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Abstract

A new hypergraph coloring problem is introduced by defining N(H, e) as the maximal
number of colors in a vertex coloring of a hypergraph H = (V, E) , which has not
more than e different colors in every edge. Our main results concern the asymptotic
behaviour of this quantity for the uniform hypergraph H(n, ℓ, k) = (V(n, ℓ), E(n, ℓ, k))

with vertex set V(n, ℓ) =
(

Ωn

ℓ

)

for Ωn = {1, 2, . . . , n} and edge set E(n, ℓ, k) =
{

E =
(

A
ℓ

)

: A ∈
(

Ωn

k

)

}

. In case ℓ = 2 there are connections to Turan’s graph.
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1. Introduction

As a natural generalization of the concept of a chromatic number of a graph (which
includes also several of its generalizations suggested by others (see ch. 19 of [6])), Erdös
and Hajnal [1] introduced the chromatic number ψ(H) of a hypergraph H = (V, E)
as the minimal number of colors needed to color the vertices such that no edge E ∈ E
with |E| > 1 has all its vertices with the same color.

A stronger notion requires that all vertices in an edge get different colors. However,
this is equivalent to coloring the graph with vertex set V and any two vertices x, y
joined by an edge, if for some E ∈ E x, y ∈ E .

Related, but weaker, notions of hypergraph coloring where introduced in [2]. There it
was demonstrated that the essence of many multi–user source coding problems is a
statement about vertex colorings of hypergraphs, which assign to the vertices of every
edge E a certain percentage, that is, ε|E| different colors. Another notion requires
that in no edge E a colour occurs more than k resp. δ|E| times.

In the study of memories, which we introduced in [3], we encountered still another
hypergraph coloring problem. H = (V, E) is said to carry M colors, if there is a
vertex coloring with M colors, that is, a surjective map ϕ : V → {1, 2, . . . ,M} , such
that all M colors occur in every edge.

Let M(V, E) be the maximal number of colors carried by (V, E) . Clearly, M(V, E) ≤
minE∈E |E| . A simple probabilistic argument yields a lower bound.

Coloring Lemma AZ [3].

If |V | ≥ 3 , then M(V, E) ≥ (ℓn|V |)−1 minE∈E |E| .

Since in typical applications in Information Theory the quantities |V | and |E| grow
exponentially in the blocklength n we have there M(V, E) ∼ minE∈E |E| .

If numbers are not in this range it is much harder to derive bounds. The determination
of M(V, E) for any hypergraph (V, E) is a problem of considerable generality. It includes problems of

To see this, let us define for positive integers n, k, ℓ with n > k > ℓ a hypergraph
H(n, ℓ, k) = (V(n, ℓ), E(n, ℓ, k)) with vertex–set V(n, ℓ) =

(

Ωn

ℓ

)

for Ωn = {1, 2, . . . , n}

and edge–set E(n, ℓ, k) =
{

E =
(

A
ℓ

)

: A ∈
(

Ωn

k

)

}

. Now the classical Ramsey number

n(k, ℓ) is the smallest integer such that for n ≥ n(k, ℓ) M(V(n, ℓ), E(n, ℓ, k)) = 1 .

The work [3] on write–efficient memories has been continued in [4] to include cases
where several persons use the same storage medium subject to certain priority rules.
This has led us to several novel extremal problems. Most of them are very complex.
Among the accessible one’s there is the following coloring problem, which seems to be
basic. As in the previous coloring problem one wants many colors “in V ”. However
now one wants only “a few” colors in every edge. The formal description follows.
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We denote the cardinality of the range of a function by ‖ g ‖ . For the hypergraph
H = (V, E) a map f : V → N is called e–coloring , if

‖ f|E ‖≤ e for all E ∈ E , (1.1)

where f|E is the restriction of f to E .

We call an e–coloring f an (N, e)–coloring , if

‖ f ‖= N . (1.2)

As a basic quantity we introduce N(H, e) as the maximal N for which an (N, e)–coloring
of H exists. In particular we are interested here in the hypergraph H(n, ℓ, k) . The
set of its e–colorings is Φ(n, k, ℓ, e) .

