ON EXTREMAL SET PARTITIONS IN CARTESIAN PRODUCT SPACES

Rudolf Ahlswede and Ning Cai

Universität Bielefeld
Fakultät für Mathematik
Postfach 100131
33501 Bielefeld
Germany

1. Introduction

Consider $(\mathcal{V}, \mathcal{E})$, where \mathcal{V} is a finite set and \mathcal{E} is a system of subsets of \mathcal{V}. For the cartesian products $\mathcal{V}^{n}=\prod_{1}^{n} \mathcal{V}$ and $\mathcal{E}^{n}=\prod_{1}^{n} \mathcal{E}$ let $\pi(n)$ denote the minimal size of a partition of \mathcal{V}^{n} into sets which are elements of \mathcal{E}^{n}, if a partition exists at all, otherwise $\pi(n)$ is not defined. This is obviously exactly the case if it is so for $n=1$.
Whereas the packing number $p(n)$, that is the maximal size of a system of disjoint sets from \mathcal{E}^{n}, and the covering number $c(n)$, that is the minimal number of sets from \mathcal{E}^{n} to cover \mathcal{V}^{n}, have been studied in the literature, this seems to be not the case for the partition number $\pi(n)$.
Obviously, $c(n) \leq \pi(n) \leq p(n)$, if $c(n)$ and $\pi(n)$ are well-defined. The quantity $\lim _{n \rightarrow \infty} \frac{1}{n} \log p(n)$ is Shannon's zero error capacity ([4]). Whereas it is known only in very few cases (see [5]), for $\lim _{n \rightarrow \infty} \frac{1}{n} \log c(n)$ a nice formula exists (see [6], [7]).

The difficulties in analyzing $\pi(n)$ are similar to those for $p(n)$. For the case of graphs with edge set \mathcal{E} including all loops we prove that $\pi(n)=\pi(1)^{n}$ (Theorem 3). This result is derived from the corresponding result for complete graphs (Theorem 2) with the help of Gallai's Lemma in matching theory [9]. More general results concern products of hypergraphs with non-identical factors. Another interesting quantity is $\mu(n)$, the maximal size of a partition of \mathcal{V}^{n} into sets who are elements of \mathcal{E}^{n} (Again only hypergraphs $(\mathcal{V}, \mathcal{E})$ with a partition are considered). We call μ also the maximal partition number. It behaves more like the packing number (see example 5). Clearly $\pi(n) \leq \mu(n) \leq p(n)$. It seems to us that an understanding of these partition problems would be a significant contribution to an understanding of the basic and seemingly simple notion of Cartesian products. Another partition problem was formulated in [1]. Among the contributions to this problem we refer to [1], [2], and [3].

2. Products of complete graphs: First Results

For a complete graph $\mathcal{C}=\{\mathcal{V}, \mathcal{E}\}$ let $\mathcal{E}^{*}=\mathcal{E} \cup\{\{v\}: v \in \mathcal{V}\}$ and define the hypergraph $\mathbb{C}^{n}=\left\{\mathcal{V}^{n}, \mathcal{E}^{n}\right\}$, where $\mathcal{V}^{n}=\prod_{1}^{n} \mathcal{V}$ and $\mathcal{E}^{n}=\prod_{1}^{n} \mathcal{E}^{*}$.

We study the partition number $\pi(n)$ first for \mathbb{C}^{n} and in later sections extend our results to hypergraphs, which are products of arbitrary graphs including all loops, however, again.

First we introduce now the map $\sigma: \mathcal{E}^{n} \rightarrow\{0,1\}^{n}$, where

$$
\begin{equation*}
s^{n}=\sigma\left(E^{n}\right)=\left(\log \left|E_{1}\right|, \ldots, \log \left|E_{n}\right|\right) \tag{2.1}
\end{equation*}
$$

As weight of E^{n}, in short $w\left(E^{n}\right)$, we choose the Hamming weight $w_{H}\left(s^{n}\right)=\sum_{t=1}^{n} s_{t}$. Notice that the cardinality $\left|E^{n}\right|$ equals $2^{w\left(E^{n}\right)}$.

