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1 Introduction

In [1] we determined the capacity region of the multiple–access channel (MAC) by proving
a coding theorem and its weak converse. Recently Dueck [2] proved a strong converse
theorem in the sense of Wolfowitz [3]. His proof uses the Ahlswede–Gács–Körner [4]
method of “blowing up decoding sets” in conjunction with a new “wringing technique”.
This technique makes it now possible to prove strong converses, if the average error
probability criterion is genuinely used (as in the case in the results for the MAC mentioned
above, c.f. [5]).

In this paper we prove Dueck’s result without using the method of “blowing up decoding
sets”, which is based on non–elementary combinatorial work of Margulis [6].

Our proof follows our old approach of [7] to derive upper bounds on the length of maximal
error codes. In [7] we considered the TWC, the MAC can be treated in essentially the
same way. In conjunction with a suitable “wringing technique” (Lemma 3) this approach
becomes applicable also to average error codes. The heart of the matter is the fact that
codes for the MAC have subcodes with a certain independence structure. Actually even
this fact can be understood from a more basic simple principle concerning the comparison
of two probability distributions on a product space (Lemma 4). This general principle
makes the combinatorial or probabilistic nature of Dueck’s technique and our improvement
thereof (Lemma 3) fully transparent. It also leads to a somewhat sharper result on coding:
Strong converse with

√
n log n deviation.

The paper is self–contained and all ideas are explained in detail.

2 The Strong Converse Theorem for the MAC

X ,Y are the (finite) input alphabets and Z is the (finite) output alphabet of a MAC with
transmission matrix w. For words of length n the transmission probabilities are

W (zn|xnyn) =
n

∏

t=i

w(zt|xtyt) for xn = (x1, . . . , xn) ∈ X n =
n

∏

1

X , yn ∈ Yn, zn ∈ Zn.

(2.1)
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A code (n,M,N, λ) for the MAC is a system
{

(ui, vj, Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N
}

with

(a) ui ∈ X n, vj ∈ Yn, Dij ⊂ Zn for 1 ≤ i ≤ M, 1 ≤ j ≤ N

(b) Dij ∩ Di′j′ = ∅ for (i, j) 6= (i′, j′)

(c) 1
MN

N
∑

i=1

M
∑

j=1

W (Dij|uivj) ≥ 1 − λ

A pair of non–negative reals (R1, R2) is an achievable pair of rates for λ ∈ (0, 1), if for all
sufficiently large n there exist codes

(

n, ⌈exp R1n⌉, ⌈exp R2n⌉, λ
)

. R(λ) denotes the set of

those pairs and R =
⋂

λ∈(0,1)

R(λ) is called the capacity region. The characterization found

in [9], which is somewhat different from the original one in [1], is

R = conv
{

(R1, R2) ∈ R
n
+ : R1 ≤ I(X ∧ Z|Y ), R2 ≤ I(Y ∧ Z|X),

R1 + R2 ≤ I(XY ∧ Z) for some indep. X,Y
}

, (2.2)

where X,Y are input variables, Z is the corresponding output variable, I(X ∧ Z), I(X ∧
Z|Y ) etc. denote mutual resp. conditional mutual information, and “conv” stands for
the convex hull operation.

Dueck’s strong converse theorem states

R(λ) ⊂ R (and hence R = R(λ)) for λ ∈ (0, 1). (2.3)

We prove the

Theorem. For every n and every (n,M,N, λ) code:

(log M, log N) ∈
(

n + 0(
√

n log n)
)

R.

The approach of [7] makes use of Augustin’s [11] strong converse estimate for one–way
channels. Wolfowitz gave in [12] a general lemma for proving strong converses, which he
credited as follows: “It is a formalization and slight generalization of methods used by
Kemperman, Yoshihara, and the author”. We formulate and prove here a slight extension
thereof, called packing lemma, which yields also the result of [11]. This way one has one
key tool for proving strong converses and also, the paper becomes self–contained.

3 The Packing Lemma and a Bound on Codes for the

MAC

Let K and L be finite sets and let P be a |K| × |L|–stochastic matrix.

