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The Capacity of a Channel 
with Arbitrarily Varying Channel Probability Functions 

and Binary Output Alphabet* 

R .  AHLSWEDE and J. WOLFOWITZ 

Summary. Let X =  {1 . . . . .  a} be the " input  alphabet"  and Y={1, 2} be the "ou tpu t  alphabet".  

" r? Let X~= X and Y~= Y for t = 1, 2 . . . . .  X, ,= ~ X ~ and !1, = Y~. Let S be any set, cg = {w(. 1" I s ) lseS}  
t = l  t = l  n 

be a set of (a x 2) stochastic matrices w( ' l ' ls) ,  and St=S ,  t=  1 . . . . .  n. For every sn=(s 1 . . . . .  s " ) e H S  t 
n t = l  

define P (. ]" Is.) by P (y.[x.ls.) = I~ w (yt]x~lst) for every x.  = (x a . . . . .  x")~ X .  and every y. = (yl, ... ,  y.)e 11.. 
t = l  

Consider the channel  • = {P(.I.  I s~)ls.s S.} with matrices w(-].]s) varying arbitrarily from letter to 
letter. The authors  determine the capacity of this channel when a) neither sender nor receiver knows s. ,  
b) the sender knows s. but  the receiver does not, and c) the receiver knows s. but  the sender does not. 

1. Introduction 

Let X = { 1  . . . .  ,a} be the "input  alphabet" and u  be the "output  
alphabet" of the channels we shall study below. Results for a > 2 will not appear 
until later sections. Hence, to simplify matters, we assume henceforth that a = 2 
unless the contrary is explicitly stated. (The case a = 1 is trivial.) Let Xt=  X and 

n 

y t =  y for t = 1, 2 , . . . .  By X,--1-[ Xt we denote the set of input n-sequences 
t = l  

(words of length n) and by I1, = I-I yt we denote the set of output n-sequences. 
t = l  

Let S be any set, and let cg={w( . I . I s ) l ssS  } be a set of ( ax2 )  stochastic 
matrices w(" [" [s). We shall refer to a w(" [. Is) in the sequel either as a "matr ix"  
or as a "channel  probability function" (c.p.f.). Let S~=S, t= 1, ..., n. For  every 

n 

n-sequence s ,=(s l , . . . ,  s")e l-[ S' we define P( .  I" Is,) by 
t = t  

n 

(1.1) P(y, Ix,] s,)= I-I w(y  ix t j s') 

for every x , = ( x  1, ..., x")~X, and every y = ( y l  . . . .  , y,)6 i1,, 

Now consider the channel 

(1.2) cg=  {p(. l" I s,)l s, eS,} .  

Suppose that sender and receiver want to communicate over the channel cg, 
without knowing which channel n-sequence s, will govern the transmission of any 

* Research of both authors  supported by the U.S. Air Force under Grant  AF-AFOSR-68-1472 
to Cornell University. 



The Capacity of a Channel 187 

word (input n-sequence). A code (n, N, 2) is a system 

(1.3) {(ul, A1) . . . . .  (UN, AN)} 

where the message sequence ui~X,,  Ai= Y,, i= 1 . . . .  , N, A i ~ A j =  0 for i . j ,  and 

(1.4) P(Ai [u i [ s , )> l -2  , i=1  . . . .  ,N,  andal l  s,~S,.  

A number C is called the capacity of the channel if, for any e > 0 and any 2, 0 < 2 < 1, 
the following is true for all n sufficiently large: There exists a code (n, 2 "<c-~ 2) 
and there does not exist a code (n, 2 "<c+ ~), 2). 

The channel described above has been called (see [2]) a channel with arbitrarily 
varying c.p.f.'s, which we abbreviate thus: a.v.ch. The study of a.v.ch, was 
initiated in [2]. The authors of [2] did not limit themselves to the case where Y 
has only two elements, and obtained various partial results. We limit ourselves 
here to the case [Y[ = 2, but for the problems we treat our results go considerably 
beyond [2] and give the capacity of the particular channels studied. The problems 
where [Y[ > 2 seem to be unamenable to our methods. 

