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Abstract. For two matrix operations, called quasi-direct sum and quasi-outer product, 
we determine their deviations from multiplicative behaviour of the rank. The second 
operation arises in the determination of the function table for so-called sum-type 
functions such as the Hamming distance. A consequence of the corresponding rank 
formula is, that the frequently used log rank can be a very poor bound for two-way 
communication complexity. Instead, as was shown in [9], a certain exponential rank 
gives often excellent or even optimal bounds. 
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1. Introduction 

Before we enter our purely algebraic investigations we describe quickly how they 
originated with [9] in the study of the two-way communication complexity of 
sum-type functions (as for instance the Hamming distance function). Suppose that 
for a function g:Sf x Y/~ Y' with finite domain a person (or processor) P~ observes 
output x and another person P~ observes output y. They agree in advance on a 
protocol Q for transmitting alternatively strings of bits to each other. At the end of 
this exchange P e  must be able to calculate g(x, y). If re(x, y) is the number of bits 
exchanged for inputs x and y, then 

L(Q)-- max (e(x,y) 
xc~r, yE~ 

is the (worst case) length of the protocol Q. Let .~g denote the set of all protocols for 
g. Then we define the 2-way communication complexity with respect to an informed 
P~ by 

C(g; 1,--,2 +) = min L(Q). 

It is known (I-23) that 

C(g; 1 ~ 2 +) > log rankv(M0), (1.1) 

when Y" carries a field structure IF and matrix M o corresponds to the function table 
of 9. 
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Even though (1.1) is frequently used the bound  can be very poor.  Examples  in 
1-9] are sum-type functions. For  sequences (Sft)~= 1, (Y/,)t~ 1 of finite sets and a 
sequence (ft)~=l of functions ft:YCt x q l ,~G,  where G is an abelian group,  the 
associated sum-type  function S,: Y'" x q/" ~ G is defined by 

n 

S,(x ' ,y ' )= ~ L(x, ,y,)  (1.2) 
t = l  

for all x" = (xl ,x2, . . .  ,x , )eSf"  = I~7=1 5f, and y" = (Yl,Y2 . . . . .  Y , ) ~ "  = I-[~=1 ~,.  
To analyse rankF(Ms,) ,  if G = F is a field, we have to see first how Ms, relates to 
My, .. . .  , M : .  Thus  we are natural ly  led to a not ion of a product ,  which we call 
quasi-outer product: 

F o r  the matrices mr176 =(mll),jt)i,= 1 ..... l~;~,=, . . . . . . .  (t = 1,2) the p roduc t  m = 
M(1)oqM (2) is an ll 'l 2 • ml.rn 2 matr ix  whose ((il i2), ( j l , j2)) ' s  entry is _(1) + 

, r l ~ i l , j  1 
m! 2) . 

12,J2 " 

One readily verifies that  

Ms, = My, oqM yzoq .. . .  qM f . (1.3) 

We define next the quasi-outer  p roduc t  in terms of outer  products  of vectors. 
Let F " =  {(h~,...,h,)]hi~lF } be the n-dimensional  vector  space over  F.  Fo r  

~" = (u~, . . . ,  u l )~F l and ~" = (vl . . . . .  v , , )~F"  define the outer  product  

w = u o v = ( u l  +v l , u l  +v2 . . . . .  ul +v,,,u2 +v 1 . . . . .  ut+vm ), (1.4) 

and for U = u'2 and V-- ~'2 define the quasi-outer  p roduc t  

r s 

UoqV= l u l  ~ ~2 

This p roduc t  can be called also " tensor  sum", that  is, a " tensor  product" ,  where 
the produc t  opera t ion  is replaced by the sum operat ion.  With  the name  "quasi-  
outer  p roduc t"  we view as in [5] the opera t ion  in the frame of the outer  p roduc t  of 
vectors. 

This no ta t ion  reminds us of ano ther  product .  In  1-5] the outer product of two 
binary linear codes C and C' is defined as 

CoC'= {coc'lc6C, c' ~C'}, (1.5) 

and it is shown there that  

' d i m C + d i m C ' -  1, i fTeCc~C' 
dim(C~ (d imC +dimC',  if-fr (1.6) 

where T = (1, 1 , . . . ,  1) is the vector  with all componen t s  equal  to 1. Actually this 
result can easily be generalized to subspaces C c F "~, C' c IF "~ with an arb i t ra ry  
field F (and Co C' defined as in (1.5)). 