Instead of partitions we consider more generally a packing \mathcal{P} of \mathbb{C}^{n}. We set

$$
\begin{equation*}
\mathcal{P}_{i}=\left\{E^{n} \in \mathcal{P}: w\left(E^{n}\right)=i\right\}, P_{i}=\left|\mathcal{P}_{i}\right| \tag{2.2}
\end{equation*}
$$

and call $\left\{P_{i}\right\}_{i=0}^{n}$ the weight distribution of \mathcal{P}.
With \mathcal{P} we associate the set of shadows $\mathcal{Q} \subset \mathcal{Z}^{n}$, defined by

$$
\begin{equation*}
\mathcal{Q}=\left\{E^{n} \in \mathcal{E}^{n}: E^{n} \subset F^{n} \text { for some } F^{n} \in \mathcal{P}\right\} \tag{2.3}
\end{equation*}
$$

and its level sets

$$
\begin{equation*}
\mathcal{Q}_{i}=\left\{E^{n} \in \mathcal{Q}: w\left(E^{n}\right)=i\right\}, 0 \leq i \leq n \tag{2.4}
\end{equation*}
$$

It is convenient to write $Q_{i}=\left|\mathcal{Q}_{i}\right|$.
$\left\{Q_{i}\right\}_{i=0}^{n}$ is the weight distribution of $\mathcal{Q}=\operatorname{shad}(\mathcal{P})$.
We establish first simple connections between these weight distributions.
Lemma 1. For a packing \mathcal{P} of \mathbb{C}^{n}

$$
\begin{equation*}
\sum_{i=k}^{n} 2^{i-k}\binom{i}{k} P_{i}=Q_{k} \tag{2.5}
\end{equation*}
$$

Proof. Consider any edge E^{n} with weight $w\left(E^{n}\right)=i \geq k$. There are exactly $2^{i-k}\binom{i}{k}$ edges in \mathcal{E}^{n} contained in it, which have weight k. Therefore we have always

$$
\begin{equation*}
\sum_{i=k}^{n} 2^{i-k}\binom{i}{k} P_{i} \geq Q_{k} \tag{2.6}
\end{equation*}
$$

Lemma 2. For a packing \mathcal{P} of \mathbb{C}^{n}

$$
\begin{equation*}
|\mathcal{P}|=\sum_{i=0}^{n} P_{i}=\sum_{k=0}^{n}(-1)^{k} Q_{k} \tag{2.7}
\end{equation*}
$$

Proof. An edge $E^{n} \in \mathcal{P}_{i}$ contributes to $\sum_{k=0}^{n}(-1)^{k} Q_{k}$ the amount $\sum_{k=0}^{i}(-1)^{k} 2^{1-k}\binom{i}{k}=$ $(2-1)^{i}=1$.

Lemma 3. For a packing \mathcal{P} of \mathbb{C}^{n}

$$
\begin{equation*}
P_{0}=\sum_{k=0}^{n}(-1)^{k} 2^{k} Q_{k} \tag{2.8}
\end{equation*}
$$

and if in addition \mathcal{P} is a partition and $S=|\mathcal{V}|$ is odd, then

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} 2^{k} Q_{k}-1 \geq 0 \tag{2.9}
\end{equation*}
$$

Proof. An edge $E^{n} \in \mathcal{P}_{i}$ contributes to $\sum_{k=0}^{n}(-1)^{k} 2^{k} Q_{k}$ the amount $\sum_{k=0}^{i}(-1)^{k} 2^{k} 2^{i-k}\binom{i}{k}=2^{i}(1-1)^{i}$, which equals 1 , if $i=0$, and equals 0 , otherwise. Therefore (2.8) holds.

Furthermore, if S is odd, then so is S^{n} and there must be an edge in the partition of odd size, that is, $P_{0} \geq 1$ or, equivalently, by (2.8), (2.9) must hold.

Remark 1: The last two Lemmas can be derived more systematically from Lemma 1 by Möbius Inversion. Here this machinery can be avoided, but we need it for the more abstract setting of [11].

3. Products of complete graphs: The main results

We shall exploit now Lemma 3 by applying it to classes of subhypergraphs, which we now define. For any $I \subset\{1,2, \ldots, n\}$ and any specification $\left(v_{j}\right)_{j \in I^{c}}$, where $v_{j} \in \mathcal{V}_{j}$, we set

$$
\begin{equation*}
\mathbb{C}^{n}\left(I,\left(v_{j}\right)_{j \in I^{c}}\right)=\left(\prod_{i=1}^{n} \mathcal{U}_{i}, \prod_{i=1}^{n} \mathcal{F}_{i}\right)=\left(\mathcal{U}^{n}, \mathcal{F}^{n}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\mathcal{U}_{i}=\left\{\begin{array}{ll}
\mathcal{V}_{i} \tag{3.2}\\
\left\{v_{i}\right\}
\end{array} \quad \text { and } \quad \mathcal{F}_{i}= \begin{cases}\mathcal{E}_{i} & \text { for } i \in I \\
\left\{v_{i}\right\} & \text { for } i \in I^{c} .\end{cases}\right.
$$

