
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
44, 159-175 (1978) 

Z e i t s c h r i f t  ffir 

Wahrscheinl ichkei ts theorie  
u n d  v e r w a n d t e  Gebiete 

�9 by Springer-Verlag 1978 

Elimination of Correlation in Random Codes 
for Arbitrarily Varying Channels 

Rudolf Ahlswede 

Fakult~it fiir Mathematik der Universitiit Bielefeld, Universit/itsstral3e 1, D-4800 Bielefeld 1 

Summary. The author determines for arbitrarily varying channels 

a) the average error capacity and 
b) the maximal error capacity in case of randomized encoding. 

A formula for the average error capacity in case of randomized encoding 
was announced several years ago by Dobrushin ([3]). Under a mild regularity 
condition this formula turns out to be valid and follows as consequence from 
either a) or b). 

1. The Channel Model and the Coding Problems 

Since several articles have been written on this subject we begin right away with 
the mathematical notions needed. The reader not sufficiently familiar with the 
concepts used will find some heuristic explanations in the last Section. 

Let 3~ and gO be finite sets, which serve as input and output alphabets of the 
channels described below. Let S be an arbitrary set, and let ~ = { w ( .  I. Is): s~S} 

be a set of stochastic 13~1 x Igol-matrices. For every s"=(sl, . . . ,sn)eS"=[Is we 
1 

define transmission probabilities P(- I .  Is n) by 

P(y'lx"ls")= ~I w(ytJx~lst) 
t = l  

n 

for all x"=(xl ..... x . ) e~"=I - [~ ,  
1 

Y"=Yl .... ,Y.)ego '=[Igo,  and all n = l , 2  . . . . . .  
1 

O.1) 

Set ~n={p( .  l" Is"): s"~Sn}. We call the sequence (g")2=1 an arbitrarily varying 
channel (AVC) and denote it by 96. 
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160 R. Ahlswede 

For  every fixed x6~ ,  3;(x) denotes the closed convex hull of the set 
{w('lx[s): ssS} of probabili ty distributions (PD) on r 

The set of matrices 

= ((w(ylx))x~,,~v: w(.  Ix)~;(x), x~X} 
is called the row-convex closure of the set ~. (1.2) 

The closed convex hull of ~ is denoted by ~. 
9.I is called a standard arbitrarily varying channel (SAVC), if g = ~ .  Suppose 

now that sender and receiver want to communicate over an AVC without 
knowing which P(.  [. ]s") will govern the transmission of any word sent. This 
leads to a coding problem which heavily depends on the code concept and also 
on the notion of error probabil i ty (maximal or average) used. Here we consider 
three code concepts and we list them in an order corresponding to their 
increasing generality. 

1. A K 1-code (N, n) is a system {(u i, Di): 1 <iN N}, where U i E ~  n, D i c ~" for i 
= 1 , 2  . . . . .  N and Dic~D;=fJ for i#:j. 

2. If we now permit randomisat ion in the encoding we come to the following 
concept: 

A K2-code (n,N,r) is a system {(ri,D~): l<_i<-N}, where the Dis have the 
same properties as before and the ri's are probabili ty distributions on ~". 

3. Finally, a K3-code (n,N,#,F) is a collection of Kl-codes  (n,N) 
{(u[,D~): 1 < i < N } ~ r ,  where F is finite, together with a PD/1  on F. 

Those codes were introduced in [35] under the name " random codes". It is 
also explained there in which sense K2-codes are special K3-codes. For  a given 
channel 9.I one can compute the maximal and the average error probabilities for 
each of the codes described. We denote those error probabilities by 2~, 2~(i 
= 1,2, 3). They are given by the following expressions 

21 = sup max P(D~iluiis~), 
s ~ s S  n i 

2 2 = sup max ~ P(DTlx"[s" ) ri(x" ), 
sn~S n i x n E ~ n  

2 3 = sup max ~ P((D~)~luris ") P(V), 
s ~ S  ~ i w r  

1 N 

J'2 2 P(D~lx"ls~)ri(x,) , 
i x n e ~  n 

1 s 

X =supo  2=12 
y E F  

A number  C1 us called the capacity of the channel 9.1, if for any e>0 ,  any 2, 
0 < 2  < 1, and for all sufficiently large n there exists a K l-code (n, exp {(C 1 - e )n} )  
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with maximal error probability 21 not exceeding 2 and there does not exist a 
code (n, exp {(C 1 +e)n}) meeting the bound 2 on the error probability. 

