THE NUMBER OF VALUES OF COMBINATORIAL FUNCTIONS

RUDOLF AHLSWEDE and DAVID E. DAYKIN

1. Introduction

An important discovery of Marica-Schönheim [5] is
Theorem 1. Any m distinct sets have at least m distinct differences.
This result has various generalisations [1-4] and one of a new kind is
Theorem 2. If S_{1}, \ldots, S_{m} are distinct sets, and T_{1}, \ldots, T_{n} are sets such that each S_{i} has some T_{j} as a subset, then there are at least m distinct differences $S_{i} \backslash T_{j}$.

The form of this theorem led us to conjecture that m sets can be partitioned into \mathfrak{S} and \mathfrak{I} having $m-1$ differences $S \backslash T$ with $S \in \mathbb{S}, T \in \mathfrak{I}$. Given an ordered sequence S_{1}, \ldots, S_{m} of sets let d be the number of differences $S_{i} \backslash S_{j}$ with $i<j$ and e be the largest n for which there are $S_{i_{1}} \subset \ldots \subset S_{i_{n}}$ with $1 \leqslant i_{1}<\ldots<i_{n} \leqslant m$. We believe m, d, e are related.

The generalisation of Theorem 1 by Daykin-Lovász [4] is
Theorem 3. Any non-trivial Boolean function takes at least m distinct values when evaluated over m distinct sets.

We give a generalisation of this theorem, which also yields a new proof.

2. Proof of Theorem 2

We may assume all the sets S_{i}, T_{j} are subsets of $\{1,2, \ldots, r\}$ and use induction on r. The case $r=1$ is trivial. Put $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}, \mathfrak{T}=\left\{T_{1}, \ldots, T_{n}\right\}, \mathfrak{A}=\{S \backslash r: S \backslash r \in \mathbb{G}$ and $S \cup r \in \mathbb{E}\}, \mathfrak{B}=\{S \backslash r: S \in \mathbb{E}\}, \mathbb{C}=\{T: r \notin T \in \mathfrak{Z}\}$ and $\mathfrak{D}=\{T \backslash r: T \in \mathfrak{I}\}$. Then $m=|\mathfrak{U}|+|\mathfrak{B}|$, where $|$.$| denotes cardinality. Also \mathfrak{l l}, \mathfrak{C}$ and $\mathfrak{B}, \mathfrak{D}$ satisfy the hypothesis on $\{1,2, \ldots, r-1\}$ so $|\mathfrak{U}| \leqslant|\mathfrak{U} \backslash \mathfrak{C}|$ and $|\mathfrak{B}| \leqslant|\mathfrak{B} \backslash \mathfrak{D}|$. If $E \in \mathfrak{U} \backslash \mathfrak{C}$ then $E=A \backslash C$ for some $A \in \mathfrak{U}, C \in \mathbb{C}$. Thus $A \backslash r, A \cup r \in \mathbb{S}$ and $r \notin C \in \mathfrak{I}$ so $E \backslash r$, $E \cup r \in \mathfrak{S} \backslash \mathfrak{I}$. On the other hand if $E \in \mathfrak{B} \backslash \mathfrak{D}$ then clearly either $E \backslash r$ or $E \cup r$ is in $\mathfrak{S} \backslash \mathfrak{I}$. Hence $|\mathfrak{U} \backslash \mathfrak{C}|+|\mathfrak{B} \backslash \mathfrak{D}| \leqslant|\mathfrak{S} \backslash \mathfrak{I}|$ and the result follows.

3. Generalisation of Theorem 3

Let c be a fixed positive integer. If S is a set then S^{c} denotes the set of all c-dimensional vectors with elements in S, and a c-ary operation f on S is a mapping $f: S^{c} \rightarrow S$. Given such a map f for $A_{1}, \ldots, A_{c} \subset S$ put

$$
f\left(A_{1}, \ldots, A_{c}\right)=\left\{f\left(a_{1}, \ldots, a_{c}\right): a_{i} \in A_{i} \quad \text { for } \quad 1 \leqslant i \leqslant c\right\} .
$$

Received 3 January 1978.