Clearly, for a partition \mathcal{P} of \mathbb{C}^{n} and $\mathcal{Q}=\operatorname{shad} \mathcal{P}$ the set $\mathcal{Q}\left(I,\left(v_{j}\right)_{j \in I^{c}}\right)=\mathcal{Q} \cap \mathcal{F}^{n}$ is a downset and the map

$$
\begin{equation*}
\psi: \mathcal{F}^{n} \rightarrow \prod_{i \in I} \mathcal{E}_{i}, \psi\left(\prod_{i=1}^{n} E_{i}\right)=\prod_{i \in I} E_{i} \tag{3.3}
\end{equation*}
$$

is a bijection.
Write $\widetilde{\mathcal{Q}}=\psi\left(\mathcal{Q} \cap \mathcal{F}^{n}\right)$ and let $\widetilde{\mathcal{Q}}_{i}$ count the members of $\widetilde{\mathcal{Q}}$ of weight i. Since $\widetilde{\mathcal{Q}}$ is a downset in $\prod_{i \in I} \mathcal{E}_{i}$ and its maximal elements form a partition of $\prod_{i \in I} \mathcal{V}_{i}$, we know that $\widetilde{\mathcal{Q}}_{0}=S^{m}$. This fact and Lemma 3 yield

$$
\begin{equation*}
S^{m}+\sum_{k=1}^{m}(-1)^{k} 2^{k} \tilde{\mathcal{Q}}_{k}-1 \geq 0 \tag{3.4}
\end{equation*}
$$

This is the key in the proof of the following important result.
Theorem 1. For a partition \mathcal{P} of $\mathbb{C}^{n}=\left(\mathcal{V}^{n}, \mathcal{E}^{n}\right)$ with $\mathcal{V}^{n}=\prod_{i=1}^{n} \mathcal{V}_{i},\left|\mathcal{V}_{i}\right|=S$ for $i=1,2, \ldots, n$ the weight distribution $\left(Q_{k}\right)_{k=0}^{n}$ of $Q=$ shadP satisfies for $1 \leq m \leq n$

$$
\begin{equation*}
\binom{n}{m} S^{n}+\sum_{k=1}^{m}(-1)^{k}\binom{n-k}{m-k} 2^{k} Q_{k}-\binom{n}{m} S^{n-m} \geq 0 \tag{3.5}
\end{equation*}
$$

Proof. The map ψ preserves inclusions and weights. The total number of pairs $\left(I,\left(v_{j}\right)_{j \in I^{c}}\right)$ with $|I|=m$ equals $\binom{n}{m} S^{n-m}$. Finally, each $E^{n} \in \mathcal{Q}$ with $w\left(E^{n}\right)=k$ is contained in exactly $\binom{n-k}{m-k}$ sets of the form $\mathcal{Q}\left(I,\left(v_{j}\right)_{j \in I^{c}}\right)$ and thus for the sets of weight k

$$
\begin{equation*}
\binom{n-k}{m-k} Q_{k}=\sum_{\left(I,\left(v_{j}\right)_{j \in I^{c}}\right),|I|=m}\left|\mathcal{Q}_{k}\left(I,\left(v_{j}\right)_{j \in I^{c}}\right)\right| . \tag{3.6}
\end{equation*}
$$

We have one equation of the form (3.4) for each pair $\left(I,\left(v_{j}\right)_{j \in I_{c}}\right)$. Summation of their left hand sides gives therefore

$$
\binom{n}{m} S^{n-m} \cdot S^{m}+\sum_{k=1}^{m}(-1)^{k} 2^{k}\binom{n-k}{m-k} Q_{k}-\binom{n}{m} S^{n-m} \geq 0
$$

and hence (3.5).
Now comes the harvest.
Theorem 2. For a partition \mathcal{P} of \mathbb{C}^{n}

$$
|\mathcal{P}| \geq\left\lceil\frac{S}{2}\right\rceil^{n} .
$$

Proof. Since $\left|E^{n}\right| \leq 2^{n}$, obviously $|\mathcal{P}| \geq \frac{S^{n}}{2^{n}}$ and for $S=2 \alpha$ even, the result obviously holds. Let now $S=2 \alpha+1$.