Analogously one defines for K2-codes and for K3-codes capacities C 2 and 
C 3. If we use average errors instead of maximal errors we denote the cor- 
responding capacities by C i; i = 1, 2, 3. 

One of the principal tasks in Shannon's Information Theory is to show that 
a (specified) capacity exists for a channel in question and to find a formula for it, 
which is such that it can be used for a numerical evaluation. 

In their pioneering paper [1] Blackwell, Breiman, and Thomasian obtained 
for AVC's such a formula for C3- However, a serious drawback to the use of 
K3-codes is that they require correlated randomisation between encoding and 
decoding, that is the outcome of the random experiment (F,#) has to be made 
known to both communicators. If there are no further channels available (which 
is realistic to assume), the only way to achieve this is that the sender, before 
transmitting any message i, chooses a Kl-code at random, communicates the 
result of his random experiment to the receiver, and then transmits the message 
according to the code sected. This procedure is repeated at each message. If the 
size of F could be kept so small that sending those additional messages would 
not cause essential loss in capacity, one could agree to such a procedure. 
However, no such bound on IF[ had been given until now. 

The reasons mentioned led the authors of [2] to investigate Kl-codes with 
maximal error and the author of [3] to study Kz-codes with average error. C 1 
was determined for binary output AVC's in [7]. For general output alphabets 
no solution exists until now. The problem seems to be very hard. It includes the 
famous zero-error capacity problem as a special case ([8, 9]). 

For  list codes of relatively small list size and in the presence of complete 
feedback Kl- type maximal error capacities are known ([11, 12]). 

In this paper we determine all the other capacities: C1, C 2, C 2, C 3. 

2. Auxiliary Results 

Denote by ~ the set of all PD's on 3;. For any p e ~  and any we~  define the 
mutual information 

R(p, w) = H(q) - ~ p(x) H(w(" Ix)), 
x ~  

where q = p - w  and H denotes the entropy. (2.l) 

The following two quantities shall play an important role in the sequel. 

C R = rain max R(p, w), (2.2) 
w ~  p~r 

C v = rain max R(p, w). (2.3) 
we~ p ~  

These definitions are meaningful, because ~,  ~ and ~ are compact in the norm 
topology and R(p, w) is continuous in both variables. We shall make essentially 
use of the following result of [1] : 
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Random Code Theorem 

For the AVC 

2 3 = C R. (2.4) 

Moreover, any rate smaller than C R is achievable with exponentially small error 
probability. 

Actually, the authors of [-1] proved 2 3 > C R and then a weak converse, but 
the strong converse follows immediately because the coding problems for 
(~"),= 1,2 .... and (~"),= 1,2 .... are equivalent and the latter contains a DMC with 
capacity C R (cf [6]). 

Notice that we allowed ~ to contain infinitely many matrices. Our proofs in 
later Sections are given first for the case [g[ < oo. Then we remove this restriction 
with the help of the following Approximation lemma and its Corollary. 

Approximation Lemma ([143) 

Let A > a b 2, where a = 13~t, b = I~1. There exists a set GA c G, I~AI < (A + 1) a'b, such 
that for every w~G there exists a w'~G A such that for all x ~  and all y~g) 

Iw(ylx) - w'(ylx)l <= b A -1  (2.5) 

and 

w(ylx) < exp {2b2A- 1} w'(ylx). (2.6) 

For  our purpose we have to choose A as function of n, a choice A(n)=n 2 will be 
appropriate. 