An (M,λ)–code is a system
{

(ui, Di) : 1 ≤ i ≤ M
}

with
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(a) ui ⊂ K, Di ⊂ L for 1 ≤ i ≤ M

(b) Di ∩ Di′ = ∅ for i 6= i′

(c) P (Di|ui) ≥ 1 − λ for 1 ≤ i ≤ M

For a probability distribution (PD) r on L and a number θ > 0 define

Bk(θ, r) =

{

l ∈ L :
P (l|k)

r(l)
≥ eθ

}

for k ∈ K. (3.1)

Lemma 1. Suppose that for an (M,λ)–code
{

(ui, Di) : 1 ≤ i ≤ M
}

there exists a PD r
on L and positive numbers θ1, . . . , θM such that

max
1≤i≤M

∑

l∈Bui(θi,r)

P (l|ui) < κ, (3.2)

then

M < (1 − λ − κ)−1 exp

(

1

M

M
∑

i=1

θi

)

, (3.3)

provided that λ + κ < 1.

(The case θi = θ for 1 ≤ i ≤ M is the result of [12]).

Proof. Consider the code {ui, Di) : 1 ≤ i ≤ M} and define for 1 ≤ i ≤ M

Ai =

{

l : l ∈ Di,
P (l|ui)

r(l)
< eθi

}

.

Then for l ∈ Ai eθir(l) > P (l|ui) and hence

eθir(Ai) > P (Ai|ui) = P (Di|ui) − P (Di − Ai|ui) ≥ 1 − λ − κ.

It follows that

θi ≥ log
1 − λ − κ

r(Ai)
≥ log

1 − λ − κ

r(Di)

and also that

1

M

M
∑

i=1

θl ≥
1

M

M
∑

i=1

log
1 − λ − κ

r(Di)
≥ 1

M

M
∑

i=1

− log
1

M
+log(1−λ−κ) = log M+log(1−λ−κ).

This implies

M ≤ (1 − λ − κ)−1 exp

(

1

M

M
∑

i=1

θi

)

.

Q.E.D.
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Remark 1. The lemma can be further generalized to average error codes. We did not
present this more general form, because we have no genuine applications for it.

Since it is necessary to take the convex hull in (2.2) a proof of the Theorem naturally
has to involve non–stationary DMC’s, which are defined by a sequence (wt)

∞
t=1 of |X | ×

|Z|–stochastic matrices and

W (zn|xn) =
n

∏

t=1

wt(zt|xt) for every n = 1, 2, . . . ; every xn ∈ X n; and every zn ∈ Zn

(3.4)
as transmission probabilities for words. We show next how to prove the familiar strong
converse for non–stationary DMC’s via Lemma 1. In applying this lemma one has some
freedom in the choice of r. Kemperman [10] used r∗n = r∗1x . . . xr∗n, where r∗t is the
maximizing output distribution for wt, that is,

R(p∗t , wt) =
∑

x,z

p∗t (x)wt(z|x) log
wt(z|x)

r∗t (z)
= max

Xt

I(Xt ∧ Zt) = Ct.

For a given (n,M, λ)–code
{

(ui, Di) : 1 ≤ i ≤ M
}

Augustin [11] used rn = r1x . . . xrn,
where

rt(z) =
1

M

M
∑

i=1

wt(z|uit) for ui = (ui1, . . . , uin). (3.5)

In order to understood this choice let us choose first r as

r(zn) =
1

M

M
∑

i=1

W (zn|ui),

that is the output distribution corresponding to the “Fano–distribution”: 1
M

probability
on each code word ui.

With θi = c
∑

zn W (zn|ui) log W (zn|ui)
r(zn)

, c a constant, we get that θ = 1
M

∑M
i=1 θi is a mutual

information up to a constant c. By a suitable choice of c one can derive the weak converse
by using Lemma 1. One does not get the strong converse, because log W (·|ui)

r(·)
is not a sum

of independent RV’s and therefore the variance is too big. rn is the output distribution
obtained by choosing as input distribution

pn =
n

∏

t=1

pt, pt(x) =
M

∑

i=1

1

M
δ(uit, x), x ∈ X , 1 ≤ t ≤ n, (3.6)

that is the product of 1–dimensional marginal distributions of the “Fano–distribution” and
may therefore be called Fano*–distribution. This way one achieves both, the independence
property and the “matching” of an information quantity. rn reflects structural properties
of the set of code words, which r∗n doesn’t.

