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1. Definitions, formulation of problems and conjectures

We use the following notations:

Z denotes the set of all integers, N denotes the set of positive integers, and P =
{p1, p2, . . . } = {2, 3, 5, . . . } denotes the set of all primes. We set

Qk =
k

∏

i=1

pi. (1.1)

For two numbers u, v ∈ N we write (u, v) = 1 , if u and v are coprimes.

We are particularly interested in the sets

Ns =
{

u ∈ N : (u,Qs−1) = 1
}

(1.2)

and

Ns(n) = Ns ∩ [1, n], (1.3)

where for i ≤ j [i, j] equals {i, i + 1, . . . , j} .

Erdös introduced in [1] (and also in [2], [4], [5]) f(n, k, s) as the largest integer r for
which an

An ⊂ Ns(n), |An| = r (1.4)

exists with no k + 1 numbers of An being coprimes.

Certainly the set

E(n, k, s) =
{

u ∈ Ns(n) : u = ps+iv for some i = 0, 1, . . . , k − 1
}

(1.5)

has no k + 1 coprimes.

The case s = 1 , in which we have N1(n) = [1, n] , is of particular interest.

Conjecture 1:

f(n, k, 1) = |E(n, k, 1)| for all n, k ∈ N.

It seems that this conjecture of Erdös appeared for the first time in print in his paper
[1] of 1962.

The papers [2] and [3] by Erdös, Sárközy and Szemerdi and the recent paper [7] by
Erdös and Sarkozy are centered around this problem. Whereas it is easy to show that
the conjecture is true for k = 1 and k = 2 , it was proved for k = 3 by Szabo and
Toth [6] only in 1985. Conjecture 1 can also be found in Section 3 of the survey [4] of
1973. In the survey [5] of 1980 one finds the
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General Conjecture:

f(n, k, s) = |E(n, k, s)| for all n, k, s ∈ N.

Erdös mentions in [5] that he did not succeed in settling the case k = 1 . We focus on
this special case by calling it

Conjecture 2:

f(n, 1, s) = |E(n, 1, s)| for all n, s ∈ N.

Notice that
E(n, 1, s) =

{

u ∈ N1(n) : ps|u; p1, . . . , ps−1 ∤ u
}

.

We shall also study these extremal problems for the square free natural numbers N∗ .
Thus we are naturally led to the sets N∗

s = Ns∩N∗ , N∗
s(n) = Ns(n)∩N∗ , E∗(n, k, s) =

E(n, k, s) ∩ N∗ etc. and to the function f∗(n, k, s) .

Remark 1:

Our interest in the conjectures stated above is motivated by an attempt to search for
new combinatorial principles in this number theoretic environment. Consequently we
are looking for statements, which don’t depend on the actual distribution of primes.
Especially Theorem 3 below has this flavour.

In another paper we shall make a systematic study of combinatorial extremal theory
for lattices which are abstractions of lattices such as N∗

s(n) , N∗ etc.

2. Results

Theorem 1. For all s, n ∈ N

f∗(n, 1, s) = |E∗(n, 1, s)|.

Theorem 2.

For every s ∈ N and n ≥ Qs+1

ps+1−ps

f(n, 1, s) = |E(n, 1, s)|

and the optimal configuration is unique.

Example 1: (Conjecture 1 is false)

The claim is verified in Section 5. There we prove first the following result.

3



Proposition 1: For any t ∈ N with the properties

(H) pt+7pt+8 < pt · pt+9 , pt+9 < p2
t

and every n in the half–open intervall In = [pt+7 · pt+8, pt · pt+9) we have for
k = t + 3

f(n, k, 1) > |E(n, k, 1)|.

Then we show that (H) holds for t = 209 .

We think that by known methods ([13], [14]) one can show that actually (H) holds for
infinitely many t , and that there are counterexamples for arbitrarily large k .