Write ~ A ~ = { w ( . [ . I s ) :  sES} as ~A={W( "['Is): s~S'} with [S ' l< (Z+ l )  ~b 
and denote the approximating matrix of w(. I" Is) by w(. f" Is'). By (2.6) we have 
for s"=(sl, . . . ,s ,)eS" and s'"=(s't, ...,s',)eS'" 

P(y"lxnl sn) <_ P(y"lx"ls' "). exp {2 b 2 nA - 1} 

for all xne3; ", y " ~ "  (2.7) 

and with the choice A(n)= n 2 for large n 

P(y"lx"ls") < P(y"lx"ls'"). 2 (2.8) 

and therefore for the complement of a decoding set and all x" 

p(Dclx"ls ") < 2P(DClx"ls'"). (2.9) 

Thus we obtain the 

Corollary. For the AVC 9,1=(g"),= 1,2 .... there exists a subset g*" of g", such that 

I~*n] ==_ (n 2 + 1) "bn (2.10) 

and every Ki-code (i = 1, 2, 3)for  ~*" is a Ki-code for ~" with at most twice the 
(maximal or average) error probability for n large enough. 
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The following result of [2] is useful in investigating the positiveness of 
capacities. 

Seperation Lemma. For the AVC 9.I C~ is positive exactly when the following 
condition holds: 

(S) there exist x ,x '  ~3i. such that 2;(x)c~3;(x')=~. 

We need also a last and quite elementary result 

Innerproduet Lemma. Let ~ =(cq . . . . .  %) and fl =(fi~ . . . . .  fiR) be two vectors with 
O <= ~i, fli <= l for i=1 ,2  . . . . .  R, which satisfy 

c~j> l - e ,  0 < e < l ,  J: f i j > l - e ,  ~ j  

then 
R 

Proof. The worst case occurs for instance if the efs are monotonically increasing 
and the pfs are monotonically decreasing, and if maximally many ~fs and/~fs 
take the value 1. An easy calculation leads to the inequality. 

3. The Results 

Before reading the Theorems below it might be useful to be aware of the 
following two examples. 

Example 1. Let 13s I =2, I~)f=3 and let ~={wl,w2},  where 

Wl = 0 ~ W2~--- 0 1 

It was shown in [1] that in this case C1=0  and CR>0. The conclusion can be 
drawn that C~ is much smaller than C3 and that C~ and C n are not related. 

Our Theorem 1 classifies Example 1 as pathological in so far as C~ =0. It 
also shows that in case C 1 = 0  Example 1 reflects the typical behaviour. 

Example2. IXI=I~[=3, ~={wl ,w2} , where 

w 1 = 1 , w 2 = 0 . 

0 0 

In this case condition (S) does not hold and hence C1=0.  However by 
randomisation over input letters 1 and 2 with probabilities i 1 (~,5) one can 
produce 
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o o  

and for those matrices (S) holds. Therefore C 2 > 0. 

Theorem 1. For the AVC 9.1 

C 1 = C R, if C 1 > O. 

Theorem 2. For the AVC 96 

a) C 2 = C R, if C 2 > O, 

b) C 3 = C 3 = C R. 

Theorem 3. For the AVC 92[ always 

a) C 2 = (71 = (72.  

In particular 

b) C2 > 0 ..r (71 > 0 .,r (72 > O. 

Notice that condition (S) gives a useful sufficient condition for all capacities to be 
positive, because they are all not smaller than C 1. With some effort it should be 
possible to find a necessary and sufficient condition for (71 or C 2 to be positive. 
The next lemma completely settles this problem for SAVC's. Since those channels 
provide the more robust model (see Section 8) we felt little urge to study the 
question any further. 

Strong Separation Lemma. For the SA VC 

C 2 > 0 ( ~  C 1 > 0 ~  (72 > O) r condition (S) holds. 

Theorem 4 (Solution to Dobrushin's problem [3J). For the SAVC ~i 

=~Co, if (S) holds 
Ca = (71 = C2 ~0, if (S) does not hold. 

Remarks. 1. In [3] the formula C 2 = C o was stated for the AVC 96. An example 
of [6] shows that C 2 > C D can occur. This is excluded here by the assumption 96 
= ~ .  A further regularity condition for C =  C D to hold is condition (S), because 
it can happen that C D is positive and (S) does not hold. Co=O for 96 is 
equivalent to x@~ 3;(x) ~J .  