Now with the choices K = X n,L = Zn, r = rn, P = W, y = 1−λ
2

, and for i = 1, . . . ,M

θi = EW (·|ui) log
W (·|ui)

rn(·) +

(

2

1 − λ
VarW (·|ui) log

W (·|ui)

rn(·)

)1/2

.
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By Chebyshev’s inequality

W
(

Bui
(θi, r

n)|ui

)

≤ 1 − λ

2
for 1 ≤ i ≤ M (3.7)

and hence Lemma 1 yields

M <
2

1 − λ
exp

{

1

M

M
∑

i=1

θi

}

. (3.8)

In order to bound the right–side expression set

T1 =
1

M

M
∑

i=1

EW (·|ui) log
W (·|ui)

rn(·) ,

T2 =
1

M

M
∑

i=1

(

VarW (·|ui) log
W (·|ui)

rn(·)

)1/2

Clearly,

T1 =
M

∑

i=1

∑

zn

1

M
W (zn|ui) log

W (zn|ui)

rn(zn)

=
n

∑

i=1

∑

z

∑

x

1

M
δ(uit, x)wt(z|x) log

wt(z|x)

rt(z)

=
n

∑

i=1

I(Xt ∧ Zt), where Pr(Xt = x) = pt(x) (3.9)

and Zt is the corresponding output distribution.

T2 was bounded in [11] as follows:

By the convexity of the square root function

T2 ≤
(

M
∑

i=1

1

M
VarW (·|ut) log

W (·|ui)

rn(·)

)1/2

and

M
∑

i=1

1

M
VarW (·|ut) log

w(·|ui)

rn(·) =
n

∑

t=1

M
∑

i=1

1

M
Varwt(·|uit) log

wt(·|uit)

rt(·)

=
n

∑

t=1

∑

x

∑

z

pt(x)wt(z|x)

(

log
wt(z|x)

rt(z)
− Ewt(·|x) log

wt(·|x)

rt(·)

)2

.
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Since for any RV F and any constant a VarF ≤ E(F + a)2, the last quantity can be
upperbounded by

n
∑

t=1

∑

x

∑

z

pt(x)wt(z|x)

(

log
wt(z|x)

rt(z)
+ log pt(x)

)2

=
n

∑

t=1

∑

x

∑

z

rt(z)
Pt(x)wt(z|x)

rt(z)

(

log
wt(z|x)pt(x)

rt(z)

)2

.

Since for a probability vector (a1, . . . , ac)

c
∑

i=1

ai log2 ai ≤ max(log2 3, log2 c),

also
∑

x

pt(x)wt(z|x)

rt(z)

(

log
pt(x)wt(z|x)

rt(z)

)2

≤ max(log2 3, log2 |X |) ≤ 3|X |.

Thus
T2 ≤ (3|X |n)1/2. (3.10)

Thus, (3.9) and (3.8) yield

log M ≤
n

∑

t=1

I(Xt ∧ Zt) +

(

2

1 − λ
3|X |n

)1/2

+ log
2

1 − λ

and hence the

Corollary 1 (Augustin [11]): For an (n,M, λ)–code
{

(ui, Di) : 1 ≤ i ≤ M
}

for the
non–stationary DMC (wt)

∞
t=1

log M ≤
n

∑

t=1

I(Xt ∧ Zt) +
3

1 − λ
|X |n1/2, 0 < λ < 1, (3.11)

where the distributions of the RV’s are (as usual) determined by the Fano–distribution on
the code words.