Remark 2:

Erdös (oral communication) conjectures now that for every k ∈ N f(n, k, 1) 6=
|E(n, k, 1)| occurs only for finitely many n .

Example 2: Even for squarefree numbers “Erdös sets” are not always optimal, that is,
f∗(n, k, 1) 6= |E∗(n, k, 1)| can occur. We verify in Section 5 that the set N∗∩An(t+3)
(defined in (5.1)) is an example.

Example 3: In the light of the facts that f(n, k, 1) = |E(n, k, 1)| holds for k = 1, 2, 3
for all n and that f∗(n, 1, s) = |E∗(n, 1, s)| for all s , it is perhaps surprising that
we can have

f∗(n, 2, s) 6= |E∗(n, 2, s)|.

We show this in Section 5 for Ps = 101 and n ∈ [109 · 113, 101 · 127) .

Finally, we generalize Theorem 2 by considering instead of Ns the set NP′ , that is the
set of those natural numbers, which don’t have any prime of the finite set of primes P′

in their prime number decomposition. We put NP′(n) = NP′ ∩ [1, n] and consider sets
A ⊂ NP′(n) of non–coprimes. We are again interested in cardinalities and therefore
introduce

f(n, 1, P′) = max
{

|A| : A ⊂ NP′(n) has no coprimes
}

.

In analogy to the set E(n, 1, s) in the case P′ = {p1, . . . , ps−1} we introduce now

E(n, 1, P′) =
{

u ∈ NP′(n) : q1 | u
}

, where {q1, q2, . . . } = {p1, p2, . . . } r P′ and
q1 < q2 < . . . and QP′ =

∏

p∈P′ p .

Theorem 3. For any finite set of primes P′ we have for n ≥ q1·q2

q2−q1
QP′

f(n, 1, P′) = |E(n, 1, P′)|.
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3. Proof of Theorem 1

Let
∼

A ⊂ N∗
s(n) be without coprimes. Every a ∈

∼

A has a presentation

a =

n
∏

t=s

pαt

t with αt ∈ {0, 1}. (3.1)

We can identify a with α = (αs, . . . , αn) and thus
∼

A with A . For
∼

A to have no
coprimes means that for any α, α′ ∈ A

α ∧ α′ 6= (o, . . . , o) = o , say. (3.2)

Now we write
A = A1

.
∪ A0, (3.3)

where
Aε =

{

α = (αs, . . . , αn) ∈ A : αs = ε
}

for ε = 0, 1, (3.4)

and make three observations:

(a) The set B1 =
{

β1 = (1, 0, . . . , 0)∨β : β = αrα′ ∈ A0 rA0

}

, where A0 rA0 =
{α r α′ : α, α′ ∈ A0} , is disjoint from A1 , because otherwise β1 ∧ α′ = o in
contradiction to (3.2).

(b)
∼

B1 ⊂ N∗
s(n) , because

n
∏

t=s

pβ1t

t =

n
∏

t=s+1

ps p
(αrα′)t

t <

n
∏

t=s

pαt

t = α

by (3.2).

(c) By an inequality of Marica/Schönheim [8], which is (as explained in [11], [12]) a
very special case of the Ahlswede/Daykin inequality [9],

|B1| = |A0 r A0| ≥ |A0|. (3.5)

By these observations the set
∼

C1 =
∼

A1

.
∪

∼

B1 is contained in N∗
s(n) , contains no

coprimes, and has a cardinality |
∼

C1| = |
∼

A1| + |
∼

B1| ≥ |
∼

A1| + |
∼

A0| = |
∼

A| .

This shows that f∗(n, 1, s) ≤ |E∗(n, 1, s)| and the reverse inequality is obvious.
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4. Proof of Theorem 2

We need auxiliary results. A key tool are the congruence classes of N

C(r, s) =
{

r + ℓ Qs−1 ∈ N : ℓ ∈ N ∪ {0}
}

for r = 1, . . . , Qs−1. (4.1)

They partition Ns into the sets

G(r, s) = Ns ∩ C(r, s). (4.2)

We can say more.