Summing the left hand side expressions in (3.5) for $m=1,2, \ldots, n$ results in

$$
\sum_{m=1}^{n}\binom{n}{m} S^{n}+\sum_{m=1}^{n} \sum_{k=1}^{m}(-1)^{k}\binom{n-k}{m-k} 2^{k} Q_{k}-\sum_{m=1}^{n}\binom{n}{m} S^{n-m} \geq 0
$$

or in

$$
\left(2^{n}-1\right) S^{n}+\sum_{k=1}^{n}(-1)^{k} 2^{k} Q_{k} \sum_{m=k}^{n}\binom{n-k}{m-k}-\left[(S+1)^{n}-S^{n}\right] \geq 0
$$

This is equivalent to

$$
2^{n} \cdot\left[S^{n}+\sum_{k=1}^{n}(-1)^{k} Q_{k}\right]-(S+1)^{n} \geq 0
$$

Since $Q_{0}=S^{n}$ we conclude with Lemma 2

$$
P \geq(S+1)^{n} \cdot 2^{-n}=\left\lceil\frac{S}{2}\right\rceil^{n}, \quad \text { if } S \text { is odd. }
$$

4. NON-IDENTICAL FACTORS: A GENERALIZATION

We consider now hypergraphs \mathbb{C}^{n} with vertex sets $\mathcal{V}^{n}=\prod_{t=1}^{n} \mathcal{V}_{t}$ and edge sets $\mathcal{E}^{n}=$ $\prod_{t=1}^{n} \mathcal{E}_{t}$, where the \mathcal{V}_{t} 's are finite sets of not necessarily equal cardinalities S_{t}. The factors \mathcal{E}_{t} are such that $\left(\mathcal{V}_{t}, \mathcal{E}_{t}\right)$ is a complete graph with all loops included. We shall write with positive integers α_{t}

$$
\begin{equation*}
\left|\mathcal{V}_{t}\right|=2 \alpha_{t}+\varepsilon_{t}, \varepsilon_{t} \in\{0,1\} . \tag{4.1}
\end{equation*}
$$

Inspection shows that the sizes of factors do not affect the proofs of Lemmas 1 and 2. Also (2.8) in Lemma 2 holds and since $P_{0} \geq 1$, if $\varepsilon_{t}=1$ for $t=1,2, \ldots, n$ we can generalize (2.9) to

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} 2^{k} Q_{k}-\prod_{k=1}^{n} \varepsilon_{k} \geq 0 \tag{4.2}
\end{equation*}
$$

Theorem 1 in Section 3 generalizes to

Theorem 1'. For a partition \mathcal{P} of $\mathbb{C}^{\prime n}$

$$
\begin{equation*}
\binom{n}{m} \prod_{i=1}^{n} S_{i}+\sum_{k=1}^{m}(-1)^{k}\binom{n-k}{m-k} 2^{k} Q_{k}-\sum_{I:|I|=m} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{j} \geq 0 . \tag{4.3}
\end{equation*}
$$

Sketch of proof. Replace in the proof of Theorem $1 S^{m}$ by $\prod_{i \in I} S_{i}$ and inequality (3.4) by

$$
\begin{equation*}
\prod_{i \in I} S_{i}+\sum_{k=1}^{n}(-1)^{k} 2^{k} \tilde{Q}_{k}-\prod_{i \in I} \varepsilon_{i} \geq 0 \tag{4.4}
\end{equation*}
$$

Theorem 2'. For a partition \mathcal{P} of $\mathbb{C}^{\prime} n$

$$
\begin{equation*}
|\mathcal{P}| \geq \prod_{i=1}^{n}\left\lceil\frac{S_{i}}{2}\right\rceil \tag{4.5}
\end{equation*}
$$

Proof. Summing the left hand side expressions in (4.3) for $m=1,2, \ldots, n$ results in

$$
\begin{align*}
& 0 \leq \sum_{m=1}^{n}\binom{n}{m} \prod_{i=1}^{n} S_{i}+\sum_{m=1}^{n} \sum_{k=1}^{m}\binom{n-k}{m-k}(-1)^{k} 2^{k} Q_{k}-\sum_{m=1}^{n} \sum_{I:|I|=m} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{j} \\
& =\left(2^{n}-1\right) \prod_{i=1}^{n} S_{i}+\sum_{k=1}^{n}(-1)^{k} 2^{k} Q_{k} \sum_{m=k}^{n}\binom{n-k}{m-k}-\sum_{\phi \neq I} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{i} \\
& =2^{n}\left[\prod_{i=1}^{n} S_{i}+\sum_{k=1}^{n}(-1)^{k} Q_{k}\right]-\sum_{I} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{j} \text { or } \\
& |\mathcal{P}| \geq 2^{-n} \sum_{I} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{j} . \tag{4.6}
\end{align*}
$$

We evaluate the right hand side expression by introducing $J=\left\{\ell: 1 \leq \ell \leq n, \varepsilon_{\ell}=1\right\}$ and $I^{*}=J \backslash I$. Then

$$
\begin{gathered}
\sum_{I} \prod_{i \in I} \varepsilon_{i} \prod_{j \in I^{c}} S_{j}=\sum_{I \subset J} \prod_{j \in I^{*}} S_{j} \cdot \prod_{j \in J^{c}} S_{j} \\
=\prod_{j \in J}\left(S_{j}+1\right) \cdot \prod_{j \in J^{c}} S_{j}=\prod_{j=1}^{n}\left(S_{j}+\varepsilon_{j}\right) \text { and (4.5) follows. }
\end{gathered}
$$

Corollary.