Already in [7] we showed how to use Fano–distributions to derive upper bounds on the
lengths of codes for the restricted TWC in case of maximal errors. We apply this approach
now to (n,M,N) codes

{

(ui, vj, Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N
}

for the MAC with average

error λ, that is,

1

MN

M
∑

i=1

N
∑

j=1

W (Dij|ui, vj) = 1 − λ. (3.12)

A =

{

(i, j) : W (Dij|ui, vj) ≥
1 − λ

2
, 1 − λ, 1 ≤ i ≤ M, 1 ≤ j ≤ N

}

. (3.13)
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C(i) =
{

(i, j) : (i, j) ∈ A, 1 ≤ j ≤ N
}

,

B(j) =
{

(i, j) : (i, j) ∈ A, 1 ≤ i ≤ M
}

. (3.14)

Consider the subcode
{

(ui, vj, Dij) : (i, j) ∈ A
}

and define with its Fano–distribution
RV’s Xn, Y n

Pr
(

(Xn, Y n) = (ui, vj)
)

= |A|−1, if (i, j) ∈ A. (3.15)

It follows from Corollary 1 that

log |B(j)| ≤
n

∑

t=1

I(Xt ∧ Zt|Yt = vjt) +
3

1 − λ
|X |n1/2, (3.16)

log |C(i)| ≤
n

∑

t=1

I(Yt ∧ Zt|Xt = uit) +
3

1 − λ
|X |n1/2, (3.17)

and

log |A| ≤
n

∑

t=1

I(XtYt ∧ Zt) +
3

1 − λ
|X|n1/2. (3.18)

Since Prob(Yt = y) = |A|−1
∑

(i,j)∈A δ(vjt, y), it follows from (3.16) that

|A|−1
∑

(i,j)∈A

log |B(j)|

≤ |A|−1
∑

(i,j)∈A

n
∑

t=1

I(Xt ∧ Zt|Yt = vjt)
∑

y

δ(vjt, y) +
3

1 − λ
|X |n1/2

=
n

∑

t=1

I(Xt ∧ Zt|Yt) +
3

1 − λ
|X |n1/2. (3.19)

Since |A| + 1−λ
2

(MN − |A|) ≥ (1 − λ)MN , we get

|A| ≥ 1 − λ

1 + λ
MN =

(

1 − 2λ

1 + λ

)

MN , (1 − λ∗)MN. (3.20)

Furthermore,

|A|−1
∑

(i,j)∈A

log |B(j)| = |A|−1
∑

j=1

|B(j)| log |B(j)|

≥ |A|−1
∑

j:|B(j)|≥ 1−λ∗

n
M

|B(j)| log |B(j)|

≥ |A|−1

(

|A| − 1

n
|A|

)

log
1 − λ∗

n
M

=

(

1 − 1

n

)

log
1 − λ∗

n
M,

7



and therefore by (3.19)

log M ≤
(

1 +
2

n

)

(

n
∑

t=1

I(Xt ∧ Zt|Yt) +
3

1 − λ
|X |n1/2

)

− log(1 − λ∗) + log n

≤
n

∑

t=1

I(Xt ∧ Zt|Yt) + c1(λ)n1/2.

Analogously,

log N ≤
n

∑

t=1

I(Yt ∧ Zt|Xt) + c2(λ)n1/2

and by (3.18), (3.20) also

log MN ≤
n

∑

t=1

I(Yt ∧ Zt|Xt) + c3(λ)n1/2.

Thus we have proved

Lemma 2. An (n,M,N, λ)–code
{

(ui, vj, Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N
}

for the MAC

satisfies for 0 ≤ λ < 1 and c(λ) suitable

log M ≤
n

∑

t=1

I(Xt ∧ Zt|Yt) + c(λ)n1/2,

log N ≤
n

∑

t=1

I(Yt ∧ Zt|Xt) + c(λ)n1/2,

log NM ≤
n

∑

t=1

I(XtYt ∧ Zt) + c(λ)n1/2,

where the distributions of the RV’s are determined by the Fano–distribution on the code
words

{

(ui, vj) : (i, j) ∈ A
}

. A is defined in (3.13).

Remark 2. This does not yet prove the Theorem, because Xt and Yt are not necessarily
independent.

