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1. Introduction

An important discovery of Marica-Schonheim [5] is

THEOREM 1. Any m distinct sets have at least m distinct differences.

This result has various generalisations [1-4] and one of a new kind is

THEOREM 2. IfSu...,Sm are distinct sets, and Tl 5. . . , Tn are sets such that each St

has some Ti as a subset, then there are at least m distinct differences St\Tj.

The form of this theorem led us to conjecture that m sets can be partitioned into
& and X having m — 1 differences S \ T with S e S , T eX. Given an ordered sequence
Su ..., Sm of sets letd be the number of differences <Si\S/ with i < j and e be the largest
n for which there are Sh <= ... c Sin with 1 < j x < ... < in < m. We believe m, d, e
are related.

The generalisation of Theorem 1 by Daykin-Lovasz [4] is

THEOREM 3. Any non-trivial Boolean function takes at least m distinct values when
evaluated over m distinct sets.

We give a generalisation of this theorem, which also yields a new proof.

2. Proof of Theorem 2

We may assume all the sets Sh 7} are subsets of {1, 2, ..., r] and use induction on r.
Thecaser = 1 is trivial. Put (5 = {Slt ...,Sm},X = {Tu ..., Tn},SX = {S\r:S\re<5
and Su re®} , 93 = {S\ r : S e S}, <£ = {T:r$TeX} and D = {T\r : T eX}.
Then m = |U| + |S|, where | . | denotes cardinality. Also U,(£ and S, D satisfy the
hypothesis on {1, 2, ..., r -1} so |tf|. ^ |H\(£| and |93| ̂  |93\X>|. If £ e U \ G then
E = A\C for some AeU, Ce(L Thus A\r, Aure® and r$CeX so £ \ r ,
£ u r s ®\2;. On the other hand if E e 23\D then clearly either £ \ r or £ u r is in
S \ 2 . Hence |U\C | + | ® \ D | < | S \ 2 | and the result follows.

3. Generalisation of Theorem 3

Let c be a fixed positive integer. If 5 is a set then Sc denotes the set of all
c-dimensional vectors with elements in S, and a c-ary operation / o n S is a mapping
f : Sc -* S. Given such a map / fo r Au ...,AC a S put

f(A1,...,Ac) = {f(al,...,ac):aieAi for 1 < i < c).
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Call / expansive if

\A\^\f(A,...,A)\ for all AcS.

Call / c-expansive if

\A1\^\f(A1,...,Ac)\ for all Au...,Ae<=S with \A,\ = ... = \AC\.

Notice that when \S\ = 2 expansive is the same as c-expansive and simply means
non-constant Boolean function.

If S, T are sets a n d / : Sc -> S while g : Tc -> T we define the direc/ product h of/
and g to be the map h: (SxT)c -+SxT such that

K(su tj, ...,(se,Q) = (f(su ...tsj.giti, ...,Q) forall j , e S and tjsT.

The direct product of expansive maps is not expansive, for example let c = 2,S = {0,
1, 2}, f(a, b) = max {0, a—b}, take the direct product of / with itself and
A = (S x S) \{(0,0) , (2, 2)}. It would be interesting to have more results like

THEOREM 4. In the above notation, iff is expansive and g is c-expansive then h is
expansive.

Proof. If B cz S x T and m is a positive integer let Bm be the set of all s e S such
that (s, t)eB for at least m different t e T. Let i c S x T b e given and x ef (Am,..., Am).
Thus there are s1} ...,sceAm with x = / fa i , . . . , Jc)- For 1 ^ i ^ c there are distinct
tn> •••> ttme T with (sh tJeA for 1 ^ y ^ m. By hypothesis on g we have

and this means that x e (h(A,..., /4))m. Finally

»M))J = \h{A,...,A)\

and the proof is complete.
Now let |S| = 2 and/x , ...,/„ : Sc -* S. Further let 91, $& be the set of all matrices

of order n x c, n x 1 respectively with elements in S. Define e : 91 -> ̂ 3 by

«y) e 91.

By induction on n we immediately get from Theorem 4 that if fu ...,/„ are
non-constant then e is expansive. The case of this with/r = ... = /„ is Theorem 3.
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