The partition number $\pi\left(\mathbb{C}^{\prime} n\right)$ equals $\prod_{j=1}^{n}\left\lceil\frac{S_{j}}{2}\right\rceil$.

Proof. The partition number of $\left(\mathcal{V}_{j}, \mathcal{E}_{j}\right)$ is $\left\lceil\frac{S_{j}}{2}\right\rceil$. Take a product of optimal partitions for the factors. This construction gives the lower bound in Theorem 2'.

5. Products of general graphs

We assume now that the factors $\mathcal{G}_{t}=\left(\mathcal{V}_{t}, \mathcal{E}_{t}\right) \quad(t=1,2, \ldots, n)$ are arbitrary finite graphs with all loops included.

Obviously, we have for the partition number

$$
\begin{equation*}
\pi\left(\mathcal{G}_{t}\right)=\left|\mathcal{V}_{t}\right|-\nu\left(\mathcal{G}_{t}\right), \tag{5.1}
\end{equation*}
$$

where $\nu\left(\mathcal{G}_{t}\right)$ is the matching number of \mathcal{G}_{t}.
Theorem 3. For the hypergraph product $\mathcal{H}^{n}=\mathcal{G}_{1} \times \cdots \times \mathcal{G}_{n}$

$$
\begin{equation*}
\pi\left(\mathcal{H}^{n}\right)=\prod_{t=1}^{n} \pi\left(\mathcal{G}_{t}\right) \tag{5.2}
\end{equation*}
$$

Here only the inequality

$$
\begin{equation*}
\pi\left(\mathcal{H}^{n}\right) \geq \prod_{t=1}^{n} \pi\left(\mathcal{G}_{t}\right) \tag{5.3}
\end{equation*}
$$

is non-trivial. We make use of a well-known result from matching theory.
Gallai's Lemma. ([9] or [10], page 89)
If a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is connected and for all $v \in \mathcal{V} \quad \nu(\mathcal{G}-v)=\nu(\mathcal{G})$, then \mathcal{G} is factor-critical, that is, for all $v \in \mathcal{V} \mathcal{G}-v$ has a perfect matching.

Proof of (5.3).

For every $t \in\{1,2, \ldots, n\}$ we modify \mathcal{G}_{t} as follows: we remove any vertex $v \in \mathcal{V}_{t}$ with $\nu\left(\mathcal{G}_{t}-v\right)<\nu\left(\mathcal{G}_{t}\right)$ and reiterate this until we obtain a graph \mathcal{G}_{t}^{*} with $\nu\left(\mathcal{G}_{t}^{*}-v\right)=\nu\left(\mathcal{G}_{t}^{*}\right)$ for all $v \in \mathcal{V}_{t}^{*}$.

Notice that (5.1) insures that

$$
\begin{equation*}
\pi\left(\mathcal{G}_{t}\right)=\pi\left(\mathcal{G}_{t}^{*}\right) \tag{5.4}
\end{equation*}
$$

Denote the set of connected components of \mathcal{G}_{t}^{*} by $\left\{\mathcal{G}_{t}^{*(j)}\right\}_{j \in J_{t}}$. Clearly,

$$
\begin{equation*}
\pi\left(\mathcal{G}_{t}^{*}\right)=\sum_{j \in J_{t}} \pi\left(\mathcal{G}_{t}^{*(j)}\right) \tag{5.5}
\end{equation*}
$$

Moreover, by Gallai's Lemma each component $\mathcal{G}_{t}^{*(j)}$ has a vertex set $\mathcal{V}_{t}^{*(j)}$ of odd size and

$$
\nu\left(\mathcal{G}_{t}^{*(j)}\right)=\left(\left|\mathcal{V}_{t}^{*(j)}\right|-1\right) 2^{-1} \triangleq \alpha_{t}^{j}, \quad \text { say. }
$$

Thus,

$$
\begin{equation*}
\pi\left(\mathcal{G}_{t}^{*}\right)=\sum_{j}\left(\alpha_{t}^{j}+1\right) \tag{5.6}
\end{equation*}
$$

Now realize that for $\mathcal{H}^{* n}=\prod_{1}^{n} \mathcal{G}_{t}^{*}$

$$
\begin{equation*}
\pi\left(\mathcal{H}^{n}\right) \geq \pi\left(\mathcal{H}^{* n}\right) \tag{5.7}
\end{equation*}
$$

because the modifications described above transform a partition of \mathcal{H}^{n} into a partition of $\mathcal{H}^{* n}$ with not more parts.