4 Wringing Techniques

To fix some ideas let us quickly recall the attempt of [7], which may be considered as the
first “wringing idea”. In order to gain the independence of Xn, Y n mentioned in Remark
2 it would suffice to find for an (n,M,N, λ)–code a maximal error subcode of essentially
the same rates, that is, a set A∗ = B∗ × C∗ with B∗ ⊂ {1, . . . ,M}, C∗ ⊂ {1, . . . , N} such
that

W (Dij|ui, vj) > ε for (i, j) ∈ A∗ (4.1)
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and
|B∗| ≥ M exp

{

−o(n)
}

, |C∗| ≥ N exp
{

−o(n)
}

. (4.2)

Abstractly the problem can be stated as follows:

Given A ⊂ {1, . . . ,M} × {1. . . . , N}, |A| ≥ δMN , M = exp{R1n}, N = exp{R2n}, does
there exist an A∗ = B∗ × C∗ ⊂ A satisfying (4.2)?

This is exactly the problem of Zarankiewics [13] for certain values of the parameters (there
exists an extensive literature on this problem for |B∗|, |C∗| small). In [17] we showed that
the question has in general a negative answer and Dueck [5] proved that also the reduction
to a maximal error subcode is in general impossible, because average and maximal error
capacity regions can be different.

Next observe that the existence of subcodes with weaker properties suffices. It is enough
that Xn and Y n are almost independent. As a possible approach one might try to achieve
this by considering a Quasi–Zarankiewics problem in which the condition A∗ = B∗×C∗ ⊂
A is replaced by

|A∗ ∩ B(j)| ≥ (1 − η)|B∗|, |A∗ ∩ C(j)| ≥ (1 − η)|C∗|

for j ∈ C∗, i ∈ B∗ and η close to 1.

Selecting A at random it is readily verified that this is in general again not possible for
the parameters specified above.

However, in order to prove the strong converse via Lemma 2 it suffices to find subcodes,
whose associated component variables Xt, Yt are almost independent for t = 1, 2, . . . , n.
The answer is given by Lemma 3 below.

Dueck’s original solution is based on a wringing technique, which is slightly weaker (see
Remark 3). He doesn’t need to produce a sub–code, because he uses instead of Lemma 2
the method of blowing up decoding sets [4] in conjunction with Fano’s Lemma.

Lemma 3. Let Xn, Y n be RV’s with values in X n,Yn resp. and assume that

I(Xn ∧ Y n) ≤ σ.

Then for any 0 < δ < σ there exist t1, . . . , tk ∈ {1, . . . , n}, where 0 ≤ k < 2δ
σ
, such that

for some xt1 , yt1 , xt2 , yt2 , . . . , xtk , ytk

I(Xt ∧ Yt|Xt1 = xt1 , Yt1 = yt1 , . . . , Xtk = xtk , Ytk = ytk
) ≤ δ (4.3)

for t = 1, 2, . . . , n, and

Pr(Xt1 = xt1 , Yt1 = yt1 , . . . , Xtk = xtk , Ytk = ytk
) ≥

(

δ

|X ||Y|(2σ − δ)

)k

. (4.4)

Proof. If (4.3) does not hold already for k = 0, then for some tI I(Xt1 ∧ Yt1) > δ. Since

σ ≥ I(Xn ∧ Y n) ≥ I(Xn ∧ Y n|Xt1Yt1) + I(Xt1 ∧ Yt1),
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we obtain
I(Xn ∧ Y n|Xt1Yt1) < σ − δ.

Set

σ1 = σ, ε1 =
δ

2σ1 − δ

and

At1(ε1) =

{

(xt, yt) : Pr(Xt = xt, Yt = yt) ≥
ε1

|X ||Y|

}

.

Then

σ1 − δ ≥
∑

(xt1 ,yt1 )∈At1 (ε1)

I(Xn ∧ Y n|Xt1 = xt1 , Yt1 = yt1)Pr(Xt1 = xt1 , Yt1 = yt1)

and since Pr
(

(Xt1 , Yt1) /∈ At1(ε1)
)

≤ ε there exists an (xt1 , yt1) ∈ At1(ε1) such that

σ1 − δ ≥ I(Xn ∧ Y n|Xt1 = xt1 , Yt1 = yt1)(1 − ε1).

Using (σ1 − δ)(1 − ε1)
−1 = σ1 − δ

2
we get therefore

σ1 −
δ

2
≥ I(Xn ∧ Y n|Xt1 = xt1 , Yt1 = yt1) (4.5)

and
Pr(Xt1 = xt1 , Yt1 = yt1) ≥

ε1

|X ||Y| . (4.6)

We repeat now the argument with the choices σ2 = σ1 − δ
2
, ε2 = δ

2σ2−δ
.