With the abbreviation N(n, k, ℓ, e)
def
= N(H(n, ℓ, k), e) we can thus write

N(n, k, ℓ, e) = max{‖ ϕ ‖: ϕ ∈ Φ(n, k, ℓ, e)} . (1.3)

Since obviously

N(n, k, 1, e) =

{

e for e < k

n for e ≥ k

we study cases with ℓ ≥ 2 . Our best results are for ℓ = 2 .

They are formulated in terms of the following threshold functions indexed by i =
1, 2 ; s = 0 and s = 1, 2, . . . .

ei(0, k) = sup{e : lim
n→∞

1

ni
N(n, k, 2, e) = 0} , (1.4)

ei(s, k) = sup{e : lim
n→∞

1

ni
[N(n, k, 2, e) − N(n, k, 2, e2(s − 1, k) + 1)] = 0}. (1.5)

They were found to be appropriate tools for catching the structure of this coloring

problem. Since the total number of vertices is n(n−1)
2 the order of the number of

colors cannot exceed n2 . So we ask how big e has to be when this magnitude occurs.
Also a linear growth is interesting.

In the analysis of these functions we use another usefull concept. For fixed ℓ ∈ N we
call F : N → N an ℓ–local– global function, if for all n > m > ℓ

N(n,m, ℓ, F (m)) ≤ F (n) . (1.6)
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For ℓ = 2 there are local–global functions, which are closely related to the Turán

function tp(n) =
∑

0≤i<j<p

⌊

n+i
p

⌋

·
⌊

n+j
p

⌋

, which counts the number of edges in the

Turán graph Cp(n) .

This is a complete p–partite graph with r vertex sets of size q+1 and p−r vertex
sets of size q , when n = pq + r, 0 ≤ r < p .

It is convenient to denote these sets by Qi(i = 1, 2, . . . , p) and to let Q1 contain the
first numbers in Ωn, Q2 the next and so on.

For any graph G = (Ωn, E) we denote by V (m) a set with m vertices, by Tm the
set of V (m) , which are vertex sets of complete subgraphs, and we denote |Tm| by
Tm = Tm(G) .

Turán’s result is that up to relabelling of the vertices Cp(n) is the only graph with a
number of edges equal to max{|E| : Tp+1(Ωn, E) = 0} .
The paper is organized as follows:

In Section 2 we give in Theorem 1 a sufficient condition for F : N → N to be
ℓ–local–global . This condition can be expressed in terms of the decrement of density

△n
ℓ (F ) =

F (n + 1)
(

n+1
ℓ

) −
F (n)
(

n
ℓ

) .

Next we upper bound in Theorem 2 this decrement for N(n, k, ℓ, e) .

In Section 3 rather exact results are derived for the 2–local–global functions tp(n)
(Theorem 3).

In Section 4 this result in conjunction with a probabilistic argument are used to express
threshold functions in terms of Turán’s function.

In Section 5, finally, the method of proof for Theorem 1 is used to derive very general
statements of Turán–type. Instead of excluding certain complete subgraphs a more
general constraint on the number of edges in certain subgraphs is imposed.

2. Coloring properties of H(n, l, k) in terms of local–global functions

With every coloring ϕ ∈ Φ(n, k, ℓ, e) we associate a system of distinct representatives
Rϕ = {Ei : 1 ≤ i ≤‖ ϕ ‖) , where Ei ∈ ϕ−1(i) ⊂ V(n, ℓ) and is arbitrary otherwise.
We need below the hypergraph Iϕ = (Ωn,Rϕ) .
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Theorem 1. Let ℓ ∈ N be fixed.

If F : N → N satisfies for every k = ℓ + 1, . . . , u

F (k + 1) + 1
(

k+1
ℓ

) +
2

(k + 1)
(

k
ℓ

) >
F (k)
(

k
ℓ

) and F (k) <

(

k

ℓ

)

then for all n and m with ℓ < m ≤ n ≤ u + 1

N(n,m, ℓ, F (m)) ≤ F (n) .