Finally, we have for the product \mathbb{C}^{n} of complete graphs with vertex sets $\mathcal{V}_{t}^{*(j)}$ by Theorem 2' that

$$
\begin{equation*}
\pi\left(\mathcal{G}_{1}^{*\left(j_{1}\right)} \times \cdots \times \mathcal{G}_{n}^{*\left(j_{n}\right)}\right) \geq \pi\left(\mathbb{C}^{n}\right)=\left(\alpha_{1}^{j_{1}}+1\right) \ldots\left(\alpha_{n}^{j_{n}}+1\right) \tag{5.8}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\pi\left(\mathcal{H}^{* n}\right) & =\sum_{j_{1} \in J_{1}, \ldots, j_{n} \in J_{n}} \pi\left(\mathcal{G}_{1}^{*\left(j_{1}\right)} \times \cdots \times \mathcal{G}_{n}^{*\left(j_{n}\right)}\right) \\
& \geq \sum_{\left(j_{1}, \ldots, j_{n}\right)}\left(\alpha_{1}^{j_{1}}+1\right) \ldots\left(\alpha_{n}^{j_{n}}+1\right)=\prod_{t=1}^{n} \sum_{j \in J_{t}}\left(\alpha_{t}^{j}+1\right) \\
& =\prod_{t=1}^{n} \pi\left(\mathcal{G}_{t}^{*}\right)=\prod_{t=1}^{n} \pi\left(\mathcal{G}_{t}\right)
\end{aligned}
$$

This and (5.7) imply (5.3).

6. Examples for deviation from multiplicative behaviour

We give now first two examples of product hypergraphs $\mathcal{H} \times \mathcal{H}^{\prime}$ for which the partition number π is not multiplicative in the factors. They are due to K.U. Koschnick.

Example 1.

$\mathcal{V}_{1}=\{0,1,2, \ldots, 6\}, \mathcal{E}_{1}=\left\{E \subseteq \mathcal{V}_{1}:|E| \in\{1,4\}\right\}$. Clearly, $\pi\left(\mathcal{H}_{1}\right)=4$ and the partition

$$
\begin{aligned}
& \{\{i\} \times\{0,1,2,3\}: i=0,1,2\} \cup\{\{i\} \times\{3,4,5,6\}: i=4,5,6\} \\
& \cup\{\{0,1,2,3\} \times\{j\}: j=4,5,6\} \cup\{\{3,4,5,6\} \times\{j\}: j=\{0,1,2\}\} \\
& \cup\{\{3\} \times\{3\}\} \text { has } 13 \text { members. Therefore }
\end{aligned}
$$

$$
\begin{equation*}
\pi\left(\mathcal{H}_{1} \times \mathcal{H}_{1}\right) \leq 13<\pi\left(\mathcal{H}_{1}\right) \pi\left(\mathcal{H}_{1}\right)=16 \tag{6.1}
\end{equation*}
$$

Whereas this example seems to be the smallest possible, one can also do better with nonidentical factors:
$\mathcal{H}_{1} \times \mathcal{H}_{1}^{\prime}$, where $\mathcal{V}_{1}^{\prime}=\{0,1,2,3,4\}$ and $\mathcal{E}_{1}^{\prime}=\left\{E \subset \mathcal{V}_{1}^{\prime}:|E| \in\{1,3\}\right\}$. Here by a similar construction $\pi\left(\mathcal{H}_{1} \times \mathcal{H}_{1}^{\prime}\right) \leq 11$, whereas $\pi\left(\mathcal{H}_{1}\right) \cdot \pi\left(\mathcal{H}_{1}^{\prime}\right)=4 \cdot 3=12$.

Example 2.

Since π is multiplicative for graphs one may wonder whether it is multiplicative if one factor is a graph.

Consider $G=(\mathcal{V}, \mathcal{E})$ with $\mathcal{V}=\{0,1, \ldots, 4\}$ and $\mathcal{E}=\{\{i, i+1 \bmod 5\}: i=0,1, \ldots, 4\} \cup$ $\{i: 0 \leq i \leq 4\}$, that is, the pentagon with all loops.