If  we denote  by S(M) the space spanned by the  row vectors of the matr ix  M, 
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then obviously dim S(M) = rank(M). Moreover, by our definitions 

S(M (1) oqM (z)) c__ S(M (1)) o S(M (2)) (1.7) 

and if equality would hold here, then our problem of determining rank (M (1) oqM (2)) 
would be solved by (the generalized form of) (1.6). 

However, this equality often does not hold. Nevertheless, we solved our problem 
via the analysis of another pair of binary operations, namely the familiar direct sum 
and a relation, which we call quasi-direct sum. 

For two linear spaces C and C' the direct sum is the linear space 

C O  C'= {cOc ' lceC and deC'},  

where c �9 c' = (c, c'). 
For  two matrices U and V the quasi-direct sum is 

Analogously to (1.7) we have now 

S(M (1) OqM (2)) ~= S(M (1)) �9 S(M(2)). (1.8) 

and equality need not hold. This led us to introduce and investigate the notion of 
a "missing dimension", resulting in the desired rank formulas. 

2. The Type and the Missing Dimension of a Set of Vectors 

Since the space S(M), spanned by the row vectors of a matrix M does not depend 
on the labelling of the vectors as row vectors, we can study the rank problems 
described in the Introduction in a more general context by defining a quasi-direct 
sum for arbitrary sets of vectors as follows. 

Suppose that q5 # A c F" ,  q5 # B c F", then we set 

A OqB = A • B -- { (a,b)la~A, beB}. (2.1) 

This is a subset of the vectorspace F m �9 F ' .  
For  the analysis of the dimension of its span it is convenient to use the subspace 

D(A) (and D(B)), where 

D(A) --- S( {a - a'la, a' eA} ), (2.2) 

and to introduce the type or the missing dimension of A as the number 

#(A) = dim S(A) -- dim D(A). (2.3) 

This number obviously equals 0 or 1. Instead of S(A) or S({a, b . . . .  }) we also write 
sometimes ( A )  or (a ,  b . . . .  ) .  

Lemma 1. Equivalent are: 
(a) #(A)= 1 
(b) A contains a basis C of S(A) with a coefficient matrix (O~ac)a~A,ceC (that is, 
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a = Z~c~,c'cfor aeA),  which satisfies the row-sum condition 

~ c ~  = 1 for  all aEA. 
c 

(c) Every basis C of  S(A) contained in A has the property described in (b). 

Pro@ 
(a) ~ (c) ~ (b): The implication "(c) ~ (b)" is obvious. For  a basis C = {cl . . . . .  c,} c A, 
we have D ( A ) = ( t a - t . . . . . .  t, _ a - t, ) , because #(A) = 1. Thus, for all a s A, a ~ t, = 

- -  n n _ z-,i= a~?"-1 c~.(t,~oi - t,) and hence a - Z i =  a 7iti with ~ i=  a ~)i- l. 
(b) ~ (a ) :  Since a - a' = Zc(eac - e,,c)ce{b2~TcC152~Te = 0}, dim D(A) = dim S(A) - 1. 

Lemma 2. For any A c IF m and B c F" we have the properties 
(a) D(A x B ) = D ( A ) @ D ( B )  (law o f  inheritance), in particular dim D(A x B ) =  

dim D(A) + dim O(B). 
(b) I f  #(A) = #(B) = O, then S(A x B) = S(A) �9 S(B) 
(c) #(A x B) = max (#(A), #(B)) 
(d) l f  max(#(A) ,  #(B)) = 1, then D(A)@D(B)  is a subspace of  S(A x B) o f  codimen- 

sion 1. 
(e) dim S(A x B) = dim S(A) + dim S(B) - rain (#(A), p(B)). 

Proof. 
(a) Since for any b * e B  (resp. a*eA)  we have 

(a - a', O) = (a, b*) - (a', b*)~D(A x B) 

(resp. (0, b - b ' )eD(A x B)), we conclude that (a - a', b - b ' )eD(A x B) and thus 
D(A) (~ D(B) c D(A x B). Conversely, for any (a, b) - ( a ' ,  b')ED(A x B), we have 

(a, b) - (a', b') = (a - a', O) + (0, b - b')eD(A) (~ D(B). 