Theorem 1 can easily be improved by using sharper estimates of the maximal 
code length for discrete memoryless channels. 

2. Preliminary Lemmas 

Once again we remind the reader that a = 2 until the contrary is explicitly 
stated. In particular, a = 2 in Sections 2 and 3. 

We shall consider first a special case of a. v. oh. from which the general case 
can be easily derived. Consider two matrices w, w'. We denote the i-th row vector 
in w by i and the i-th row vector in w' by i'. We represent these vectors as points 
in E 2. Let the matrices w, w' be such that their representation is given by the 
following Fig. 1, in which the abscissa is the first coordinate of a vector: 

Fig. 1 

If we define w('l ' ll)--w('l ')  and w('l'r2)=w'('lo), then P('I'rSn) can be 
defined as in (1.1). 

We say that the code (1.3) is a strict maximum likelihood code (s. m. 1. c.) with 
respect to P( .  [. I s*), where s* = (2 . . . . .  2), if, for given ul, . . . ,  UN, 

(2.1) Ai= {Y, lY,~ Y, and P(y, [uil s*)>P(y, [uj[ s*) for j~: i} 

for i=  1 . . . .  , N. (Cf. [4], 7.3.1.) 

Define 

~A~ = {y, [y, ~ A~ and y' = u~}, 

2A~ = {Yn [y, eA~ and yt ~ u~}, 

1A*'= {yl . . . .  , yt- 1, y~+a . . . .  , y,)[ there exists yt such that (yl . . . . .  y")~IA~}, 

2 A ,  t = {y l  . . . .  , yt- 1, yt + 1 . . . . .  Y") I ther6 exists yt such that (yl . . . .  , y") ~ zA~}. 
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L e m m a  1. With w and w' as in the f igure,  i f  {(ui, Ai)[ i = 1 . . . . .  N }  is a s.m.I.c. 
with respect to P( .  ]. Is*), then 

(2.2) 1A* t~a  A- t ,  i = l , . . . , N ;  t = l , . . . , n ,  

and 

(2.3) P(AI lu/I sn)> P(Ai  luil s*) 

for  i=  1, . . . ,  N and all s , ~ S , .  

Proo f  Suppose first that  u~ = 1. 
Let  ( y l , . . . , y t - l ,  yt+l, yn)e2 A*t  and (yl, y t-1,  t t+l �9 . . ,  . . . ,  u i , y  , . . . , y " )~ lA~ .  This 

could occur  for only one of two reasons:  

(a) there exists us, j :t= i, such that  

(2.4) p((y l ,  , y t -  1 !.gt . t + l  S@n)>n((yl, , yt+l . . . . .  Yn)[Uil S'n) �9 .. / ,y  . . . .  ,y")[ujl . . . .  y t - ! , u / ,  

o r  
n 

. t yt+l, ~ Ai ,  and there exists a k + i  such that  (b) (yl, . . ,  y t -  !, ui, . . . ,  yn)q~ 
i = 1  

(2.5) p((yt ,  y t -1 ,  t t+l s . ) = p ( ( y l ,  1 t yt+l,  �9 . . ,  ui, y . . . . .  Y")lukl . . . , y t -  ,ui ,  . . . , y " ) luds* ) .  

Whatever  the si tuation may  be, we can find a j + i, such that  

(2.6) p ( ( y l , . . . , y t - l ,  ut . t + l  . . ' ,  ui ' . . . ,yn)  lUi[S*n)" / , y  , . . . , y , ) l u j [ s . ) > p ( ( y l ,  / - 1 ,  t yt+l 

In case w (. [ 212) = w (- ] 1 ] 2), N -- 1 and the lemma holds. We can therefore assume 
that  w(l[212):t :w(l[l[2).  This implies that  w(11112)>0 (see Fig.l). 

w(2[112) 
Suppose first that  t u ) - 1 .  Mult iplying bo th  sides of (2.6) by w(l[ 112) > 0  we 

obtain 

(2.7) P((y~, y t - ! ,Z ,  yt+~ . . . . .  y " ) l @ s * ) > P ( ( y  1, . t -1  2 .t+~ . . . ,  . . . .  y , , y  , . . . , y " ) [ u / I s * )  

This contradicts  the fact that  (yl, . . . , y t - t  yt+l . . . .  ,y~)~2 A*t  and proves (2.2) 
in this case. 