Define $\mathcal{H}^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$ with $\mathcal{V}^{\prime}=\{1,2, \ldots, 14\}$ and $\mathcal{E}^{\prime}=\left\{E \subset \mathcal{V}^{\prime}:|E| \in\{1,9\}\right\}$.
Notice that $\pi(G)=3, \pi\left(\mathcal{H}^{\prime}\right)=7$ and that the following construction insures $\pi(G \times$ $\left.\mathcal{H}^{\prime}\right) \leq 20<21=\pi(G) \cdot \pi\left(\mathcal{H}^{\prime}\right):$

$$
\begin{aligned}
& \{\{i\} \times\{j+k \bmod 14: 0 \leq k \leq 8\}:(i, j) \in\{(0,0),(1,3),(2,6),(3,9),(4,12)\}\} \\
& \cup\{\{1,2\} \times\{j\}: j=0,1,2\} \cup\{\{2,3\} \times\{j\}: j=2,3,5\} \\
& \cup\{\{3,4\} \times\{j\}: j=6,7,8\} \cup\{\{4,0\} \times\{j\}: j=9,10,11\} \\
& \cup\{\{0,1\} \times\{j\}: j=12,13,14\}
\end{aligned}
$$

is a set of $5+5 \cdot 3=20$ edges partitioning $\mathcal{V} \times \mathcal{V}^{\prime}$.
For the orientation of the reader we add three examples, which demonstrate that also the covering number c, the packing number p and the maximal partition number μ are not multiplicative in the factors.

Example 3. $\mathcal{V}_{3}=\{0,1,2\}, \mathcal{E}_{3}=\{E \subseteq \mathcal{V}:|E|=2\}$
We have

$$
\begin{equation*}
3=c\left(\mathcal{H}_{3} \times \mathcal{H}_{3}\right) \neq c\left(\mathcal{H}_{3}\right) \cdot c\left(\mathcal{H}_{3}\right)=4, \tag{6.2}
\end{equation*}
$$

because $\mathcal{C}\{\{0,1\} \times\{0,1\},\{0,2\} \times\{0,2\},\{1,2\} \times\{1,2\}\}$ covers $\mathcal{V}_{3} \times \mathcal{V}_{3}$ and there is no covering with 2 edges.

This is the smallest example in terms of the number of vertices.
Remark 2. Quite generally, even in case of non-identical factors $\mathcal{H}_{t}=\left(\mathcal{V}_{t}, \mathcal{E}_{t}\right), t \in \mathbb{N}$, with $\max _{t}\left|\mathcal{E}_{t}\right|<\infty$ the asymptotic behaviour of $c(n)$ is known ([7]):

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\log c(n)-\sum_{t=1}^{n} \log \left(\max _{q \in \operatorname{Prob}\left(\mathcal{E}_{t}\right)} \min _{v \in \mathcal{E}_{t}} \sum_{E \in \mathcal{E}_{t}} 1_{E}(v) q_{E}\right)^{-1}\right)=0, \text { where } \operatorname{Prob}\left(\mathcal{E}_{t}\right) \text { is }
$$

the set of all probability distributions on \mathcal{E}, q_{E} is the probability of E under q and 1_{E} is the indicator function of the set E.

Example 4.

$\mathcal{V}_{4}=\{0,1,2,3,4\}, \mathcal{E}_{4}=\left\{\{x, x+1 \bmod 5\}: x \in \mathcal{V}_{4}\right\}$. Here we have

$$
\begin{equation*}
5=p\left(\mathcal{H}_{4} \times \mathcal{H}_{4}\right) \neq p\left(\mathcal{H}_{4}\right) p\left(\mathcal{H}_{4}\right)=4 \tag{6.3}
\end{equation*}
$$

It was shown in [4] that this is the smallest example in the previous sense. Notice that it is bigger than the previous one.

Example 5. In order to avoid heavy notation we write $\mathcal{H}_{5}=\left(\mathcal{V}_{5}, \mathcal{E}_{5}\right)$ simply without an index as $\mathcal{H}=(\mathcal{V}, \mathcal{E})$. It is constituted by the 5 vertex sets

$$
\mathcal{W}_{i}=\left\{x_{i j}: j=1,2, \ldots, m\right\}, 3 \leq m(i=0,1,2, \ldots, 4)
$$

and the 6 edge sets

$$
\mathcal{G}_{i}=\left\{\left(x_{i j}, x_{i+1} \bmod 5, j\right): j=1,2, \ldots, m\right\}(i=0,1,2, \ldots, 4)
$$

and the 5 edges $\mathcal{W}_{i}(i=1,2, \ldots, 4)$. Thus

$$
\mathcal{V}=\bigcup_{i=0}^{4} \mathcal{W}_{i}, \mathcal{E}=\left\{\mathcal{W}_{1}, \ldots, \mathcal{W}_{4}\right\} \cup\left(\bigcup_{i=0}^{4} \mathcal{G}_{i}\right)
$$