(b) Since D(A x B) c S(A x B) c S(A) @ S(B) = D(A) @ D(B), where the equa t ion  
holds by the assumptions, we conclude with (a) that  there are identities every- 
where. 

(c) The case max (p(A),p(B))= 1 remains to be considered, so let us assume that  
#(A) = 1. Choose  any basis {(c~,di)[i~I} for S(A x B) in A x B and denote its 
coefficient matrix ~ ~I Since for (a, b )eA  x B we have by (7(~,b))(~,b)d • B" 

(a, b) = E71,,b)(C,, d,), 
i 

it is also true that  for any b e B  

a = ~,71,,b)cl for all aeA.  
i 

Since #(A) = 1 Lemma 1 yields 

~71~,b) = 1 for all a e A  

and thus also for all (a, b )eA  x B. Again by Lemma 1 this implies #(A x B) = 1. 
(d) By (c) and (a) 1 = #(A x B) = dim S(A x B) - dim D(A x B) = dim S(A x B) -- 

dim D(A) - dim D(B) = dim S(A x B) - dim (D(A) + D(B)). 
(e) This is an immediate consequence of (a), (b), and (d). 
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3. The Rank under Quasi Direct Sums 

Recall that  for a set A in a vectorspace V rank ( A ) =  dim S(A). We derive con- 
sequences of L e m m a s  1, 2 for quasi direct sums with N terms. We use the convent ion 
r + = max  (r, o) for any real n u m b e r  r. 

Theorem 1. 
Let At(t = 1,. . . ,  N) be subsets of  a vectorspace V and let the vectorspace sum Z~= ~ S(A t) 
be isomorphic to the direct sum 0 ~= t S( A t). Furthermore, let { U~ [j = 1 . . . . .  d j} c A t 
be a basis of S(A t) (t = 1,2 . . . . .  N) and set Ti = {t lA t is of  type i} for i = O, 1. 

Then we have 
(a) S ( O q ~ : , A  t) = {Etdfl~U~ Zjfi~ = Zjfl}' for all t, t 'eT~} 
(b) dim S ( O q L  ~A t) = 2,N=~ dim S(A t) - (I T~ I - 1) +. 

Proof.  (b) is an immedia te  consequence of (a). We abbrevia te  S(Oqtu= 1 At) as S and 
show first that  any w e S  is contained in the right hand  expression of (a). 

t �9 We can write w = Z i ~ Z t c o  (0, where w'~eA t, wt(i) = ~_4fl)(i)U}, and 2jfl}(i) = 1 
for t sT~ (by L e m m a  1). 

N o w  set fl~ = Eiaifl~(i) and calculate 

t , j  

Fur thermore ,  for t~ T~ we have 

j ,i j i 

Conversely,  we notice first that  for every te  T O w T 1 

u ; -  u'~ = E u'; + u~-  Z vt; ", 
t" 4:t t'" 

that  

and tha t  therefore 

N 

E u~+ u~,Ev'i'~OqAt, (3.1) 
t ' ~ t  t'" t=  l 

U ~ -  Utl e S  for t e  T o u T~. (3.2) 

Next,  for teTo,  by L e m m a  1 there is a WtEA t with 

w' = Z ~ u ;  and ~ = Z ~' j # 1. (3.3) 
J J 

N o w  (1 -- a )W'  = ~ , jo~(U}-  U]) + a(U] - W t) = ,..,Jr .~t(U',,_j~- U]) + ~Et ' ,  UlC' - 
t t t a(5~t , , tUf  + W t) and since U~ - U1, Zc,  U 1, ~ t , , t U  1 + WteS ,  we have also WteS. 

Fur thermore ,  W t, Ut2 - U] Uta - U t l  U t are independent ,  because 
' ' "  " " '  d t  

0 = y. o j ( u ' , -  u;) + ow t 
j->2 

= y~ [ o j +  o~]uj+ 
i > 2  i > / 2  

and hence O r + Oa~ = O(j > 2) and also Oat1 - ~ j ~ z  Oi = O. 
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We conclude that  Oj = - 6) c~ and that  6) c( 1 + ~2j >= 2 t0 ct~ = 6) c~ = 0. We arrive 
at 6) = 0, 6)i = 0 ( j  > 2), which was to be shown. 