Suppose now that  u}=2.  It follows from w( l [2[2)Nw(l [1]2) ,  w(l[ 112)>0, and 
(2.6) that  

p((y~, . . . ,  y t -  l, yt+ X, . . . ,  y")l(uJ, . . . ,  u~- l, " t+ s , . . . ,  uj)[s," *) 
( 2 . 8 )  > p((yt ,  . . . ,  yt-1,  y t+X, . . . ,  y")l(u~, . . . ,  u/t-l, u/t+x, . . . ,  u/)[s,)." * 

However ,  w (2[ 212) > w (21112) and (2.8) imply that  

(2.9) P((y~ . . . . .  y t -a,  2, yt+~, . . . ,  y , ) l u j l s . ) > p ( ( y t ,  . . . ,  y t -1,  2, yt+t,  . . . ,  y")lu/ls*), 

which also contradicts  the fact that  (y~ . . . .  , yt-1,  y t + l , . . . ,  yn)~ 2A* t. This proves 
(2.2) when uti = 1. The p roo f  when uti = 2 is (symmetrically) the same. 

We now prove (2.3) inductively. Assume that  (2.3) holds for s ' ,eS, .  We shall 
show that  (2.3) then holds for s,, where s, is obta ined from s', by changing the 
element  2 in the k-th componen t  of s', to a 1. 
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Define B (i, k) by 

1A*k=z A*kuB( i , k ) ,  2A*kc3B(i ,k)=O. 

This definition is possible because of (2.2). Let 

P (B (i, k) l(u~,... , u k- 1, u k +1 . . . .  , u'~)]s'~) = a'l, 

P(aA*kl(ul, ... , u~" k-1 , ui" k + l , . . . ,  uT)lS',)=al. 

If u~ = 1, then 

and if u~ = 2, then 
P(Ai[ui]s',) = w(1] 112) a~ + a~ 

P(A~[ul]s',)=w(2[2[2)a'l +a'2. 

If now in the k-th component ofs', we replace w(-[. [2) by w(" [. [1), then in both 
cases we get P(Ai]uiJs,)>P(Ai]ui[s',), because w(1]l[1)_>w(lJl[2) and w(212[1)> 
w(21212). This completes the proof of the lemma. 

We now need the following definitions: 

(2.10) The entropy of a probability vector n=(nl ,  ..., no) is defined to be 

c 

H(n) = - ~, n i log n i . 
i = 1  

(2.11) The rate for the probability vector n on X and c.p.f, w(.['[s) is 
R(n, w(" ]" [ s ) )=H(n ' ( s ) ) -  Z n i H ( w ( .  [. Is)), where n'(s) = n. w(. ]-Is). 

i 

(2.12) N(n, 2) is the maximal length o fa  (N, n, 2)-code for cg,. 

(2.13) For every fixed i e X ,  T(i) denotes the minimal closed convex system 
of probability distributions on Y which contains all distributions 
{w(.lils)[s S}. 

(2.14) The set of (a x 2) stochastic matrices 

= {(w (jli))i=, ...... I w (" l i)~ T(i), i= 1 . . . . .  a} 
j = l , 2  

is called the row convex closure of the set cg. 

We shall need 

Lemma 2. Let  {(ui, Ai)J i=  1 . . . . .  N} be a code with average error 2 for  a single 
channel n-sequence. There exists a subcode of  length N/2  with maximal error 2 = 22. 
(See [4], Lemma 3.1.1.) 

Lemma 3. An (n, N, 2) code for cg, is an (n, N, 2) code for ~, ,  and conversely. 