Proof. We proceed by induction on n . Clearly, the statement is true for n = m .
Assume now that is true for k ≥ m , but that it is not true for k +1 ≤ s+1 , that is,
N(k + 1,m, ℓ, F (m)) > F (k + 1) . This means that a ϕ ∈ Φ(k + 1,m, ℓ, F (m)) exists
with ‖ ϕ ‖= F (k + 1) + x for some x ∈ N .

Removing now the element j from Ωk+1 we get a subhypergraph Hj(Vj(k+1, ℓ), Ej(k+
1, ℓ,m)) , where

Vj(k+1, ℓ) =

(

Ωk+1 − {j}

ℓ

)

and Ej(k+1, ℓ,m) =

{

E =

(

A

ℓ

)

: A ∈

(

Ωk+1 − {j}

m

)}

.

We also get a subhypergraph Iϕj of Iϕ , which has the vertex set Ωk+1 − {j} and
edge set Rϕj = {R : R ∈ Rϕ and j /∈ R} . Let ϕj be the restriction of ϕ on Hj .
By the definition of Iϕj we have

|Rϕj | ≤‖ ϕj ‖ . (2.1)

Consequently, the degree d(j) of j in Iϕ satisfies

d(j) = |{R : R ∈ Rϕ and j ∈ R}| = |Rϕ| − |Rϕj |

=‖ ϕ ‖ −|Rϕj | ≥‖ ϕ ‖ − ‖ ϕj ‖= F (k + 1) + x− ‖ ϕj ‖ . (2.2)

Furthermore, replacing Ωk by Ωk+1 − {j} , ϕj induces an isomorphic map ϕj in
Φ(k, n, ℓ, F (m)) and thus by induction hypothesis ‖ ϕj ‖≤ F (k) . Hence

d(j) ≥ F (k + 1) + x − F (k) (2.3)

and therefore

(k + 1)[F (k + 1) + x − F (k)] ≤

k+1
∑

j=1

d(j) = |Rϕ| · ℓ =‖ ϕ ‖ ℓ = ℓ(F (k + 1) + x) . (2.4)
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We show next that (2.4) can be improved to

(k + 1)[F (k + 1) + x − F (k)] + 2 ≤ ℓ[F (k + 1) + x] . (2.5)

From here one readily calculates that

F (k)
(

k
ℓ

) ≥
1

(k + 1)
(

k
ℓ

) [(k + 1) − ℓ)(F (k + 1) + x) + 2]

≥
F (k + 1) + 1

(

k+1
ℓ

) +
2

(k + 1)
(

k
ℓ

)

a contradiction to the assumption on F .

We shall prove (2.5) by showing that for at least two j strict inequality holds in
(2.3). Since by assumption F (m) <

(

m
ℓ

)

, we know that for at least one color c ∈

ϕ(V(k + 1, ℓ)) |ϕ−1(c)| ≥ 2 . We distinguish two cases. If
⋂

V ∈ϕ−1(c) V = φ , then for

R ∈ Rϕ with ϕ(R) = c for all j ∈ R there is a V ′ ∈ ϕ−1(c) such that j′ /∈ V ′ .
Therefore we get

|Rϕj | + 1 ≤‖ ϕj ‖ (2.6)

and since |R| = ℓ ≥ 2 strict inequality holds in (2.3) for at least two j .

If
⋂

V ∈ϕ−1(c) V 6= φ , then another color c′ with |ϕ−1(c′)| ≥ 2 exists, because

otherwise for any j ∈
⋂

V ∈ϕ−1(c) V the subhypergraph Hj has distinct colors for its

vertices and thus in particular for any edge in Hj there are
(

m
ℓ

)

> F (m) colors in
contradiction to ‖ ϕ ‖≤ F (m) .

Select now V1, V2 ∈ ϕ−1(c), V ′
1 , V ′

2 ∈ ϕ−1(c′) such that V1 = Rc and V ′
1 = Rc′ are

two edges in Iϕ . Two subcases arise.

Subcase 1. (V1 r V2) ∩ (V ′
1 r V ′

2) 6= φ .
Here for j ∈ (V1 r V2) ∩ (V ′

1 r V ′
2) we have

|Rϕj | + 2 ≤‖ ϕj ‖ , (2.7)

since Rc and Rc′ are not in Iϕj but V2 (with color c ) and V ′
2 (with color c′ )

are in Hj .