We are either done or there exists a t2 with

I(Xt2 ∧ Yt2|Xt1 = xt1 , Yt1 = yt1) > δ.

Then

σ2 ≥ I(Xn ∧ Y n|Xt1 = xt1 , Yt1 = yt1)

≥ I(Xn ∧ Y n|Xt1 = xt1 , Yt1 = yt1 , Xt2 , Yt2) + I(Xt2 ∧ Yt2|Xt1 = xt1 , Yt1 = yt1)

and there exists a pair (xt2 , yt2) with

σ2 −
δ

2
≥ I(Xn ∧ Y n|Xt1 = xt1 , Yt1 = yt1 , Xt2 = xt2 , Yt2 = yt2) (4.7)

and with
Pr(Xt2 = xt2 , Yt2 = yt2|Xt1 = xt1 , Yt1 = yt1) ≥

ε2

|X ||Y| . (4.8)

Iterating the argument with the choices σi = σi−1 − δ
2
, εi = δ

2σi−δ
(i = 3, 4, . . . ) we obtain

either for some i = k < 2σ−δ
δ

,

I(Xt ∧ Yt|Xt1 = xt1 , Yt1 = yt1 , . . . , Xtk = xtk , Ytk = ytk
) ≤ δ

10



or for k = 2σ
⌊δ⌋

, σk = σ
(

2σ
⌊δ⌋

− 1
)

δ
2
≤ δ, and hence again

δ ≥ σk ≥ I(Xn ∧ Y n|Xt1 = xt1 , Yt1 = yt1 , . . . , Xtk = xtk , Ytk = ytk
)

≥ I(Xt ∧ Yt|Xt1 = xt1 , Yt1 = yt1 , . . . , Xtk = xtk , Ytk = ytk
)

for t = 1, . . . , n.

In any case also

Pr(Xt1 = xt1 , Yt1 = yt1 , . . . , Xtk = xtk , Ytk = ytk
)

≥
k

∏

i=1

ε1

|X ||Y| =
k

∏

i=1

δ

|X ||Y|(2σi − δ)
≥

(

δ

|X ||Y|(2σ − δ)

)k

.

Q.E.D.

Remark 3. Dueck’s result is that under the assumption of the Lemma

I(Xt ∧ Yt|Xt1 , Yt1 , . . . , Xtk , Ytk) ≤ δ for t = 1, 2, . . . , n

and some t1, . . . , tk; k < σ
δ
.

In the following it is convenient to adopt the notation:

For a RV Xn = (X1, . . . , Xn) with values in X n and distribution P we define

P (xn) = Pr(Xn = xn)

and

P (xs1
, . . . , xsl

|x′
t1
, . . . , x′

tm) = Pr(Xs1
= xs1

, . . . , Xsl
= xsl

|Xt1 = x′
t1
, . . . , Xtm = x′

tm)

for any not necessarily distinct

s1, . . . , sl, t1, . . . , tm ∈ {1, . . . , n}.

Lemma 4. Let P and Q be probability distributions on X n such that for a positive
constant c

P (xn) ≤ (1 + c)Q(xn) for all xn ∈ X n, (4.9)

then for any 0 < γ < c, 0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, . . . , n}, where 0 ≤ k ≤ c
γ
,

such that for some xt1 , . . . , xtk

P (xt1|xt1 , . . . , xtk) ≤ max
(

(1+γ)Q(xt|xt1 , . . . , xtk), ε
)

for all xt ∈ X and all t = 1, 2, . . . , n
(4.10)

and
P (xt1 , . . . , xtk) ≥ εk. (4.11)
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Proof. If (4.10) does not hold already for k = 0, then for some t1 and some xt1

P (xt1) > max
(

(1 + γ)Q(xt1), ε
)

and we derive from (4.9)

(1 + c)Q(xt1) ≥ P (xt1) > max
(

(1 + γ)Q(xt1), ε
)

.