Proof Denote by 2; the a-field of all subsets of S, and by 22, the a-field of all 
subsets of S,. 

P(Ai[u~ls,)> 1 - 2  for all s ,~S ,  
implies that 

S d q,~(s,) P(Ailui ls , )> 1 - 2  
Sn 
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for all probability distributions %, on (S., S,) and all i =  1, ..., N. Any element 
P(" J" ) of ~ can be approximated row-wise arbitrarily closely by expressions of 
the form 

~ dqx(s)P('lx[s), x ~ X  
s 

where qx is concentrated on finitely many points. Any element P,( "]. ) of ~,  can 
be approximated row-wise arbitrarily closely by expressions of the form 

~dq*,,(s,)P('luils,), i=1 ,  . . . ,N,  
Sn 

where q*, is a distribution on S, which is concentrated on finitely many points 
and which is a product  of suitable distributions qas, where j =  1 . . . .  , n and 
uz = (a 1, ..., a,). This proves the first part of the lemma. The converse is obvious. 

Lemma 4. 
max mi__n R (r~, w) = min max R fir, w). 

rc w ~  w E ~  

Proof. It is known that R(n, w) is concave in n for each w and convex in w 
for each n. ~g and {rc} are normcompact  convex sets and R(n, w) is normcontinuous 
in both variables. Therefore the minimax theorem ([6]) is applicable and the 
desired result follows. 

This lemma is due to Stiglitz [73. His proof was given here because it is so brief. 

3. The Capacity when a = 2 

We shall now prove 

Theorem 1. Define 
C = max inf R (n, w). 

For every ~,, 0 < 2  < 1, the following estimates hold: 
a) N(n, )0 > eC"- kt~) r 

b) N(n, 2) < e c"+k~x) V~ 

where k(2) is a known function of 2 and n= 1, 2, . . . .  

Proof. Let w' be such that max R(n, w')= inf max R(n, w). It follows from 

Lemma 3 that a 2-code for cg, is also a k-code for the d.m.c, determined by w'. 
Therefore statement b) is a consequence of the strong converse for the d.m.c. 
([3], [4]). We can assume without loss of generality (w. 1. o. g.) that w' has a represen- 
tation 

Fig. 2 

Choose any ~e~g. Then ~(111)>w'(111), N(2[2)=w (212), because otherwise we 
could, by convex combinations, produce a matrix w * ~  with max R(rc, w*)< 
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max R (re, w'). We therefore have the representation 

1 

Fig. 3 

Now let w ~  be such that 

w(lI1)>w**(l[1), w(2f 2)>w**(212) 

for all w**ecg. Obviously ~ = r o w  convex closure of {w, w'}. Again by Lemma 3 
it is sufficient to prove a) for ~ = {w, w'}. 

It follows from Shannon's random coding theorem ([5], [4]) that we can find a 
s.m.l.c, for the d.m.c, w' with average error ,~ = 2/2 and length N(n, 2)> e c"- k~)r 

By Lemma 2 there exists a subcode with length N(n, 2)/2 and maximal error 2. 
Application of Lemma 1 completes the proof. 
An examination of the proof of Theorem 1 shows the following: 

(3.1) T(1) c~ T(2)+0,r162 C = 0 .  

This was proved in [2], Theorem 1. When C = 0  then, in the next to the last 
diagram, 1' and 2' coincide, and conversely. 

(3.2) C is the capacity of the channel with [SI = 1 whose single matrix has, as its 
i-th row, i = 1, 2, the point of T(i) closest to T(i'), i' :~ i. 

4. Extension of Theorem 1 to a > 2 

Theorem 2. Theorem 1 holds verbatim when a > 2. 

For each pair i ~ i' let C(i, i') be the capacity of the matrix whose rows are the 
point of T(i) nearest to T(i') and the point of T(i') nearest to T(i). (When 
T(i) n T(i')~=0 these points may not be uniquely defined, but C(i, i ' )=0 anyhow.) 

