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Abstract

The binary case was studied in [1], but the method used there doesn’t give the
tight answer for nonbinary cases and we presented in [2] another method for the
corresponding result. Here we formulate the main theorem and prove the auxiliary
statements used in [2].

During the transmission of q–ary words of length n over the channel at most t
errors occur, and the encoder knows the set E of t positions, where these errors
are possible. The decoder doesn’t know anything about these positions. Let Et =
{

E | E ⊆ {1, 2, . . . , n}, |E| = t
}

be the set of all subsets from {1, 2, . . . , n} of size
t and let M be a set of messages (|M| = M) . A code word x(m,E) depends
not only on the message m ∈ M but also on the configuration of possible errors
E . So there exists the natural correspondence between the message m ∈ M and
the list of code words

⋃

E∈Et

{

x(m,E)
}

, which we use for the transmission of this
message. Thus the code X for the set of messages M represents a collection of
M lists

{
⋃

E∈Et
{x(m,E)},m ∈ M

}

. Sinde we can use the same word for different
configurations, the size of a list can be essentially smaller than the size of the set
Et

(

|Et| =
(

n
t

))

. Let us define the cylinder C(a,A) with the base a = (a, . . . , an) and

the support A
(

A ⊆ {1, 2, . . . , n}
)

as the set of words (y1, . . . , yn) with yi = ai ,

if i /∈ A . It is clear that the size of the cylinder C(a,A) is equal to q|A| and the
number of different cylinders with the same support A is equal to qn−|A| .

As a result of the transmission of the codeword x(m,E) every word of C
(

x(m,E), E
)

can appear as output of the channel. The code X corrects t localized errors, if the
decoder can correctly recover every message m ∈ M . The following condition is
necessary and sufficient for it:

C
(

x(m,E), E
)

∩ C
(

x(m′, E′), E′
)

= ∅ for all E,E′ ∈ Et,m,m′ ∈ M,m 6= m′. (1)
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The maximal number of messages, which we can transmit by a code correcting t
localized errors, is denoted by Lq(n, t) .

Proposition 1:

Lq(n, t) ≤
qn

St

where St =
∑t

i=0(q − 1)iCi
n is the size of a sphere of radius t in the Hamming

n–space.

A proof of this bound in the q–ary case can be given as for the binary case in [3] or
[4]. The key inequality there has the following generalization.

Lemma 1. Let C(ai, Ai), . . . , C(aT , AT ) be cylinders with pairwise different supports
Ai 6= Aj , i 6= j . Then for the size of the union of the cylinders

∣

∣

∣

∣

∣

T
⋃

i=1

C(ai, Ai)

∣

∣

∣

∣

∣

≥
T

∑

i=1

(q − 1)|Ai|.

Proof: We proceed by an induction on n . For n = 1 the statement is obvious. Let
C(a1, A1), . . . , C(aT , AT ) satisfy the condition of the Lemma. We consider now the
new family C of cylinders:

a) if n /∈ Ai , then C(ai, Ai) ∈ C

b) if n ∈ Ai , then C(a
(k)
i , Ai r n) ∈ C for all k(k = 0, 1, . . . , q − 1) , where

a
(k)
i = (ai1, . . . , ain−1, k) .

We have

C =

q−1
⋃

k=0

C
(k)

where C(k) – all cylinders from C whose last coordinate is equal to k(k = 0, 1, . . . , q−
1) . It is easy to show that

∣

∣

∣

∣

∣

⋃

C∈C

C

∣

∣

∣

∣

∣

=

q−1
∑

k=o

∣

∣

∣

∣

∣

∣

⋃

C∈C(k)

C

∣

∣

∣

∣

∣

∣

.

If follows from the condition of the Lemma that the support Ai r n of q cylinders

C(a
(k)
i , Ai r n), k = 0, 1, . . . , q − 1 differs from the support of other cylinders at least

for q − 1 subfamilies Ck , k = 0, 1, . . . , q − 1 . Thus one proves the Lemma using
the induction step to estimate |

⋃

C∈C(k) C | . It is easy to obtain Proposition 1 from
Lemma 1. In fact for every union of cylinders

⋃

E∈Et
C(·, E) there exists some union

of cylinders
⋃

E∈
S

t

i=0 Ei
C(·, E) such that
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⋃

E∈Et

C(·, E) =
⋃

E∈
S

t

i=1 Ei

C(·, E)

and therefore by Lemma 1

∣

∣

∣

∣

∣

⋃

E∈Et

C(·, E)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

E∈
S

t

i=1 Ei

C(·, E)

∣

∣

∣

∣

∣

∣

≥ St. (2)

Now we have from the condition (1) that

(

⋃

E∈Et

C
(

x(m,E), E
)

)

∩

(

⋃

E′∈Et

C
(

x(m′, E′), E′
)

)

= ∅ for m 6= m′.

From here and (2) the Proposition follows.

The following lower bound can be easily deduced by the standard greedy algorithm
(maximal coding).
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Proposition 2:

Lq(n, t) ≥
qn

q2t
(

n
t

) .

Proof: Let X be the code X =
{
⋃

E∈Et
{x(m,E)}, m ∈ M

}

for M messages,
correcting t localized errors. As

∣

∣

∣

∣

∣

⋃

m∈M

⋃

E∈Et

C
(

x(m,E), E
)

∣

∣

∣

∣

∣

≤ M ·

(

n

t

)

· qt

and the number of different cylinders with the same support E′(|E′| = t) is equal to
qn−t , for any support E′ ∈ Et there exists a cylinder C(a,E′) with

C(a,E′) ∩ C
(

x(m,E), E
)

= ∅ for all m ∈ M and E ∈ Et,

if

M

(

n

t

)

qt < qn−t. (3)

Therefore, if the inequality (3) takes place, it is possible, according to the condition
(1), to construct the code for M + 1 messages, correcting t localized errors. Hence
Proposition 2 follows.

Already Proposition 1 and 2 imply the asymptotic equivalence within a constant

Lq(n, t) ≍
qn

nt
, when t is fixed and n → ∞.

We draw attention to the fact that this equivalence is known for nonbinary error–
correcting codes, except t = 1 , only for t = 2 and q = 3, 4 [5].

The following theorem gives the precise constant in the equivalence.

Theorem. For every constant t

Lq(n, t) =
qn

St

(

1 + o(1)
)

=
t!

(q − 1)t
·
qn

nt

(

1 + o(1)
)

,

where o(1) → o as n → ∞ ( o(1) depends certainly on t and q ).

When proving this theorem [2] we refered to the following recurrence relation, having
an independent interest.

4



Lemma 2. If N ≤ (q − 1)T + 1 , then

Lq(N + T, 1) ≥ qN−1Lq(T, 1).

Proof: On the first N positions we always transmit a parity check ( mod q) code
of the size qN−1 . The last T positions we reserve for the code, which allows us to
transmit Lq(T, 1) messages and to correct a single localized error. The method of
transmission depends on the position of the localized error in the following way:

a) The error is on the last T positions. We use our code as a code, correcting a
single localized error.

b) The error is in the first N positions. We use our code for the transmission of
both, the message and the number of the position, where the error can occur.
According to Proposition 1 and Lemma 2 at least (q − 1)T + 1 different words
in the output of the channel of length T correspond to everyone of Lq(T, 1)
messages and therefore we can make the successful transmission, if

N ≤ (q − 1)T + 1.

The proof is complete.
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