ASYMPTOTICALLY DENSE NONBINARY CODES CORRECTING A CONSTANT NUMBER OF LOCALIZED ERRORS

R. Ahlswede, L.A. Bassalygo, M.S. Pinsker

Abstract

The binary case was studied in [1], but the method used there doesn't give the tight answer for nonbinary cases and we presented in [2] another method for the corresponding result. Here we formulate the main theorem and prove the auxiliary statements used in [2].

During the transmission of q-ary words of length n over the channel at most t errors occur, and the encoder knows the set E of t positions, where these errors are possible. The decoder doesn't know anything about these positions. Let $\mathcal{E}_{t}=$ $\{E|E \subseteq\{1,2, \ldots, n\},|E|=t\}$ be the set of all subsets from $\{1,2, \ldots, n\}$ of size t and let \mathcal{M} be a set of messages $(|\mathcal{M}|=M)$. A code word $x(m, E)$ depends not only on the message $m \in \mathcal{M}$ but also on the configuration of possible errors E. So there exists the natural correspondence between the message $m \in \mathcal{M}$ and the list of code words $\bigcup_{E \in \mathcal{E}_{t}}\{x(m, E)\}$, which we use for the transmission of this message. Thus the code X for the set of messages \mathcal{M} represents a collection of M lists $\left\{\bigcup_{E \in \mathcal{E}_{t}}\{x(m, E)\}, m \in \mathcal{M}\right\}$. Sinde we can use the same word for different configurations, the size of a list can be essentially smaller than the size of the set $\mathcal{E}_{t}\left(\left|\mathcal{E}_{t}\right|=\binom{n}{t}\right)$. Let us define the cylinder $C(a, A)$ with the base $a=\left(a, \ldots, a_{n}\right)$ and the support $A(A \subseteq\{1,2, \ldots, n\})$ as the set of words $\left(y_{1}, \ldots, y_{n}\right)$ with $y_{i}=a_{i}$, if $i \notin A$. It is clear that the size of the cylinder $C(a, A)$ is equal to $q^{|A|}$ and the number of different cylinders with the same support A is equal to $q^{n-|A|}$.

As a result of the transmission of the codeword $x(m, E)$ every word of $C(x(m, E), E)$ can appear as output of the channel. The code X corrects t localized errors, if the decoder can correctly recover every message $m \in \mathcal{M}$. The following condition is necessary and sufficient for it:

$$
\begin{equation*}
C(x(m, E), E) \cap C\left(x\left(m^{\prime}, E^{\prime}\right), E^{\prime}\right)=\varnothing \text { for all } E, E^{\prime} \in \mathcal{E}_{t}, m, m^{\prime} \in \mathcal{M}, m \neq m^{\prime} \tag{1}
\end{equation*}
$$

The maximal number of messages, which we can transmit by a code correcting t localized errors, is denoted by $L_{q}(n, t)$.

Proposition 1:

$$
L_{q}(n, t) \leq \frac{q^{n}}{S_{t}}
$$

where $S_{t}=\sum_{i=0}^{t}(q-1)^{i} C_{n}^{i}$ is the size of a sphere of radius t in the Hamming n-space.

A proof of this bound in the q-ary case can be given as for the binary case in [3] or [4]. The key inequality there has the following generalization.

Lemma 1. Let $C\left(a_{i}, A_{i}\right), \ldots, C\left(a_{T}, A_{T}\right)$ be cylinders with pairwise different supports $A_{i} \neq A_{j}, i \neq j$. Then for the size of the union of the cylinders

$$
\left|\bigcup_{i=1}^{T} C\left(a_{i}, A_{i}\right)\right| \geq \sum_{i=1}^{T}(q-1)^{\left|A_{i}\right|}
$$

Proof: We proceed by an induction on n. For $n=1$ the statement is obvious. Let $C\left(a_{1}, A_{1}\right), \ldots, C\left(a_{T}, A_{T}\right)$ satisfy the condition of the Lemma. We consider now the new family \mathbb{C} of cylinders:
a) if $n \notin A_{i}$, then $C\left(a_{i}, A_{i}\right) \in \mathbb{C}$
b) if $n \in A_{i}$, then $C\left(a_{i}^{(k)}, A_{i} \backslash n\right) \in \mathbb{C}$ for all $k(k=0,1, \ldots, q-1)$, where $a_{i}^{(k)}=\left(a_{i 1}, \ldots, a_{i n-1}, k\right)$.

We have

$$
\mathbb{C}=\bigcup_{k=0}^{q-1} \mathbb{C}^{(k)}
$$

where $\mathbb{C}^{(k)}$ - all cylinders from \mathbb{C} whose last coordinate is equal to $k(k=0,1, \ldots, q$ $1)$. It is easy to show that

$$
\left|\bigcup_{C \in \mathbb{C}} C\right|=\sum_{k=o}^{q-1}\left|\bigcup_{C \in \mathbb{C}^{(k)}} C\right| .
$$