Theorem 3. Under the conditions of  Theorem 2 we have 

(4.1) C = m a x  C(i, i'). 
i , i "  

From (4.1) we easily obtain 

(4.2) C > 0 ~ T(/) c~ T(i')-- 0 for some pair i, i'. 

((4.2) is a special case for b = 2 of Theorem 1 of [2].) 

Before proving Theorems 2 and 3 we shall need 

Lemma 5. Let M be an (a x b) stochastic matrix. Suppose all rows are convex 
linear combinations of  two (extreme) rows. Let M' be the (2 x b) matrix of  these 
rows. Then the capacity of  M equals the capacity of  M'. 

This lemma must be present, explicitly or implicitly, in one of Shannon's 
papers. It is easily proved from the expression for the capacity of an individual 
channel given, e.g., in Theorem 3.l.1 of [4]. 
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We now prove Theorems 2 and 3. In order to define a convenient terminology 
let us say that, in the next to the last diagram (which appears in the proof of 
Theorem 1), the point 2' is to the left of the point 1', the point 1' is to the right of 
2', and 1' (resp. 2') is the right (resp. left) end of the interval [1', 2'-1. If two points 
coincide, each is to be to the left and right of the other. Let z (resp. z') be the farthest 
to the right (resp., to the left) of the left (resp. right) ends of the intervals T(i), 
i - -1 , . . . ,  a. Without loss of generality we assume that z is the left end of T(1) 
and z' is the right end of T(2). 

Suppose first that z is to the left of z'. Then obviously C--0. According to 
Theorem 1 of [2], the capacity of the channel is zero. Hence Theorems 2 and 3 
are valid in this case. 

Suppose now that z is to the right of z'. From Lemma 5 it follows that C is the 
capacity of the (2 x 2) matrix with rows z and z'. Using only the letters 1 and 2 of 
the input alphabet we see that the capacity of the channel is at least C. Thus the 
proof of Theorems 2 and 3 will be complete when we prove the converse part. 

Suppose that the message sequences ui, i=  1 . . . . .  N, consist only of l's and 2's. 
Then the converse is obvious (or follows from Theorem 1). Suppose now all the 
other input letters are also used in the ui. Since we require the error of decoding 
to be no greater than 2 for every word ui and every channel n-sequence, we can 
picture the situation as if some malevolent being, to be called, say, the " jammer",  
could choose the c.p.f, for each letter after he knows the letter being sent. It follows 
from Lemma 3 that he can achieve that the point on the diagram which corresponds 
to the letter being sent lies in the interval [z, z']. The desired converse now follows 
from Lemma 5. This completes the proof of Theorems 2 and 3. 

Let m 1 . . . .  , m, (resp., m'~ . . . . .  m'a) be the left (resp., the right) end points of 
T(1), ..., T(a), respectively. Let # (resp., #') be that one of m i (resp., ml), i = 1 . . . .  , a, 
which is farthest to the right (resp., to the left). A convenient way of computing 
C is given by the following, which we state as a theorem for ease of reference: 

Theorem 3'. I f # '  is to the right of  kt, then C--0. Otherwise C is the capacity of  
the matrix with rows # and #'. 

5. The Case where the Sender but not the Receiver Knows the c.p.f. 
for Each Letter, and a >-2 

We now study the case described in the title of this section. We assume that 
the sender knows the c.p.f, for each letter in advance of sending that letter. We 
also assume that he knows all the preceding c.p.f.'s, but does not know any future 
c.p.f.'s. 

Using the method of proof of Theorem 4.9.1 of [4] (see also the proof of 
Theorem 4.8.1 of [4]) one can show that the capacity of our channel is unaltered 
if we limit ourselves to codes where the sender chooses the next letter to be sent 
solely on the basis of the c.p.f, which will govern the transmission of this letter 
and not on the basis of preceding c.p.f.'s. (The fundamental reason for this is that 
the channel is memoryless.) Henceforth we limit ourselves to such codes. 