Subcase 2. (V1 r V2) ∩ (V ′
1 r V ′

2) = φ .
There are different j1, j2 such that j1 ∈ V1 rV2 and j2 ∈ V ′

1 rV ′
2 . For each of them

we conclude as in the first case above that (2.6) holds and again (2.5).
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Theorem 2.

(i)
N(n, k, ℓ, e)

(

n
ℓ

) −
N(n + 1, k, ℓ, e)

(

n+1
ℓ

) ≥
ℓ − 1

(k + 1)
(

k
ℓ

) for e <
(

k
ℓ

)

(ii)
N(n, k, ℓ, e)

(

n
ℓ

) is strictly decreasing in n and less than
e

(

k
ℓ

) .

(“global density” is smaller than “local density”).

(iii) limn→∞

N(n, k, ℓ, α
(

k
ℓ

)

)
(

n
ℓ

) ≤ α ,

(iv) N(n, k, 2, k − 1) = n − 1 .

Proof. (i) Just replace F (k +1)+x and F (k) in the proof of Theorem 1 by N(n+
1, k, ℓ, e) and N(n, k, ℓ, e) .

(ii) is an immdiate consequence of (i) .

(iii) is a direct consequence of (ii) .

(iv) Let ϕ(x, y) = min(x, y) for x, y ∈ Ωn and notice that ϕ ∈ Φ(n, k, 2, k−1) and
‖ ϕ ‖= n− 1 . Therefore we have N(n, k, 2, k − 1) ≥ n− 1 and the reverse inequality
can be derived by applying Theorem 1 with F (k) = k − 1 . The hypothesis holds,
because

k + 1
(

k+1
2

) −
k − 1
(

k
2

) =
2

(k + 1)k(k − 1)
[(k +1)(k−1)− (k−1)(k +1)] = 0 > −

2

(k + 1)
(

k
2

) .

3. Turán’s function as 2–local–global function

It if often convenient to use the function

gp(n) = tp(n) + 1 . (3.1)
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Theorem 3.

(i) N(n, k, 2, gp(k) + α) = gp(n) + α for n ≥ k

when 0 ≤ α ≤ ⌊ k
⌊p⌋/2⌋ − 1, k ≥ 4 and p ≥ 2 .

(ii) N(n, k, 2, α) = α when α ≤
⌊

k
2

⌋

and k ≥ 4 .

(iii) N(n, 3, 2, 2) = n − 1, N(n, 3, 2, 1) = 1, N(n, 3, 2, 3) =
(

n
2

)

.

Remark The ranges for α are sufficiently large for our purposes, but not necessarily
optimal.

Proof.
(i) Direct part

Recall the definition of Cp(n) and its vertex sets Q1, . . . , Qp in Section 1. Define ϕ
for H(n, 2, k) as follows:
The edges in the subgraph Cp(n) get colors 1, 2, . . . , tp(n) . For i = 1, . . . , α the
edge (i, i + 1) gets color tp(n) + i and all other edges get color 0 . ϕ is an
(gp(n) + α, gp(k) + α)–coloring , because by assumption k ≥ 2p . We conclude that
N(n, k, 2, gp(k) + α) ≥ gp(n) + α for k ≤ n .

Converse part

It is sufficient to verify the hypothesis of Theorem 1 for m = pq + r, 0 ≤ r < p and
F (m) = gp(m) + α . We first notice that

gp(p(q′ + 1)) =

(

p

2

)

(q′ + 1)2 + 1

=

(

p

2

)

(q′ + 1)2 +

(

p − p

2

)

q2 + p(p − p)q(q + 1) + 1 .