Since every element of A t is a linear combina t ion  of these vectors f rom S, we 
obtain  

A t ~ S  for t ~ T  O . (3.4) 

It  remains  to be seen that  52,~r,Z~fl~U} with Zjfl~ = fl ( t eT~) i s  in S. N o w  

YY juj ZY,  a +v Y 
t~Tl j t~T1 j [_t '~Tl\{t}  t6T1 j t ' ~T l - { t }  

and the first s u m m a n d  is in S, because for any a'teA t 

E a , = E a , -  E a, (3.5) 
t eT l  t t~To 

and ~t~ ro a t e S b y  (3.4), obviously Ztat~S,  and hence Zt~r,  areS. We write the second 
s u m m a n d  in the form 

U 1 -  Z ~,flj O x = ( l T 1 ] - l ) f l  ~, oc .  
tETI j t '~T l - { t }  t '~Tl  t~ {t'} j 1 t ' eT t  

By the reasoning above  this is also an element of S. 

Corollary. Suppose that {M(t)}ts = t is a sequence of  matrices over F and that 

M = M (1) (~qM (2) (~)q". (~qM is), 

then 

(i) S(M) = fl) U) |  Uj G "'" O ~ f l j  Uj ,~,fl j  = 2f i~ ' for  all t, t ' e T  1 , 
J J J J 

where t~ U t ~ j = ~ is a maximal set o f  independent row vectors o f  M ~ and fl~elF. 

4. The Rank under Quasi Outer Products 

We begin with an e lementary  result, which is a key tool in Propos i t ion  1 of [5]. 

L e m m a  3. For positive integers ml , . . . , mL with ~rt= 1 mt = n write 

F n : IF ml ( ~ F  m2 ( ~  . . .  ( ~ l F  mg 

(Recall that for  vector spaces the operations " G "  and "| are the same.) 

The map (p :F" ~ Fn~ = 1 mr, which sends fm~ O f  m2 0 " "  Q fmL = (fro1,.. . ,  fmL) to 
fro1 o f  m2 . . . . .  fmL, is linear and has a null space 

N o =  x l , . . . , x a , x 2  . . . . .  x2 . . . . .  XL . . . .  ,XL) x t = O  (4.1) 
t 

(Here x t occurs m t times.) 

Proof. The linearity of  q~ is immedia te  f rom the definitions. Further ,  let q~(z") = 0. 

We write z (t) ~ z (o ~t) z" = = (  1 , . . . , z m , ) a n d  =(z(1)Oz~2)O. . .Oz(L)  ) (z(1),. . . ,z(L)).Then 
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the ( J l , . . .  ,JL) -th c o m p o n e n t  of q0(z") is 
L 

~o(z';(jl . . . .  ,JL)) = ~ Z}', )" (4.2) 
t = l  

Since ~0(z") = 0 implies 

q)(z'; (i, j2 . . . . .  JL)) = (p(Z"; (i',j: . . . .  ,JL)) = 0 

by (4.2), zi-(1) = ~i"(1)" Similarly, z~ (~) = zip for all t and  thus (4.1). 
Fo r  a sequence of matr ices (M(~ 1 over  F we are going to determine for 

M o = M (1) oq M(2)  % . . . .  q M (m (4.3) 

rank  M ~ 
For  this we need a par t i t ion of {1,2 . . . . .  N}, which is a refinement of {Ta, To} 

and defined as follows: 

Po = { t l t ~ T l , ~ ,  ' s~F with V LU(~ = T ~, --i 

P3 = { t l te  To, 3 ~{ s e F  

P4 = { t l t e T 1 , 3 ~ i ' s e F  

w i t h V L t l ( t )  T }  
/ 

U(t) - ~ } w i t h Z r  , - 1 , 2 r  
i i 

(4.4) 

Proof. Consider  

M = M (1) (~qM (2) G q " "  @qM (N) (4.8) 

and let go u be the restriction of q) (defined in L e m m a  3) on the linear subspace S(M). 
Then  for any sequence (A"))~= 1, where A it) is any row vector  of M (~), q~U sends 
A(1)O ... @A (m to A (1) . . . . .  A (m, i.e. the image space q~M(S(M)) of S(M) under  q~M 