2. In the noticable paper [13] the formula (71 = CR is proved for a certain 
class of AVC's 9,1, which is characterized by quite complicated conditions. 
Considering the mathematical effort it is somewhat disappointing that a simple 
channel such as 

Example 3 ([13]), ?~ = ~ = {1, 2}, 

~ = f f l . 4  0 ~ 0  ) (0.6 0.4'] {0.6 0.4~ (1 
0.6,/ ' \0 1 ' / ' \0 .4  0.6'//',0 . / ) "  
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Already by [7] (0.60.4) 
Cl=maxR(p ,#) ,  where # =  0.4 0.6 " 

p 

cannot be treated by the approach choosen. 

165 

4. Proof  of  Theoem 1 

We assume first that ]S] < 00. Our proof is such that this assumption can then 
easily be removed with the help of the corollary to the Approximation lemma. 

We describe now first the key ideas of the proof. From a given K3-code 
(n,N,p,F) with exponentially small error probability 23=e-~n one selects a 
relatively small number R=n 2 of Kl-eodes by independent repetitions of the 
random experiment (F,g). Averaging over those Kl-codes leads to a new K 3- 
code (n,N,g',F') with IF'I=R=n 2 relatively small. Allowing now a constant 
(rather than exponentially small) error probability one can guarantee that the 
randomly produced (n, N, #', F') fails to meet this new error bound for a fixed 
P(-].  Js") with a super exponentially small probability only. Since [Ejn grows only 
exponentially there is a realisation (n,N,l~*,F*), [F*[=R, with a small error 
probability for all P(. J. [sn). 

Now we make use of the assumption C1 > 0, which guarantees the existence 
of a Kl-code (f(n), n 2) with f(n)=o(n) and small average error probability. By 
concatenation of this code with the (n, N, #*, F*)-code just produced we obtain a 
K,-code with the desired properties. 

We give now the formal proof. By the Random Code Theorem there exists 
an (n, N, p, F)-code {(u[,D[): l<_i<_N; ?eF} with X3Ne -~" and N>exp{(C  3 
-c5)n}, 3>0,  for e sufficiently small and all large n. Consider a sequence 
Z 1 ... .  ,Z  R of independent RV's with values in F and distribution Pr(Z~=?) 
=#(7). Define for a fixed s ~ and j = l  . . . . .  R Tj(sn)= Ti by 

1 N 
Tj = 1 - ~  ~= t P(D~q uZqs"). (4.1) 

The RV's T~, ..., T R are again independent and identically distributed with 
R 

expected value ETi<2  3. For any 2 , 0 < 2 < 1 ,  any ~ > 0  and T= ~ Tj Bernstein's 
j = l  

trick gives 

R 

Pr(T> 2R) < E  exp {cffr-R2)} = e -~R;" I-[ E exp {c~ Tfl. (4.2) 
j = l  

Now, since 0=< Tjk< Tj< 1 

~2 ETy2 
E exp {c~ Tj} =1 + ~ E T j + - ~ - . v  + ..- 

oo ~k co rzk 
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and therefore also 

P r ( T >  2R) < e-~Ra(1 + e ~ ~3) R, (4.3 

Choos ing  R =n 2, ~x=2, and using %3 =e-C"  we get 

P r ( T >  2R) < e -  2 nZR (1 ~- e 2 e -  ~n) nz. (4.4 

For  large enough n 

(1 + e  2 e-~") < e ~ 

and therefore 

: ) Pr_  Se -<  (45 
\ n  ~=1 

Tha t  is, the " r a n d o m  r a n d o m  code"  

1 
{(u z~ DZ~] �9 l<_i<_N; r = l ,  . ,R}, r * - - { 1 ,  .,R}, :(r)--~ ~ i ,  i: . . . . .  

for r~F* has an average  error  probabi l i ty  

1 R 
. . . . .  

which exceeds 2 with a super  exponent ia l ly  small  probabi l i ty  < e - a : .  The sam( 
is t rue for all s"mS" and since JS]" grows exponent ia l ly  only, there exists a K 3- 
code 

{(u~,D~"): l<_i<_g; r = l  . . . .  ,n2}, #* (4.61 

with average error  p robabi l i ty  < 2 for the A V C  9/. 
In  case 1~1 = o0 we apply  the Coro l la ry  to the A p p r o x i m a t i o n  lemma.  Since 

I(~*nl <(n2+ 1) ab", also in this case 

(n2+l)~b"e-a:<l  for n large, (4.71 

and therefore again  there exists a code as described in (4.6) with average erro: 
probabi l i ty  < 22. 