Thus, for the values as specified
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(m − 1)[F (m + 1) + 1] − (m + 1)F (m)

= (pq + r − 1)[gp(pq + r + 1) − gp(pq + r) + 1] − 2[gp(pq + r) + α]

= (pq + r − 1)[

(

r + 1

2

)

(q + 1)2 +

(

p − r − 1

2

)

q2 + (r + 1)(p − r − 1)q(q + 1) + 1

−

(

r

2

)

(q + 1)2 −

(

p − r

2

)

q2 − r(p − r)q(q + 1)]

− 2[

(

r

2

)

(q + 1)2 +

(

p − r

2

)

q2 + r(p − r)q(q + 1) + 1] − 2α

= (pq + r − 1)[r(q + 1)2] − (p − r − 1)q2 + (p − 2r − 1)q(q + 1)] + (pq + r − 1)

− [p(p − 1)q2 + 2r(p − 1)q + r(r − 1) + 2] − 2α

= (pq + r − 1)[(p − 1)q + r] − [p(p − 1)q2 + 2r(p − 1)q + r(r − 1) + 2] + (pq + r − 1) − 2α

= (r − p + 1)q + pq + r − 3 − 2α = (r + 1)q + r − 3 − 2α

def
= L(r, q) − 2α .

Therefore
F (m + 1) + 1

(

m+1
2

) −
F (m)
(

m
2

) =
L(r, q) − 2α

(m + 1)
(

m
2

) (3.2)

and since, DL
Dr ≥ 0 , where q ≥ 1 , and since L(0, q) = q− 3 , we have L(r, q)− 2α ≥

q − 3 − 2α ≥ q − 3 − 2⌊k/p⌋/2 + 2 ≥ m
p − k

p − 1 ≥ −1 > −2 .

Furthermore, F (k) ≤ gp(k) + ⌊
⌊ k

p
⌋

2 ⌋ − 1 <
(

k
2

)

and thus the hypotheses of Theorem 1
hold and the proof is complete.

(ii) Direct part

The coloring function

ϕ(x, y) =











i for (x, y) = (i, i + 1)

and α = 1, 2, . . . , α − 1

0 otherwise

yields N(n, k, 2, α) ≥ α .

Converse part

For F ≡ α we have α+1

(m+1

2 )
− α

(m

2 )
= m−1−2α

(m+1)(m

2 )
> − 2

(m+1)(m

2 )
, F (k) = α <

(

k
2

)

and

again by Theorem 1 N(n, k, 2, α) ≤ α .

(iii) Here, in the case k = 3 , only the first equation is non–obvious. It is the answer,
if no three colors are in a triangle. However, this is covered by Theorem 2, (iv).
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4. The threshold functions

Theorem 4. For s = 0, 1, 2, . . . and k > 2(s + 2)

(i) e2(s, k) = gs+2(k) − 1

(ii) e1(s, k) = gs+1(k) +
⌊

k
⌊s+1/2⌋

⌋

− 1 .

We begin with an auxiliary result with a simple probabilistic proof.

Lemma.

If (Ωn, En)∞n=1 is a sequence of graphs with Tk(Ωn, En) > δ nk for some δ > 0 ,
then for m ∈ N there exists an n0 = n0(δ,m, k) and a β > 0 such that for n > n0

there are m vertices x1, . . . , xm ∈ Ωn and M = ⌊βnk−1⌋ (k − 1)–subsets of Ωn

, say, A1, . . . , An with

{xi} ∪ Aj ∈ Tk for 1 ≤ i ≤ m ; 1 ≤ j ≤ M . (4.1)

Proof. For A ∈ Tk−1 define

Jk(A) = {x ∈ Ωn : {x} ∪ A ∈ Tk} , (4.2)

T ′
k−1 = {A : |Jn(A)| ≥

δk

2
n} . (4.3)

Then

|T ′
k−1| · n +

δk

2
n · nk−1 >

∑

A∈Tk−1

|Jk(A)| = kTk > k δ nk

and hence

|T ′
k−1| >

δk

2
nk−1 . (4.4)

Also, for x ∈ Ωn define Lk(x) = {B ∈ Tk−1 : {x} ∪ B ∈ Tk} .