Lemma 1.

(i) For any r ∈ Ns

C(r, s) ⊂ Ns, that is, G(r, s) = C(r, s).

(ii) There exist r1, r2, . . . , rRs−1
∈ Ns(Qs−1) such that Rs−1 =

∏s−1
i=1 (pi − 1) and

Ns =
⋃Rs−1

i=1 G(ri, s) . Actually, {r1, . . . , rRs−1
} = Ns(Qs−1) .

Proof:

(i) For any c ∈ C(r, s) , r ∈ Ns , we have for some ℓ c = r + ℓ Qs−1 . However,
if c /∈ Ns , then (c,Qs−1) > 1 and this implies (r,Qs−1) > 1 in contradiction to
r ∈ Ns .

(ii) We consider Ns(Qs−1) = Ns

(

∏s−1
i=1 pi

)

and observe that for Euler’s ϕ–function

|Ns(Qs−1)| = ϕ

(

s−1
∏

i=1

pi

)

=

s−1
∏

i=1

(pi − 1) = Rs−1.

Next we realize that no two elements from Ns(Qs−1) belong to the same class, because
they differ by less than Qs−1 . Finally, if u ∈ Ns and u > Qs−1 , then u = r+ℓ Qs−1

for some ℓ ∈ N and r ∈ Ns(Qs−1) . Hence u ∈ G(r, s) .

So, as r1, r2, . . . , rRs−1
we can take all the elements of Ns(Qs−1) and G(ri, s) =

{

ri + ℓ Qs−1 : ℓ ∈ N ∪ {0}
}

.

We need a few definitions. For A ⊂ Ns and 1 ≤ n1 < n2 set

A[n1, n2] = A ∩ [n1, n2] (4.3)

and
Aj [n1, n2] = A[n1, n2] ∩ G(rj , s) for j = 1, . . . , Rs−1. (4.4)

Thus we have Aj [n1, n2]∩Aj′ [n1, n2] = ∅(j 6= j′) and A[n1, n2] =
⋃Rs−1

j=1 Aj [n1, n2] .
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We also introduce

Ej [n1, n2] =
{

u : u = psv, (v,Qs−1) = 1
}

∩ [n1, n2] ∩ G(rj , s). (4.5)

Clearly,
Rs−1
⋃

j=1

Ej [1, n] = E(n, s). (4.6)

Lemma 2. Let mj be the smallest and let Mj be the largest integer in G(rj , s) ∩
[n1, n2] . Then for A ⊂ Ns without coprimes

(i) |Aj [n1, n2]| ≤
⌈

|[n1,n2]∩G(rj ,s)|
ps

⌉

=

⌈

(Mj−mj)Q
−1

s−1
+1

ps

⌉

,

(ii) |Ej [n1, n2]| =
⌈

|[n1,n2]∩G(rj ,s)|
ps

⌉

, if ps|mj · Mj ,

and

(iii) if both, ps|mj and ps|Mj , hold, then |Aj [n1, n2]| = |Ej(n1, n2)]| exactly if
Aj [n1, n2] = Ej [n1, n2] .

Proof:

(i) Write mj = rj + ℓ Qs−1 and Mj = rj + L Qs−1 . Then clearly

Mj = mj + (L − ℓ)Qs−1 (4.7)

and
L − ℓ = psx + y, 0 ≤ y < ps. (4.8)

Also by the definitions of mj and Mj

|[n1, n2] ∩ G(rj , s)| = (L − ℓ) + 1 (4.9)

and therefore the equality in (i) holds.

For two elements a1 and a2 of Aj [n1, n2] ⊂ Ns clearly (a1, a2) ≥ ps and by
definition (4.4) we know that a1 = rj + ℓ1 Qs−1 , a2 = rj + ℓ2 Qs−1 .