This insures (4.11) for k = 1 and P (xt1) > (1 + γ)Q(xt1) > 0. From (4.9) we can derive
therefore

P (xn|xt1) ≤
1 + c

1 + γ
Q(xm|xt1) for all xn ∈ X n. (4.12)

Repeating the argument we get either P (x1|xt1) ≤ max
(

(1 + γ)Q(xt|xt1), ε
)

for x1 ∈
X , 1 ≤ t ≤ n (and we are done) or there exists a t2 and an xt2 with

1 + c

1 + γ
Q(xt2|xt1) ≥ P (xt2|xt1) > max

(

(1 + γ)Q(xt2 |xt1), ε
)

.

This yields (4.11) for k = 2 and implies with (4.12)

P (xn|xt1 , xt2) ≤
1 + c

(1 + γ)2
Q(xn|xt1 , xt2).

Clearly, after k steps (without the procedure having ended before) (4.11) holds and

P (xn|xt1 , xt2 , . . . , xtk) ≤
1 + c

(1 + γ)k
Q(xn|xt1 , . . . , xtk),

which implies

P (xt|xt1 , xt2 , . . . , xtk) ≤
1 + c

(1 + γ)k
Q(xt|xt1 , . . . , xtk)

for all xt ∈ X , 1 ≤ t ≤ n.

Now for k + 1 ≥ c
γ
≥ log(1+c)

log(1+γ)
: 1+c

(1+γ)k ≤ 1 + γ. Q.E.D.

Corollary 2. Let A ⊂ {1, . . . ,M}×{1, . . . ,M}, |A| ≥ (1−λ∗)MN , and let
{

(ui, vj, Dij) :
(i, j) ∈ A

}

be a code for the MAC with maximal error probability λ.

Then for any 0 < γ < c , λ∗

1−λ∗
, 0 ≤ ε < 1 there exist t1, . . . , tk ∈ {1, . . . , n}, where

k ≤ λ∗

γ(1−λ∗)
, and some (xt1 , yt1), . . . , (xtk , ytk

) such that

{

(ui, vj, Dij) : (i, j) ∈ A
}

,
{

(uitl = xtl , vjtl = ytl
for 1 ≤ l ≤ k

}

(4.13)

is a subcode with maximal error λ and

(a) |A| ≥ εk|A|,M = |
{

ui : (i, j) ∈ A
}

| ≥ εkM , N = |
{

vj : (i, j) ∈ A
}

| ≥ εkN

12



(b)
(

(1 + γ)Pr(X t = x)Pr(Y t = y) − γ − |X ||Y|ε) ≤ Pr(X t = x, Y t = y)

≤ max
(

(1 + γ)Pr(X t = x)Pr(Y t = y), ε
)

for all x ∈ X , y ∈ Y , 1 ≤ t ≤ n.

X
n

= (X1, . . . , Xn), Y
n

= (Y 1, . . . , Y n) are distributed according to the Fano–distribution
of the subcode.

Proof. Apply Lemma 4 with P as Fano–distribution of the code, that is,

P (xn, yn) = Pr(Xn = xn, Y n = yn) =
1

|A| , if (xn, yn) = (ui, vj) for (i, j) ∈ A

and Q defined by

Q(xn, yn) = Pr(Xn = xn)Pr(Y n = yn), (xn, yn) ∈ X n × Yn.

X n × Yn takes the role of X n in the Lemma.

Now Q(xn, yn) = 0 implies P (xn, yn) = 0, Q(xn, yn) = 1
|A|

implies P (xn, yn) = 1
MN

, and

by our assumption on A, 1
|A|

≤ 1
1−λ∗

MN .

Therefore (4.9) holds with c = 1
1−λ∗

− 1 = λ∗

1−λ∗
and the Lemma yields immediately (a)

and the right side inequality in (b). This inequality implies

Pr(X t = x, Y t = y) = 1 −
∑

(x′,y′) 6=(x,y)

Pr(X t = x′, Y t = y′)

≥ 1 −
∑

(x′,y′) 6=(x,y)

max
(

(1 + γ)Pr(X t = x′, Y t = y′), ε
)

≥ 1 − |X ||Y|ε − (1 + γ)
(

1 − Pr(X t = x, Y t = y)
)

= (1 + γ)Pr(X t = x, Y t = y) − γ − |X ||Y|ε.