Furthermore, let X1, . . . , Xm be i.i.d. RV’s with uniform distribution on Ωn . Then
L = ∩m

i=1Lk(Xi) is a random system of elements of Tk−1 which extend to elements
of Tk for every Xi(i = 1, . . . ,m) . With the indicator function 1L we can write

E|L| =
∑

B

E 1L(B) ≥
∑

B∈T ′

k−1

E1L(B) ≥ |T ′
k−1|

( 1
2
δkn
m

)

nm

>
δk

2
nk−1

( 1
2
δkn
m

)

nm
≥ β nk−1 for some β > o

when n > n0(δ,m, k) .

Proof of Theorem 4.
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(i) From Theorem 3 we know that

N(n, k, 2, qp(k)) = qp(n) for k ≥ 4 .

So it is sufficient to prove that for any sequence of coloring functions (ϕn)∞k=1 , where
ϕn is a coloring of H(n, 2, k) with ‖ ϕn ‖≥ s

2(s+1)n
2+αn2 = gs+1(n)+α′ n2 (α, α′ >

0) , there exists a sequence of edges (En)∞n=1 with En ∈ E(n, 2, k) and such that
‖ ϕn(En) ‖≥ gs+2(k) , when n is large enough. As in Section 2 we define the graph
Iϕn = (Ωn,Rϕn

) .

Then by the Corollary in [9] Ts+2 ≥ αs+1ns+2 .

Define now for k = (s + 2)q + r, 0 ≤ r < s + 2

ℓi =

{

q for i = 1, . . . , s + 2 − r

q + 1 for i = s + 3 − r, . . . , s + 2 .

With the Lemma we get {x1, . . . , xℓs+2
}

def
= Ls+2 ⊂ Ωn and A1(s+2), . . . , AMs+2

(s+2)
such that for all xi ∈ Ls+2 and Aj(s + 2)

{xi} ∪ Ai(s + 2) ∈ Ts+2 and Ms+2 ≥ δs+1n
s+1 .

Let G∗
s+1 be the minimal subgraph of G∗

s+2
def
= Iϕn

containing
⋃

j Aj(s+2) . Then

Ts+1(G
∗
s+1) ≥ δs+1n

s+1 . Repeating this procedure to G∗
s+1, G

∗
s , . . . , G

∗
2 one can get

Ls+1, G
∗
s, Ls, G

∗
s−1, . . . , L2, G

∗
1 such that |Lj | = ℓj + 1 and the vertex set of G∗

1 has
cardinality greater than δ1n > ℓ1 for some δ > 0 , when n is big enough. Thus, to
be specific, we can take a subset L1 with cardinality ℓ1 +1 from G∗

1 . We can easily
see that for all yi ∈ Li, yj ∈ Lj(i 6= j) (yi, yj) ∈ Rϕn

.

Thus by the definition of Iϕn
for all yi, y

′
i ∈ Li , yj , y

′
j ∈ Lj(i 6= j)

yi 6= y′
i or yj 6= y′

j ϕn(yi, yj) 6= ϕn(y′
i, y

′
j) .

Now we select any pair (a, b) with a, b ∈ L1 and consider ϕn(a, b) . We find that
there exists at most one pair (i, j) (i < j) and one pair (yi, yj) with yi ∈ Li, yj ∈ Lj

such that ϕn(yi, yj) = ϕn(a, b) .

We choose now an ℓm–subset L∗
m of Lm such that yj /∈ L∗

j and a, b ∈ L∗
1 . Now

for En
def
=

⋃

j L∗
j

|ϕn(En)| ≥ gs+2(k) .

(ii) By (i) and (i), (ii) in Theorem 3

e1(s, k) ≥ gs+1(k) +

⌊

k

⌊s + 1/2⌋

⌋

− 1 .
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On the other hand we define ϕ by

ϕ(i, 2i) = i for i = 1, 2, . . . , ⌊n/2⌋

ϕ(x, y) = 0 otherwise, when s = 0

and in case s > 0 :

(a) Each pair (i, 2i) with i = 1, 2, . . . , ⌊⌊n/s⌋/2⌋ has a unique color.

(b) Each pair (x, y) with x ∈ Li, y ∈ Lj (i 6= j) has a unique color.

(c) All other pairs have the same color.

Thus e1(s, k) < gs+1(k) + ⌊⌊k/s + 1⌋/2⌋ .