To make the proof easier to follow we start with the case IS[ = 2, and then remove 
this limitation. Denote the two matrices in cg by A and B, say. We can describe 
the codes for the present channel by the following device: The sender's (input) 
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alphabet is to consist of a 2 pairs (i,j), i , j=  1, . . . ,  a. The "letter" (i,j) means that, 
when the sender knows that A (resp. B) will govern the transmission of the letter, 
he sends the letter i (resp., j). By this simple device we have reduced the problem 
to that treated in Theorem 2. 

We have already seen that Theorem 3 or Theorem 3' implies that the expres- 
sion C of Theorem 1 is a function only of the closed convex sets T(i), i = 1 . . . . .  a. 
We may therefore write 

(5.1) C =  C(T(1), ..., T(a)). 

It is clear (e. g., from Theorem 3') that the right member of (5.1) is well defined even 
if the number of sets T is infinite, provided that, in the computations implied by 
Theorems 3 and 3', we replace the operation "max"  by "sup". 

Now let 

A =  , B =  . 

a a 

Consider the following a 2 convex bodies, each determined by the two points 
exhibited: 

T(gi, hi), i, ) =  1 . . . .  , a. 

It follows from Theorem 2 that we have proved that the capacity of the channel 
being discussed is 

(5.2) C({T(g  i, hi), i , j =  1 . . . . .  a}). 

We now drop the restriction that ISP = 2. Consider the totality ~ ' =  {B'} of 
sets B' such that each B' consists of exactly one row from each matrix w('] "l s), 
sES. Let B be the convex hull of B' and ~ =  {B} be the totality of sets (intervals) B. 
The general case follows from the preceding remarks and the argument of Theo- 
rem 2 of [-8-]. We have thus proved 

Theorem 4. When the sender, but not the receiver, knows the c.p.f, being used 
for each letter of  an a.v.ch., the capacity o f  the channel is C(~) .  

6. The Case where the Receiver bat not the Sender Knows the c.p.f. 
for Each Letter, and a => 2 

We now study the case described in the title of this section. We introduce one 
change from the preceding channels: We assume that the jammer is allowed to 
choose each c.p.f. (for each letter) by a random process, i.e., the i-th c.p.f., 
i=  1, ..., n, is chosen according to a probability distribution qi on (S, Z). The 
receiver knows the sequence (q~, q2, . . . ,  q,) when he decodes the received 
n-sequence (i. e., decides which transmitted n-sequence ui was sent). This assump- 
tion is very realistic in this case and in the case treated in Theorems 1 and 2. It 
was not made explicitly there because it is unnecessary; Lemma 3 essentially 
involves it. 

We shall now prove 

Theorem5. When the receiver (but not the sender) knows the sequence 
(ql . . . . .  qn), the capacity o f  the channel is the same as that given in Theorem 2, i.e., 
13 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 15 
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the capacity is the same as it would be if  the receiver did not know the sequence 
(ql . . . .  , q,). 

Proof. Since the capacity cannot be less than that in Theorem 2, it remains 
only to prove the converse. The capacity of Theorem 2 is, by Lemma 4, the smallest 
of the capacities of the matrices in ~. Clearly, the jammer can choose a q for each 
letter which will produce (row-wise) the matrix in Fg whose capacity is .smallest. 
This proves the desired result. 

7. Miscellaneous Remarks 

Theorems 2, 4, and 5 hold, with essentially the same proofs, when a is not 
finite. One uses the argument of Theorem 2 in Chapter II of [8-1. 

Theorems 1 and 3 of [2] were proved for arbitrary but finite a and b and 
IS] < c~. It is a consequence of Theorems 2 and 4 of the present paper and the 
argument of Theorem 2 in Chapter II of [8] that Theorems i and 3 of [2] hold 
for arbitrary (not necessarily finite) a and S, and b = 2. An examination of the 
proofs of Theorems 1 and 3 of I-2] in the light of these latter results shows that 
the restriction (made in [2]) to [SI < oe was unnecessary, and that the proofs of [2] 
carry over verbatim to arbitrary S. 
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