A look at the pentagon with vertex set $\left\{x_{01}, x_{11}, x_{21}, x_{31}, x_{41}\right\}$ shows that a partition of \mathcal{H} must contain at least one of the edges \mathcal{W}_{i} as a member. On the other hand the vertices $\mathcal{V} \backslash \mathcal{W}_{i}$ have a maximal partition of size $2 m$. Therefore we have shown that $\mu(\mathcal{H})=2 m+1$. We shall next consider $\mu(\mathcal{H} \times \mathcal{H})$. For this we introduce the superedges

$$
\mathcal{G}_{i}^{*}=\mathcal{W}_{i} \cup \mathcal{W}_{i+1} \bmod 5(i=0,1, \ldots, 4)
$$

in \mathcal{H} and the superedges $\mathcal{G}_{i}^{*} \times \mathcal{G}_{i^{\prime}}^{*}\left(i, i^{\prime}=0,1, \ldots, 4\right)$ in $\mathcal{H} \times \mathcal{H}$. Whereas \mathcal{G}_{i}^{*} can be partitioned into m edges, they can be partitioned into m^{2} edges.

Now first of all we divide $\mathcal{V} \times \mathcal{V}$ into 25 parts $\left\{\mathcal{W}_{i} \times \mathcal{W}_{i^{\prime}}: i, i^{\prime}=0,1, \ldots, 4\right\}$. Then we pack 5 superedges (as in Shannon's construction) into $\mathcal{V} \times \mathcal{V}$. They cover 20 parts and the remaining 5 parts are packed with 5 edges of type $\mathcal{W}_{i} \times \mathcal{W}_{i^{\prime}}$. Finally we partition the 5 superedges into the edges of $\mathcal{H} \times \mathcal{H}$. Thus we obtain a desired partition with $5+5 m^{2}$ edges. Notice that $\mu(\mathcal{H} \times \mathcal{H}) \geq 5+5 m^{2}>(2 m+1)^{2}=\mu(\mathcal{H})^{2}$ for $m \geq 3$. The smallest example in this class has 15 vertices.

Remark 3. The construction is based on the pentagon. Its vertices are replaced by sets of vertices \mathcal{W}_{i} with a numbering. The vertices with the same number in the \mathcal{W}_{i} 's form a pentagon. Thus we obtained $m=\left|\mathcal{W}_{i}\right|$ many pentagons. Then we added the \mathcal{W}_{i}^{\prime} as further edges. Finally we used the superedges to mimic the original small edges. We can make this construction starting with any hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$. If it has the property $p(\mathcal{H})^{2}<p(\mathcal{H} \times \mathcal{H})$, then for m large enough our construction gives an associated hypergraph for which μ is not multiplicative.

Acknowledgement

The authors are very much indebted to Klaus-Uwe Koschnick for constructing beautiful examples.

References

[1] A. Yao, Some complexity questions related to distributive computing, in "Proceedings 11th Ann. ACM Sympos. Theory of Computing, 1979", 209-213.
[2] K. Mehlhorn and E.M. Schmidt, Las Vegas is better than determinism in VLSI and distributed computing, in "Proceedings 14th ACM STOC, 1982", 330-337.
[3] R. Ahlswede, N. Cai, and Z. Zhang, A general 4-words inequality with consequences for 2-way communication complexity, Advances in Applied Mathematics 10 (1989), 75-94.
[4] C.E. Shannon, The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory IT-2 (1956), 8-19.
[5] L. Lovasz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, IT25 (1979), 1-7.
[6] E.C. Posner, R.J. Mc Eliece, Hide and seek, data storage and entropy, Annals of Math. Statistics 42 (1971), 1706-1716.
[7] R. Ahlswede, On set coverings in Cartesian product spaces, Manuscript 1971, reprinted in SFB 343 "Diskrete Strukturen in der Mathematik", Preprint 92-034.
[8] R. Ahlswede, "Coloring hypergraphs: A new approach to multi-user source coding", Pt I, Journ. of Combinatorics, Information and System Sciences, Vol. 4, No. 1, pp 76-115, 1979; Pt II, Journ. of Combinatorics, Information and System Sciences, Vol. 5, No. 3, pp 220-268, 1980.
[9] T. Gallai, Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutato Int. Közl. 8 (1963), 135-139.
[10] L. Lovász, M.D. Plummer, Matching Theory, North-Holland Mathematics studies 121, North-Holland 1986.
[11] R. Ahlswede and N. Cai, On POS partition and hypergraph products, SFB 343 "Diskrete Strukturen in der Mathematik", Preprint 93-008.