Since C 1 > 0  there exists a ( f  (n), n=)-code {(vj, Aj): l < j < n  z} with averag{ 
error  probabil i ty_< 2 and f(n) : o(n). 

We compu te  now the average  error  probabi l i ty  of the (f(n) + n, N.  R)-code 

{(vyxu{, Aj x D{): I<_i_<N; I <j < R} 

obta ined  by concatenat ion.  Set m=f(n)+n.  For  any sm=(s~ .. . . .  S~) define rj 
= ( s  1 . . . . .  Sy(,) ) and t 2 =(Sy(,) + 1 . . . .  , s,,). Consider  
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1 R 1 N 

1 R 1 N 
-~-R j~l ~ i~1 P(Aj[vj]tl) P(O~[ui[t2) 

1 g 1 N 
P(AjIv j I t l ) '~ ,  P(Diluilt2). .= .= 

With the abbreviations 

1 N 
P(Diluilt2) %=p(AjlvjltO' f lJ=N~=l J ~ 

1 R 
this becomes ~-s~ a % fij. By the Innerproduct Lemma 

1 g 
~ j ~  ajfl j> 1 - 2 2  (4.8) 

and the concatenated code has therefore an error probability less than 22. 
Since for any q > 0 (f(n) + n)- ~ logNR > (1 - ~/) n-  1 logN for n large enough, 

the desired result follows. 

5. P r o o f  o f  T h e o r e m  2 

The argument which led to the K3-code (n, N, #*, F*) in the previous proof will 
now be refined such that we even achieve small maximal error probability. In 
particular we thus show that always 

C3=C3. (5.1) 

Then again we use a concatenation argument, which is in this case even simpler. 
The codes are selected at random as before via the RV's Z1, . . . ,ZR,  but now 

we add a random permutation on the indices for each code choosen, that is, we 
allow all possible assignments of the set of messages {1 .. . .  , N} to the codewords. 
Thus we get RV's Vj=(Zj ,~) ;  j = l  . . . . .  R; which are independent and indenti- 
cally distributed. 

Consider the RV's 

Zj Zj n Sji = 1 -- P(DeAz)[UpAi)lS ), 

j = l  .... ,R; i = I , . . . , N .  

They are identically distributed and have expected values ESj~<2 3. Moreover, 
for any fixed i the RV's Sli . . . .  ,SRi are independent. Let 2>5. 3 be constant. 

Now, for any fixed i, 
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Pr Sji~R2 =<Eexp e S j i - R 2  Eexp{c~Sji } 
\ j = l  j 1 "= 

<= e-"R;~(1 + e ~ �9 ES 11) R 

and hence (as in the previous  proof)  Pr ~ j  S j i > 2  < e  -~"2 for all large n. 

Therefore  also 

Pr max  Sj i>2  <=Ne -~"2. (5.2) 
\ i=l  ..... N j=l 

Since N =e (c3-~)" grows exponent ia l ly  only, we again obta in  a superexponent ia l  
b o u n d  and therefore we can pass f rom one s" to all sneS" if ]Sh < oe. Again  there 
exists a code as described in (4.6) which now has even maximal error  probabi l i ty  
=< 2 for the A V C  ~1. Since also 

(n 2 q- 1)abnNe -zn2 < 1 for n large (5.3) 

the extension to the case IS] = 0o is immedia te  by the Corol lary.  Since C 2 > 0  
there exists a Kz-code  {(pj, Aj): l < j < n  z} with error  probabi l i ty  2 2 < 2  and 
b lock length f (n)  = o(n). 