5. An extension of Turán’s Theorem

The method of proof for Theorem 1 can also be used to derive Turán’s Theorem.
Actually a more general result can be obtained, which has other interesting consequences
and leads to a remarkable conjecture. The result is for a sequence of families of
hypergraphs with restrictions on the number of edges. The restrictions are specified

by a sequence
(

−→

ε(n)
)∞

n=2
of vectors

→
ε (n) = (ε2(n), . . . , εn(n)) with components

satisfying 0 ≤ εℓ(n) ≤
(

n
ℓ

)

for ℓ = 2, 3, . . . , n .

The sequence of hypergraphs is
(

Hn

(

−→

ε(n)
))∞

n=2
, where

Hn

(

−→

ε(n)
)

= {hypergraph H(Ωn, E) : E has not more than εℓ(n) edges of cardinality ℓ} .
(5.1)

We are interested in its subset

|Hn

(

−→

aε(n), k,K
)

= {H(Ωn, E) ∈ Hn

(

−→

ε(n)
)

: all its subhypergraphs on k vertices
have not more than K edges } and investigate

T
(

n,
−→

ε(n), k,K
)

= max{|E| : H(Ωn, E) ∈ Hn

(

−→

ε(n), k,K
)

} .

This function specializes to Turán’s function in case ε2(n) =
(

n
2

)

, εℓ(n) = 0 for ℓ 6= 2

and K =
(

k
2

)

− 1 .

It is convenient to use for a function ψ : N → N the increment of density △n
ℓ (ψ) =

ψ(n + 1)
(

n+1
ℓ

) −
ψ(n)
(

n
ℓ

) .

We say that
(

−→

ε(n)
)∞

n=2
is a uniform restriction, if △n

ℓ (εℓ) = 0 for all n, ℓ .
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Theorem 5.

(i) Suppose that
(

−→

ε(n)
)∞

n=2
and g : N → N satisfy

(1) 0 ≤ g(n) ≤
(

n
ℓ0

)

for some ℓ0

(2) For

ε∗ℓ (n) =

{

εℓ(n) for ℓ > ℓ0

g(n) for ℓ = ℓ0

1
(

N
ℓ0

)

∑

ℓ≥ℓ0

(

N

ℓ

)

△
N

ℓ (ε∗ℓ ) > −
1

(

N+1
ℓ0

) for N ≤ n ,

then for F (N) =
∑

ℓ≥ℓ0
ε∗ℓ (N) we have

T
(

n,
−→

ε(n), k, F (K)
)

≤ F (n).

Particularly,

(ii) If
(

−→

ε(n)
)∞

n=2
is uniform and g satisfies

(3) △N
ℓ (g) > − 1

(N+1

ℓ )

then T
(

n,
−→

ε(n), k, F (k)
)

≤ F (n) .

Proof. For n = k (i) holds by definition of T . Induction step from n to n + 1 :

Assume that for some H ∈ Hn+1

(

−→

ε(n + 1), k, F (k)
)

|E| = F (n+1)+x for a positive
x . By omitting edges, if necessary, we can achieve x = 1 . Further, we can assume
that εℓ(n + 1) equals the number of ℓ–size edges.

Removal of v ∈ Ωn+1 from H leads to the subhypergraph Hv with n vertices and
F (n + 1) + 1 − d(v) edges. By induction hypotesis F (n + 1) + 1 − d(v) ≤ F (n) or
equivalently

∑

ℓ≥ℓ0
ε∗ℓ (n + 1) + 1 − d(v) ≤

∑

ℓ≥ℓ0
ε∗ℓ (n) . With the concept dℓ(v) =

{E ∈ E|v ∈ E, |E| = ℓ} this can be written in the form

∑

ℓ

dℓ(v) = d(v) ≥
∑

ℓ≥ℓ0

ε∗ℓ (n + 1) + 1 −
∑

ℓ≥ℓ0

ε∗ℓ (n)

and summation over all v ℓ ≥ ℓ0 gives

∑

v∈Ωn+1

∑

ℓ

dℓ(v) ≥ (n + 1)





