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The pair (A, B); A, B<{0,1}™; is called an (m, §)-system, if for the Hamming distance

function d,

d(a,b)=8Vaec A,VbeB. (1)
Let Sg' denote the set of those systems. We consider the function ‘

M(m, 8)2max{|A||B|: (A, B)< S} @)
and prove the following Theorem: For m=1,2,..., maxy.s,, M(m, 8)=22" if m=2n or

m =2n+1. The maximum is assumed for & = n.

1. Introduction

The study of (m, §)-systems is motivated by the problem of lower bounding the
two-way complexity (in the sense of Yao [1]) of the Hamming distance function.
Results in this direction will be contained in [2].

Two-family extremal problems have frequently been considered in the litera-
ture [3]. Replacement of (1) by

d(a,b)=8 VaecA, VbeB (1)

yields an extremal problem, which has been solved in [4]. However, in spite of the
similarity between conditions (1) and (1), the present proof techniques are quite
different from those in [4]. Actually, we give two proofs of the Theorem. The first
is by a 1-step and the second by a 2-step induction in m. The examples

A£{01, 10}, B4{11, 00}" (3)
A=2{01, 10}" x{0},” BZ£{11, 00}" x{0} (4)

are crucial for understanding the Theorem. They immediately yield
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Lemma 1.
MQ2n,n)=2*", MQh+1, n)=2" (n=1,2,..)
Thus only the inequality

max M(m, §)=<23" )

O=&=m

remains to be proved.

First we show that this inequality follows from either one of the following two
propositions. Actually, these derivations establish also their equivalence. The
proofs for the propositions will be given subsequently. - ’

Proposition 1. M(2n+1, n)= M(2n, n),n=12..).

Proposition 2. M(2n, n)<2> (n=1,2,..).

2. Preliminaries

The operation_‘applied to a sequence denotes complementation, that is,
component-wise exchange of 0’s and 1’s. When applied to a set of sequences, it is
understood in the Minkowski sense. For ease of reference, a simple property of
the Hamming distance function with respect to complementation is stated as

Lemma 2. (i) d(a b)+d(a, b)=m, d(a, b)=d(a, b), (a, be{0, m),

(”) (As B) € S;in é (A, B) € rr:11—89 i ‘

(i) M(m, 8) = M(m, m —8§).

We also adopt the following notation: For a set C<{0, 1} and ¢ €{0, 1} define
Cif{lcr,....c)eCic =gl {0, 1} (5)
CH&{(cy, ..., Gy Conrs - . -, Co):

(Cl’ st Clhl’ €, Ct+1’ LR ] Cm)e C}C{Oa 1}m~1 (6)

Analogously, for two components s, t we define C5c{0, 1} and C*'< {0, 1}™2,

N n

3. Proposition 1 = Proposition 2

We proceed by induction in n. The case n =1 s settled by inspection. Now for
(A, B)e S2Y, clearly '

A=AJUA), B=B|UB| ' ' (7)
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and for £ €{0, 1}

|A¥=|AY, |B¥'|=|Bl; | (8)
ATBYI=SMQ@2n+1,n+1); . | (9)
AT B =sMQ2n+1, n). _ (10)

Since’ by Lemma 2, M(2n+1,n+1)=MQ@2n+1, n), the relations (7)-(10) and
Proposition 1 imply

|Al|Bl= Y |Al|BY<4M@2n, n). (11)

e,n<{0,1}

Since M(2n, n)<2°" by hypothesis, thus M(2(n+ 1), n+ 1) <4(22")=220+D_ ]

4. Proposition 2 = (I)

Case m =2n. For (A, B) e S3", consider (A X A, B X B). By Lemma 2, this is an
element of S3%. Therefore, by Proposmon 2,|AXA||B ><B| (A||B])?=<2*" and
hence M(2n, 8)=<M(2n, n). -

Case m=2n+1. Since d(a, b)+ d(a,b)=m and m is odd, necessarily
d(a, b) # d(a, b) and thus for (A, B)e Sy also ANA =¢, BNB = @. By Lemma
2,

(C,D)2(AXAUAXA, BXBUB xB)e §2@n+1.

and thus by Proposition 2 |C]|D|=4(A||B})?><222"*Y which gives |A| |B|=2?". |
Hence, we have derived (I) and in conjunction with Lemma 1, Proposition 1 is
also proved. -

5. Proof of Proposition 1

The proof is based on two key observations. For any (A, B)e S+t
Vie{l,...,2n+1} if A¥NAF#Q then B* = (OI)

Clearly for a,ae A¥ and be B¥ we have d(a, b)=d(a, b)=n—-1 in contra-
diction to d(a, b)=2n—d(a, b)) =n+1.