If follows from the condition of the Lemma that the support $A_{i} \backslash n$ of q cylinders $C\left(a_{i}^{(k)}, A_{i} \backslash n\right), k=0,1, \ldots, q-1$ differs from the support of other cylinders at least for $q-1$ subfamilies $\mathbb{C}^{k}, k=0,1, \ldots, q-1$. Thus one proves the Lemma using the induction step to estimate $\left|\bigcup_{C \in \mathbb{C}^{(k)}} C\right|$. It is easy to obtain Proposition 1 from Lemma 1. In fact for every union of cylinders $\bigcup_{E \in \mathcal{E}_{t}} C(\cdot, E)$ there exists some union of cylinders $\bigcup_{E \in \mathrm{U}_{i=0}^{t} \mathcal{E}_{i}} C(\cdot, E)$ such that

$$
\bigcup_{E \in \mathcal{E}_{t}} C(\cdot, E)=\bigcup_{E \in \bigcup_{i=1}^{t} \mathcal{E}_{i}} C(\cdot, E)
$$

and therefore by Lemma 1

$$
\begin{equation*}
\left|\bigcup_{E \in \mathcal{E}_{t}} C(\cdot, E)\right|=\left|\bigcup_{E \in \bigcup_{i=1}^{t} \mathcal{E}_{i}} C(\cdot, E)\right| \geq S_{t} \tag{2}
\end{equation*}
$$

Now we have from the condition (1) that

$$
\left(\bigcup_{E \in \mathcal{E}_{t}} C(x(m, E), E)\right) \cap\left(\bigcup_{E^{\prime} \in \mathcal{E}_{t}} C\left(x\left(m^{\prime}, E^{\prime}\right), E^{\prime}\right)\right)=\varnothing \text { for } m \neq m^{\prime}
$$

From here and (2) the Proposition follows.
The following lower bound can be easily deduced by the standard greedy algorithm (maximal coding).

Proposition 2:

$$
L_{q}(n, t) \geq \frac{q^{n}}{q^{2 t}\binom{n}{t}} .
$$

Proof: Let X be the code $X=\left\{\bigcup_{E \in \mathcal{E}_{t}}\{x(m, E)\}, \quad m \in \mathcal{M}\right\}$ for M messages, correcting t localized errors. As

$$
\left|\bigcup_{m \in \mathcal{M}} \bigcup_{E \in \mathcal{E}_{t}} C(x(m, E), E)\right| \leq M \cdot\binom{n}{t} \cdot q^{t}
$$

and the number of different cylinders with the same support $E^{\prime}\left(\left|E^{\prime}\right|=t\right)$ is equal to q^{n-t}, for any support $E^{\prime} \in \mathcal{E}_{t}$ there exists a cylinder $C\left(a, E^{\prime}\right)$ with

$$
C\left(a, E^{\prime}\right) \cap C(x(m, E), E)=\varnothing \text { for all } m \in \mathcal{M} \text { and } E \in \mathcal{E}_{t}
$$

if

$$
\begin{equation*}
M\binom{n}{t} q^{t}<q^{n-t} \tag{3}
\end{equation*}
$$

Therefore, if the inequality (3) takes place, it is possible, according to the condition (1), to construct the code for $M+1$ messages, correcting t localized errors. Hence Proposition 2 follows.

Already Proposition 1 and 2 imply the asymptotic equivalence within a constant

$$
L_{q}(n, t) \asymp \frac{q^{n}}{n^{t}} \text {, when } t \text { is fixed and } n \rightarrow \infty \text {. }
$$

We draw attention to the fact that this equivalence is known for nonbinary errorcorrecting codes, except $t=1$, only for $t=2$ and $q=3,4$ [5].

The following theorem gives the precise constant in the equivalence.
Theorem. For every constant t

$$
L_{q}(n, t)=\frac{q^{n}}{S_{t}}(1+o(1))=\frac{t!}{(q-1)^{t}} \cdot \frac{q^{n}}{n^{t}}(1+o(1)),
$$

where $o(1) \rightarrow o$ as $n \rightarrow \infty \quad(o(1)$ depends certainly on t and $q)$.

When proving this theorem [2] we refered to the following recurrence relation, having an independent interest.

Lemma 2. If $N \leq(q-1) T+1$, then

$$
L_{q}(N+T, 1) \geq q^{N-1} L_{q}(T, 1)
$$

Proof: On the first N positions we always transmit a parity check $(\bmod q)$ code of the size q^{N-1}. The last T positions we reserve for the code, which allows us to transmit $L_{q}(T, 1)$ messages and to correct a single localized error. The method of transmission depends on the position of the localized error in the following way:
a) The error is on the last T positions. We use our code as a code, correcting a single localized error.
b) The error is in the first N positions. We use our code for the transmission of both, the message and the number of the position, where the error can occur. According to Proposition 1 and Lemma 2 at least $(q-1) T+1$ different words in the output of the channel of length T correspond to everyone of $L_{q}(T, 1)$ messages and therefore we can make the successful transmission, if

$$
N \leq(q-1) T+1
$$

The proof is complete.

References

1. L.A. Bassalygo, S.I. Gelfand, M.S. Pinsker, Simple methods of deduction of lower bounds in coding theory, Probl. Peredaci Inform., vol. 27, 1991, no. 4, 3-8.
2. R. Ahlswede, L.A. Bassalygo, M.S. Pinsker, Nonbinary codes correcting localized errors, IEEE Inf. Theory, in print.
3. L.A. Bassalygo, S.I. Gelfand, M.S. Pinsker, Coding for channels with localized errors, Proc. 4-th Soviet-Swedish Workshop in Information Theory, Gotland, Sweden, 1989, 95-99.
4. L.A. Bassalygo, S.I. Gelfand, M.S. Pinsker, Coding for partially localized errors, IEEE Inf. Theory, vo. 37, no. 3, May 1991, 880-884.
5. I.I. Dumer, V.A. Zinoviev, New maximum codes over GF(4), Probl. Peredaci Inform., vol. 14, 1978, no. 3, 24-34.
