheorie und Verw. Gebiete, 43 (1978), 183-185.
- 2. D. E. Daykin, "A lattice is distributive iff $|A| |B| \le |A \lor B| |A \land B|$ ", Nanta Math., 10 (1977), 58-60.
- 3. D. E. Daykin, "Functions on a distributive lattice with a polarity", J. London Math. Soc. (to appear).

- D. E. Daykin and L. Lovász, "The number of values of a Boolean function", J. London Math. Soc., 12 (1976), 225-230.
 J. Marica and J. Schönheim, "Differences of sets and a problem of Graham", Canad. Math. Bull., 12 (1969), 635-637.

Fakultät für Mathematik, Universität Bielefeld 4800. F.D.R.

Department of Mathematics, University of Reading, G.B.