Define now a K2-code  as follows: Deno te  by 6 , / t h e  P D  concent ra ted  at u i 
and define for i = 1 . . . . .  N 

1 R 
qi -~ ~j=~l pj X (}u~J as P D  o n  ~f(n) X ~n. (5.4) 

Define decoding sets B i by 

R 
Bi = U Aj  x D~. (5.5) 

j = l  

Then  for fixed i, s" = t 1 x t 2 (as before), and f = f ( n )  

1 R 
~ P(Bi Ixf ujl s~) pj(x f) 

e j = l  xf 

1 R 
>~-- ~ ~ P(Aj  • D{ ]x f u{[ s m) pd(X f) 
- -R  j=l xf 

1 R 
= - -  P(D i lui[ t2) R j=~l ~xf P (A j lX f l t l ) p j ( x f ) "  J j 

>__-- ( 1 -2 )P (D~ lu~[ t2 )>(1 -2 )2>_ l - 22 .  
- R  j = l  
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The Theorem follows now, because also lira n(n +fin))-1= l. 
n~co 

Remarks. 1. Actually it would have been sufficient for the proof to require that 
C2 >0. As in the proof of Theorem 1 one could again use the Innerproduct 
lemma. However, in the light of Theorem 3 this observation is of no con- 
sequence. 

2. In the special case where the code we start with is already of type K 1 the 
proof shows that C 2> 2 a if C 2 > 0  and by 1. even C 2> 21 if 2 22>0. Since 
2 2 ~ 21 ,  therefore always C 2 __> 21. 

6. Proof  of  Theorem 3 

By Remark2  in Section 5 we know already that C2__> C 1. This can also be 
derived as follows. It follows from Theorem 2 and the Random Code Theorem 
that 

C 2 > C  1 if C2>0. (6.1) 

If 21 >0, consider a code {(ui, Di): 1 <_i<_2N} with 21 <�88 Define a K2-code by 

1 N 2N 

pl=~:~G~, p2 =i:"+~ ~ ~"'' 
N 2N 

AI= U Di, A 2 :  U Di" 
i=1 i=N+I 

Then for i = 1,2 and all s n 

E P(Ai [x'] s') pz(x")> 1 - 2 2 1  >1.  (6.2) 
Xn 

This implies condition (S) for the " random letters" Pl and P2 and therefore 
C 2 > 0. We show now that 

2 2 > 0 ~ C1 :> 0. (6.3) 

Since obviously 22 > C a this will complete the proof of b). Statement a) follows 
then from b) and Theorems 1, 2. 

Suppose we have a Kz-code (n, N, r) for 9A with error probability ;-2: 

{(ri, D~): l<i<_N}. 

Let U 1 . . . . .  U N be independent RV's with 

Pr (U/= x') = r i (x'). 

For fixed s" denote 

P(D~]U~Is") by Vii. 

(6:4) 
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Then for c,c~>0; 2 ~  2 a constant: 

Pr Vi>c2N < e  -czN~ E exp {c~ V/} 
i j = l  

N 
<e-C~N~ 1~ (I+e~EV/), 

j = l  

because EV~ <El///k for k = 1, 2 , . . . .  
The inequality of the arithmetic and geometric means yields 

I](I+e~EV~)_< l + e  ~ 1  EV~ <( l+e~i2)N<( l+e~)~)  N. 
j=l -- N i  

(6.5) 

(6.6) 

Choose e = 1 and c such that 

eC~> (1 + e. 2), 

then 

Since N can grow exponentially in n, this probability is double exponentially 
small and we can complete the proof in the usual way (see Section 4 or 5). 

Actually, we have thus proved even directly C1 = r e. 

7. Proof of the Strong Seperation Lemma 

Since C 2 ~  C1, by  the Seperation lemma it suffices to show that C 2 > 0  implies 
condition (S). We make use of an elementary identity for Minkowski sums of 
sets in a linear space ~. 

Let A 1 . . . . .  Aic!~,  then 

conv A i = conv(Ai), (7.1) 
\ i = 1  i=1 

where "cony"  denotes the convex hull operation. 
If C 2 >0, then by the Seperation lemma there exists an n and two PD's p" 

and q" on 3;" such that 

conv( ~ p'(x')X(x"))~conv( ~ q'(x")X(x")=~, 
XnG~t~n X n ~  n 

where 2;(x")=3;(xl)x ... x %(x'), x"=(xl ..... x,). 
If (S) were violated, then 

(7.2) 

~(x)c~;(x')~ef~ for all x,x'~Y. 
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and therefore also 

~(x" )~ (x ' " )+ f~  for all x",x'"~Yf. (7.3) 

We show now that (7.3) contradicts (7.2) and thus complete the proof. Abstractly 
speaking we are in the following situation: 

We are given sets A 1 .. . . .  A I in a linear space ~, which satisfy 

Ai~Aj=t= ~ for all i,j, 

and for suitable convex combinations 

conv (i~1 cqAg)n cony (j_~ 1 f l jAj)=ft .  