Jee{l, ..., 2n+1}: AL B +]AY By =|AY| B +| Al |B . (o1

For this just notice that 3727 (|A}]|B{|+|A%| |Bi)) counts the number of identical
components for all pairs of sequences (a,b)e AXB and therefore equals
(n+1)]A]|B|. On the other hand ¥2n' (|A¢ IBo|+| A4 |BY]) counts the number
of distinct components for all pairs of sequences (a, b)e A X B and therefore
equals n |A||B|, a smaller quantity. The Pigeon Hole Principle gives (OII).
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We can assume without loss of generality that t =2n+1 and omit the index t.
Notice that (A, B;) and (A,, By) are (2n, n)-systems.

Case 1. e {0, 1} with A*NA*#¢ and B*NBT #@. By (Ol), A¥=B} =
and thus |A||B|=]A% B =<M(Q@2n, n).

Case 2. e {0, 1} with ATNAT#9 and B¥*NB*=¢ (resp. vice versa). By
(OI) B¥=¢ and thus IAHBl |A¥|B¥|+|A% B <2|A%||BY] (by OID). Re-
place now B¥ by D£ B*UB?. Since (A¥ D)eSZ", we get again |A|[B|=
|A%|D|=M(2n, n). | ; |

Case 3. Veec{0,1}: A*HA*—Q B*NB*= Q) Choose now & such that
|A*||B* =|A%¥||B%| and define C£ A*UA* D2B*UB*. Now (C,D)e S2" and

|A||B| =A% |BY|+|A%l IBE+]|ATIBGI+|AT BT
<2(A%|1Bfl+]A% 1B (by OID
<4|A*|B* (by choice of &)
=|C||D|<=M(2n, n).

6. Proof of Proposition 2

Again the proof is based on two observations.
If (A, B)e S2", then (A, B), (A, B), (A, B)e $?" and also (AUA, BUB)e S
We can therefore assume A = A,_ B = B and thus

|AY=|AY=3]A] and |Bi=|Bi=2|B] (I=<t=<2nee{0,1}.
(OIII)

Further ,
Jte{2,3,...,2n} and IAne{0,1}:]|AIALT =3
nd BB = | (o1v)

For this, notice that Y7, lA,bl |B{‘11+|A{'1| |BY| counts the number of distinct
components for all pairs of sequences (a, b)e A1 x B} and therefore equals
n| A!||B1|. Again by the Pigeon Hole Principle there exists a t €{2, 3, ..., 2n} with
AL B+ AL Bl =m/(2n—-1))|A]l|Bi|>2|A}||Bil|. This implies (OLV).

Now again we distinguish among three cases.

Case 1. ATNATN+#0 and BI% NB%L (. Notice that by the distance prop-
erties necessarily, A*{=¢ and B%=@. By (OII) therefore |A||B|=
4|A%Y |B*“l<4M(2(n—1) n—1). |

Case 2. A¥NA%+ ¢ and B5E NB%E=0. By the previous argument neces-
sarily, B¥!' = . Define now C = A"<1t and D 2B%% U B%Y. Since d(a, b) = d(d; b)
and obviously d(a, b)=d(a, b), also d(a, b)=d(a, b). Thus (C, D)e §?"7% and,
by (OIIT) and (OIV), |A||B|<4|C||D|<4M(2n-2,n~1).

" Case 3. AT NA%*'=0 and Bii NBY5=0. Since A = A and B =B we have
now A¢: = A*“ B%Y = B%L Furthermore, since d(1m, 117) = d(07, On) =1, for.

1n»
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CAAMUAT DABYYUBT we have (C, D)e S, 2and thus again, by (OII])

Ins
and (OIV), |A||B|<4 | ID|=4M@n—2, 1~ 1).
By the inductive hypothesis for n—1, M(2n—-2,n—1)<2*""" and hence

M(Q2n, n) <4(2*>"" V) =22

References

[1] A.C. Yao, Some complexity questions related to distributive computing, 11th ACM Symp. on

Theory of Computing, (1979) 209-213.
[2] A. El Gamal and K.F. Pang, On the communication complexity of computation, in preparation.
[3] C. Greene and D.J. Kleitman, Proof techniques in the theory of finite sets, MIT Lecture Notes.
[4] R. Ahlswede and G. Katona, Contributions to the geometry of Hamming spaces, Discrete Math.

17 (1977) 1-22.