∑

ℓ≥ℓ0

ε∗ℓ (n + 1) + 1 −
∑

ℓ≥ℓ0

ε∗ℓ (n)



 (5.2)

Furthermore, since by our restriction on the number of edges for ℓ > ℓ0

1

ℓ

∑

v

dℓ(v) = εℓ(n + 1) = ε∗ℓ (n + 1) , (5.3)
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we also have

∑

v

dℓ0(v) ≥ (n + 1)





∑

ℓ≥ℓ0

ε∗ℓ (n + 1) + 1 −
∑

ℓ≥ℓ0

ε∗ℓ (n)



 −
∑

ℓ>ℓ0

ℓε∗ℓ (n + 1) . (5.4)

Now we use the identity

∑

ℓ

1

ℓ

∑

v∈Ωn+1

dℓ(v) = |E| = F (n + 1) + 1 . (5.5)

Here the left hand side expression is minimal if equality holds in (5.4).
Thus,

∑

ℓ>ℓ0

ε∗ℓ (n + 1) +
n + 1

ℓ0





∑

ℓ≥ℓ0

ε∗ℓ (n + 1) + 1 −
∑

ℓ≥ℓ0

ε∗ℓ (n)





−
1

ℓ0

∑

ℓ>ℓ0

ℓ ε∗ℓ (n + 1) ≤ F (n + 1) + 1

=
∑

ℓ≥ℓ0

ε∗ℓ (n + 1) + 1 (by definition)

and equivalently

n + 1 − ℓ0
ℓ0

(ε∗ℓ (n + 1) + 1) − ε∗ℓ0(n) +
∑

ℓ>ℓ0

n + 1 − ℓ

n + 1
ε∗ℓ (n + 1)

∑

ℓ>ℓ0

ε∗ℓ (n) ≥ 0

or

n + 1 − ℓ0
n + 1

+
∑

ℓ≥ℓ0

(

n

ℓ

)

[

n+1−ℓ
n+1
(

n
ℓ

) ε∗ℓ (n + 1) −
ε∗ℓ (n)
(

n
ℓ

)

]

=

(

n
ℓ0

)

(

n+1
ℓ0

) +
∑

ℓ≥ℓ0

(

n

ℓ

)

△n
ℓ

(

ε∗ℓ
)

≤ 0

in contradiction to (i).

Corollary 2. (Turán):

Suppose that G = (Ωn, E) is a graph without k–complete subgraph, then |E| ≤
tk−1(n) − 1 (Sect. 4) and the bound is best possible.

Proof. Just take εℓ(N) = 0 ∀ℓ 6= 2 and ε2(N) =
(

N
2

)

, g(N) = ε∗2(N) = gk−1(N) .

By the proof of Theorem 3 △N
2 (tk−1) > − 1

(N+1

2 )
as can be see by taking α = −1

and by noticing gk−1(N) − 1 = g(N) .
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If G has no k complete subgraph, then every k–subgraph has not more than
(

k
2

)

−

1 =
(

k−1
2

)

+
(

k−1
1

)

= 1 =
(

k−2
2

)

+(k−2)+(k−1)−1 =
(

k−2
2

)

+1 ·(k−2) ·2 = gk−1(k)−1
edges and our proof is complete.

We call the hypergraph H = (Ωk, E) with E =
⋃

ℓ≥2

(

Ωk

ℓ

)

k–complete .

Corollary 3. If H = (Ωn, E) has no k–complete subhypergraph, then

|E| ≤

n
∑

ℓ=3

(

n

3

)

+ tk−1(n) − 1

and this bound is best possible.

Proof. Choose εℓ(n) =
(

n
ℓ

)

and g = tk(n) − 1 and proceed as in the proof of
Corollary 1. An optimal configuration is Turán’s graph together with all subsets of
cardinality > 2 .

A conjectured extension of Turán’s Theorem

For k < n and arbitrary K let

Gn,k,K = max{g(n) : g with g(k) = K and △N
2 (g) > −

1
(

N+1
2

) for k ≤ N ≤ n} ,

then

max{|E||G = (Ω, E) without more than K edges in any k–subgraph} = Gn,k,K .
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