It is clear from the definition of P4 that  for all t~P 4 there are ~(t,/)elF with 

~ ( t , i )  = 1, ~ ( t , i ) U l  ~  O(')'T and O (~ # 0 .  (4.5) 
i i 

Theorem 2. Let M ~ { Pi} and 0 (o be defined as above and let us use the abbreviation 

R = ~ r a n k  M (~ - ([ Tll - 1) +, (4.6) 
t 

R ' =  R -  1- - ( ]P2[  + I P 3 [ -  1) +. (4.7) 
Then 

R , ~ i f  P o = P E = i 2 ~ , P 4 # ~ , P 3 # ~  (i) 

r a n k M O = .  ( o r  Po = Pz = ~2~,P4 ~ ~ , P 3  = ~ (ii) 
and ~-,tEe4 0 (') = 0 

R' + 1 otherwise. 
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equals S(M~ Therefore 

rank M ~ = 
= 

= 

dim (S(M~ 

dim (S(M)) - dim (null space of q~M) 

dim (S(M)) - dim (N~, c~ S(M)) 
~ r a n k  M(t)-(IrlJ - 1) + -d im(N,~S(M)) .  (4.9) 

t 

follows from Lemma 3 and the last equality follows from Here the third equality 
(ii) in Corol lary l. 

Next  by relabelling 
(i = 0 , . . . ,  4) t o < t 1 < t 2 
by Lemma 3, the form 

(~~ r ... | ~['po~T)@ (~IT | .. .) |  ... r 1 7 4  |  (4.10) 

(where the first term in brackets corresponds to the Po-part  etc.) with 
4 

2 ~ e~=0 .  (4.11) 
x = 0  t~Px 

Now, for a further analysis we use (i) of Corol lary 1: 
For  all tePx there are r/(t, i)'s in F with 

e;T = 2 t/(t, i) Ul ') (4.12) 
i 

and for all t, t' ePo ~ P2 ~ P4 

components  we can assume w.l.o.g, that for all t~Pi ~ (g 
< "" < t4. Then every vector contained in N o c~ S(M) has, 

~ tl(t, i ) = L "(, i"). (4.13) 
i i '  

Also, by the definition of Px, 

e~' = 0 for all tePx (x = 0, 1). (4.14) 

We discuss now the cases. 
I f P  2 r ~ or Po -r ~3, then by (4.13) 

e4 = 0 for all t~P4 

and for t~Px (x = 2, 3) e~' can take any value obeying (4.11). Also, when P4 = ~ ,  we 
have the same situation: rank M ~ = R' + 1. 

Henceforth we can assume therefore Po = P2 = ~ and P4 7 fi ~ "  
Then for #(t, i)'s in (4.12) we can have by (4.13) 

t/(t, i) = c (a constant) for all t ~P4 (4.15) 
i 

However,  by (4.5) and (4.12) 

~ tl(t,i)Ult) =e4t T = ( ~  i ~(t,i)Ul ~ e4 
i 0 (t) 

= ~(t,i) t UI ~ for all teP4, 

where ~(t, i) and O (') ai'e defined by (4.5). 
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By the uniqueness of representat ions 

84 
t/(t, i) = ~ ~(t, i) for all t~P4. 

Summat ion  on bo th  sides over  i, (4.5), and (4.15) give c = e4/O~~ or 

a~-f = cOtt)T for all t~P 4. (4.16) 

When  P3 ~ ~ ,  then e 3, t~P3, can take all values in IF and by (4.16), (4.10), and (4.11) 
we obta in  

d im(N,pc~S(M))  = (IP3I + 1 ) -  1 = IP3l 

and therefore (iii). 
When  P3 = ~ and ~2e~e40 <t)r 0, then by (4.11), (4.14), and (4.16) c = 0, i.e. all 

~'  equal 0. This means  that  N~o c~ S(M) = {0"}, so (iii) holds. 
Finally, when ~2t~p4 Oct) = 0, then (4.9) implies (4.11), i.e. c in (4.16) can take all 

values in F.  We have dim N~o n S(M) = 1 and thus (iii). The p roof  is complete.  
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