Q.E.D.

5 Proof of the Theorem

We simply have to combine Lemma 2 and Corollary 2.

For an (n,M,N, λ) code
{

(ui, vj, Dij) : 1 ≤ i ≤ M, 1 ≤ j ≤ N
}

define A as in (3.13).

Then |A| ≥ (1 − λ∗)MN for λ∗ = 2λ
1+λ

. Apply Corollary 2 with the parameters

γ = n−1/2, ε = n−1. (5.1)

Thus for some k ≤ λ∗

1−λ∗
n1/2

|A| ≥ εk|A| ≥ n−λ∗n1/2/(1−λ∗)(1 − λ∗)M,N ≥ n−λ∗n1/2/(1−λ∗). (5.2)
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Application of Lemma 2 to this subcode yields

log M ≤ λ∗

1 − λ∗
n1/2 log n + log M

≤
n

∑

t=1

I(X t ∧ Zt|Y t) + C(λ)n1/2 log n

log N ≤
n

∑

t=1

I(Y t ∧ Zt|X t) + C(λ)n1/2 log n

log MN ≤
n

∑

t=1

I(X tY t ∧ Zt) + C(λ)n1/2 log n

with

C(λ) = c(λ) +
λ∗

1 − λ∗
− log(1 − λ∗).

Since

I(X tY t ∧ Zt) = H(X tY t) + H(Zt) − H(X tY tZt),

I(X t ∧ Zt|Y t) = I(X tY t ∧ Zt) − I(X t ∧ Zt)

= H(X t, Y t) − H(X tY tZt) − H(X t) + H(X tZt)

etc., using (b) we complete the proof by showing that for n−1/2 ≥ |X ||Y|n−1

|H(X t, Y t) − H(
=

X t,
=

Y t)| ≤ const. n−1/2 log n etc., (5.3)

where Pr(
=

X t = x,
=

Y t = y) = Pr(X t = x, Y t = y).

Clearly,

(1 + n−1/2)Pr(X t = x)Pr(Y t = y) − 2n−1/2 ≤ Pr(X t = x, Y t = y)

≤ (1 + n−1/2)Pr(X t = x)Pr(Y t = y) + n−1

and hence
|Pr(X t = x)Pr(Y t = y) − Pr(X t = x, Y t = y)| ≤ 2n−1/2. (5.4)

This implies with

Pr(
=

Zt = z|
=

X t = x,
=

Y t = y) = w(z|xy) = Pr(Zt = z|X t = x, Y t = y)

|Pr(X t = x, Y t = y, Zt = z) − Pr(
=

X t = x,
=

Y t = y,
=

Zt = z)| ≤ 2 · n−1/2

for x ∈ X , y ∈ Y , z ∈ Z. (5.5)
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For 0 ≤ a ≤ b ≤ a + const. n−1/2 ≤ 1 obviously

|a log a − b log b| ≤ const. n−1/2 log n. (5.6)

This and (5.5) imply (5.3). Q.E.D.

Remark 4. Using Lemma 3 instead of Lemma 4, one can proceed as follows:

1. One shows that for Xn, Y n associated with the code I(Xn|Y n) ≤ σ = f(λ).

2. Application of Lemma 3 and the analogue of Corollary 3 gives a subcode with the
usual desired properties and I(X t ∧ Y t) ≤ δ for 1 ≤ t ≤ n. Since I(X t ∧ Y t) is an
I–divergence Pinsker’s inequality implies

∑

x,y

|Pr(X t = x, Y t = y) − Pr(X t = x)Pr(Y t = y)| ≤ 2δ1/2.

For δ = n−1/2 this approach yields a strong converse with the weaker n3/4 log n–deviation.

Remark 5. The fact that our question concerning the Quasi–Zarankiewicz problem has
a negative answer has also the consequence that the conclusion in Lemma 4 cannot be
replaced by

P (xn|xt1 , . . . , xtk) ≤ max
(

(1 + γ)Q(xn|xt1 , . . . , xtk |, ε
)

(4.10*)

for all xn ∈ X n and xt1 , . . . , xtk suitable and (4.11) if for instance ε ≥ 1/n.
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