By (7.1) this equation is equivalent to 

I I 

Z ch conv(Ai)n ~ f l jconv(Aj) :~ .  
i = 1  j = l  

Choose points a~j: a i y A  i c~Aj for i,j = 1, ..., I. Then 

B = c h conv(Ai) ~ ct i aii: j = 1 ....  , I 
i = l  i =  

and 

{~cqaij:j=l~:a .. . . .  I }~conv(Aj )@~ for all j = l  . . . .  , I .  

Since B is convex this implies that also 

I 

Bc~ ~ fijconv(Aj)=~O. Q.E.D. 
j = l  

8. Some Additional Remarks, Observations, and Problems 

a) The Channel Model 

The channels considered in this paper  can be viewed as a model for a 
transmission system which has several states and those states change arbitrarily 
from one time point to the next. In a so called "finite state channel" the changes 
of states are assumed to follow probabilistic laws. Whenever changes of states 
are not governed by a probability distribution or if this distribution is not 
known, then one can describe the situation by an AVC-model. It is even 
conceivable that a malevolant being like Maxwell's demon for instance chooces 
the states so as to make communication as difficult as possible - this is still 
incorporated into the model. Moreover, this demon could decide at any time to 
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randomize over the states - thus enlarging the set of matrices E to the set 
- th i s  would still be within the boundaries of the model. 

Now we go one step further. Suppose the demon chooses at time t his 
randomisation depending on the letter x given into the system, that is x must be 
known to him, before he randomizes, then this means that the class E is replaced 
by ~. For this situation the SAVC provides the appropriate model, which is 
mathematically just a special AVC. 

But now we go even further. Suppose a Kl-code {(ui, D~): i=1  . . . . .  N} has 
been chosen. Assume that the demon even knows the u~ to be sent before it is 
sent and that he can choose at any time instance his states or randomisations 
over states depending on this knowledge of the word. The channel model for this 
situation has been called by Kiefer and Wolfowitz ([2]) a "channel with 
arbitrarily varying channel probability functions". 

Let us use the abbreviation A*VC. The difference between the two channels 
- A V C  and A * V C - c a n  mathematically be well explained if we consider the 
average error probability of a Kl-code for both. (For maximal errors there is no 
difference in the Kl-coding problem for the two channels as can be seen from 
Lemma 3 of [7]). We recall that for the AVC 

N 

~-1 = sup 1 ~, P(D~ lull sg. 
s~Sn N i=1  

For the A*VC s" may depend on u~ and therefore 

i*  = ~  sup P(D~ luJ s"). 
i = 1  S rtESn 

(In general 2" may be much larger than ~l.) 

But then we can pass to an (n, I N ] )  - subcode with maximal error proba - 

bility L* <22" .  That  means that the capacities C* and C~ are the same. There is 
no advantage in allowing average error. A similar argument applies to rando- 
mized encoding and to correlated codes. All those performances do not help 
anything for A*VC's. Definitely those channels give the much more robust 
model. For  an even more robust model we refer to the "subchannels" in- 
troduced in [23]. There again no single-letter characterisation of the capacity is 
available. 

The papers [2, 7, 11], and [12] deal with A*VC's. The papers [1, 3, 4-6, 13] 
consider AVC's. 

b) An Analogy 

A similar distinction as for arbitrarily varying channels can be made for 
compound channels. Let us denote them by CC and C* C. The paper [15] deals 
with C*C and the papers [14, 16], and [18] consider CC. The "star"  was 
noticed in [16]: for average error CC has no strong converse. This phenomenon 
was studied systematically in [18] and let to the following result: 
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for the 2-capacities (in the sense of [,17]) 

C1(2) = C2(2) = C2(2), 0 < 2 < 1 .  (8.1) 

Whereas for compound channels still C 1 = i n f C  1 (2)= C*, this identity fails for 

the arbitrarily varying channels, because always C I = C ~ < C  D and in case 
CD+ CR= C1 clearly C*<  C,. 