Call f expansive if

$$
|A| \leqslant|f(A, \ldots, A)| \quad \text { for all } \quad A \subset S
$$

Call $f c$-expansive if

$$
\left|A_{1}\right| \leqslant\left|f\left(A_{1}, \ldots, A_{c}\right)\right| \quad \text { for all } \quad A_{1}, \ldots, A_{c} \subset S \quad \text { with } \quad\left|A_{1}\right|=\ldots=\left|A_{c}\right| .
$$

Notice that when $|S|=2$ expansive is the same as c-expansive and simply means non-constant Boolean function.

If S, T are sets and $f: S^{c} \rightarrow S$ while $g: T^{c} \rightarrow T$ we define the direct product h of f and g to be the map $h:(S \times T)^{c} \rightarrow S \times T$ such that

$$
h\left(\left(s_{1}, t_{1}\right), \ldots,\left(s_{c}, t_{c}\right)\right)=\left(f\left(s_{1}, \ldots, s_{c}\right), g\left(t_{1}, \ldots, t_{c}\right)\right) \text { for all } s_{i} \in S \text { and } t_{j} \in T
$$

The direct product of expansive maps is not expansive, for example let $c=2, S=\{0$, $1,2\}, f(a, b)=\max \{0, a-b\}$, take the direct product of f with itself and $A=(S \times S) \backslash\{(0,0),(2,2)\}$. It would be interesting to have more results like

Theorem 4. In the above notation, if f is expansive and g is c-expansive then h is expansive.

Proof. If $B \subset S \times T$ and m is a positive integer let B_{m} be the set of all $s \in S$ such that ($s, t) \in B$ for at least m different $t \in T$. Let $A \subset S \times T$ be given and $x \in f\left(A_{m}, \ldots, A_{m}\right)$. Thus there are $s_{1}, \ldots, s_{c} \in A_{m}$ with $x=f\left(s_{1}, \ldots, s_{c}\right)$. For $1 \leqslant i \leqslant c$ there are distinct $t_{i 1}, \ldots, t_{i m} \in T$ with $\left(s_{i}, t_{i j}\right) \in A$ for $1 \leqslant j \leqslant m$. By hypothesis on g we have

$$
m \leqslant\left|\left\{g\left(t_{1 j_{1}}, \ldots, t_{c J_{c}}\right): 1 \leqslant j_{1}, \ldots, j_{c} \leqslant m\right\}\right|
$$

and this means that $x \in(h(A, \ldots, A))_{m}$. Finally

$$
|A|=\sum\left|A_{m}\right| \leqslant \sum\left|f\left(A_{m}, \ldots, A_{m}\right)\right| \leqslant \sum\left|(h(A, \ldots, A))_{m}\right|=|h(A, \ldots, A)|
$$

and the proof is complete.
Now let $|S|=2$ and $f_{1}, \ldots, f_{n}: S^{c} \rightarrow S$. Further let $\mathfrak{N}, \mathfrak{P}$ be the set of all matrices of order $n \times c, n \times 1$ respectively with elements in S. Define $e: \mathfrak{N} \rightarrow \mathfrak{P}$ by

$$
e\left(a_{i j}\right)=\left(\begin{array}{c}
f_{1}\left(a_{11}, \ldots,\right. \\
\vdots \\
f_{n}\left(a_{n 1}, \ldots,\right. \\
\left.l_{n c}\right)
\end{array}\right) \text { for all }\left(a_{i j}\right) \in \mathfrak{N}
$$

By induction on n we immediately get from Theorem 4 that if f_{1}, \ldots, f_{n} are non-constant then e is expansive. The case of this with $f_{1}=\ldots=f_{n}$ is Theorem 3.

References

1. R. Ahlswede and D. E. Daykin, "An inequality for the weights of two families of sets, their unions and intersections", Z. Wahrecheinlichkeitstheorie und Verw. Gebiete, 43 (1978), 183-185.
2. D. E. Daykin, "A lattice is distributive iff $|A||B| \leqslant|A \vee B||A \wedge B| "$, Nanta Math., 10 (1977), 58-60.
3. D. E. Daykin, "Functions on a distributive lattice with a polarity", J. London Math. Soc. (to appear).
4. D. E. Daykin and L. Lovász, "The number of values of a Boolean function ", J. London Math. Soc., 12 (1976), 225-230.
5. J. Marica and J. Schönheim, "Differences of sets and a problem of Graham", Canad. Math. Bull., 12 (1969), 635-637.

Fakultät für Mathematik,
Universität Bielefeld 4800, F.D.R.

Department of Mathematics, University of Reading, G.B.