However, (8.1) finds its analog in the relations C 1 = C 2 = C2 (Theorem 3). 

c) There are Two Theories of Coding 

By the previous remarks we know that in general for the AVC (8.2) C 1 4= C1. 
This may be viewed as a pathology of the channel. The fact that the zero- 

error capacity problem for a DMC ([-8]) is equivalent to the coding problem of a 
very special (only 0-1-mat r ices  in ~) A*VC (see [-9]) may confirm this view, 
because this 0-error problem is considered by many workers in the field not to 
be information theoretic in nature, because there seem to be no connections to 
standard information measures. However, in studying multi-way channels, in 
particular Shannon's two-way channel in [20] and the so called multiple-access 
channel in [21], we became strongly convinced that also for those channels 

9t 1 q= 9~ 1 (the regions) can occur. (8.3) 

This has recently been confirmed by examples ([-22]). Whereas 9i I can be nicely 
described in terms of information measures no such characterisation now exists 
or is even to be expected to exist at all for 91i. It seems likely that completely 
new information measures have to be invented and this must be very hard, 
because a determination of 911 for instance for the multiple-access channel 
already would imply in the deterministic case the asymptotic solution of a whole 
spectrum of combinatorial extremal problems. In the study of multi-user coding 
problems it has become clear that the theory of coding as founded by Shannon 
is intimately connected with the average error concept. Theorem 1 confirms this 
view. 

d) "In Many Data-Transmission Systems, 
the Probabilities with Which Messages are to be Used 
are Either Unknown or Unmeaningful" ([24], p. 14) 

Taking this seriously and also what we said in c) one should worry about the use 
of building a theory of multi-user communication. Indeed, we had such doubts 
for quite a while. Therefore we consider it as a gift from the gods that Theorem 2 
holds. Randomisation in the encoding can be used successfully if the message 
statistic is unknown! 

e) Comments about the Proofs of Theorems 1, 2, 3 

The approach chosen in this paper makes use of the Random code theorem of 
[-1]. There it is proved by a game theoretic argument. Since the Shannon 
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r a n d o m  coding method  consists in specifying a certain K3-code it is natural  to 
base a p roof  directly on it. This was done in [5] with the decoding idea of the 
"ideal observer".  Then the novel ty of  our  approach  simply consists in applying 
Shannon 's  me thod  several times and to use the concatenat ion argument.  The 
simple probabilist ic fact which makes every thing work is that  the probabil i ty 

with which the mean  n-1  L X~ of  independent,  identically distributed RV's  
i = 1  

exceeds any number  larger than the c o m m o n  expected value, decreases exponen- 
tially with n. In  our  first a t tack on the problems we startet out  with the list 
reduct ion l emma of  [11] or  [12] for maximal  errors. Selecting out  of  a list code 
a subcode at r a n d o m  and passing to average errors one can also prove 
Theorem 3, but  not  more. At  this stage the english t ranslat ion of  the Dobrushin-  
Stambler  paper  [13] reached us and we were st imulated by the fact that  they 
could prove C I = C  R for certain channels, which was somewhat  surprising 
because of  Example  1 (from [1]) known to us. Taking all auxiliary results into 
considerat ion our  first p roof  of Theorem 3 is somewhat  more  complicated than 
the one presented here and we therefore did no t  include it. Let us just  announce  
the following par t  of some independent  interest: 

Selecting a code with positive rate at r a n d o m  for a D M C  fails to lead to a 
code with error probabil i ty bounded  by a constant  2 with double exponential ly 
small probability.  

f )  Problems 

A m o n g  the references we have listed a number  of  papers ([23, 27, 28, 25, 26]) 
dealing with arbitrarily varying sources from several points of  view. 

The more  recent work  on correlated sources ([29-32])  is intimately con- 
nected with channel  coding techniques. In  source coding maximal  errors don ' t  
occur  and we feel that  the foundat ions  now laid should suffice to deal success- 
fully with coding problems for arbitrarily varying correlated sources (without or 
with side information).  Similar extensions for mult i -way channels should now be 
within reach. For  recent surveys on this topic see [33] and [34]. 
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