Since (a1, a2) | (a1−a2) and
(

(a1, a2), Qs−1

)

= 1 we also have that (a1, a2) | (ℓ1−ℓ2)
and hence that

|ℓ1 − ℓ2| ≥ ps. (4.10)

This gives (i) by (4.7) and (4.8).

Actually we can also write

|Aj [n1, n2]| ≤

⌈

L − ℓ + 1

ps

⌉

=

⌈

psx + y + 1

ps

⌉

= x + 1. (4.11)
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(ii) As ps|mj (or ps|Mj ) we have by (4.7) and (4.8)

Ej [n1, n2] = {mj ,mj + ps Qs−1, . . . ,mj + psx Qs−1}

(or Ej [n1, n2] =
{

mj + y Qs−1, . . . ,mj + (psx + y)Qs−1

}

In any case |Ej [n1, n2]| = x + 1 and we complete the proof with (4.11).

(iii) Since ps|mj and ps|Mj (ii) applies and yields together with (i)

|Ej [n1, n2]| =

⌈

(Mj − mj)Q
−1
s−1 + 1

ps

⌉

=
(Mj − mj)Q

−1
s−1

ps

+ 1.

Furthermore we know that

Aj [n1, n2] = {a1, a1 + ℓ1Qs−1, a2 + ℓ2Qs−1, . . . , a1 + ℓ|Aj |−1Qs−1},

where a1 ≥ m1 and a1 + ℓ|Aj |−1Qs−1 ≤ Mj .

If now |Ej [n1, n2]| = |Aj [n1, n2]| , then by (4.10) necessarily Ej [n1, n2] = Aj [n1, n2] .

Proposition 2: For all s, n ∈ N

|E(n, s)| ≥ f(n, s) − Rs−1.

Proof: Let A ⊂ Ns(n) satisfy |A| = f(n, s) .

Specify Lemma 2 to the case [n1, n2] = [1, n] and recall (4.6). By (i) of the lemma

|Aj [1, n]| ≤

⌈

|[1, n] ∩ G(rj , s)|

ps

⌉

and

|A| =

Rs−1
∑

j=1

|Aj [1, n]| ≤

Rs−1
∑

j=1

⌈

|[1, n] ∩ G(rj , s)|

ps

⌉

. (4.12)

On the other hand, since (ps, Qs−1) = 1 , for all r ∈ Ns and all ℓ ∈ N one of the
following integers r + ℓ Qs−1, r + (ℓ + 1)Qs−1, . . . , r + (ℓ + ps − 1)Qs−1 is divisible by
ps . Therefore by the definition (4.5)

|Ej [1, n]| ≥

⌊

|[1, n] ∩ G(rj , s)|

ps

⌋

(4.13)

|E(n, s)| =

Rs−1
∑

j=1

|Ej [1, n]| ≥

Rs−1
∑

j=1

⌊

[1, n] ∩ G(rj , s)

ps

⌋

. (4.14)
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The result follows from (4.12) and (4.14).

Proof of Theorem: We try to show that for large n

|Aj [1, n]| ≤ |Ej [1, n]| for j = 1, . . . , Rs−1. (4.15)

The condition on n arises naturally this way. A is assumed to be optimal, that is,
|A| = f(n, 1, s) . We make here a space saving convention

Aj = Aj [1, n], Ej = Ej [1, n]. (4.16)

Two cases are distinguished.

Case: Aj ∩ Ej 6= ∅ .

Let r be any element of Aj ∩ Ej . We partition Aj into the sets A1
j = [1, r] ∩ Aj

and A2
j = [r + ps Qs−1, n] ∩ Aj . Truly

Aj = A1
j

.
∪ A2

j , (4.17)

because r + ℓ · Qs−1 ∈ Aj for 0 < ℓ < ps would imply that for some ps′(s′ ≥ s)
ps′ |r and ps′ |r + ℓ · Qs−1 , which is impossible since ps′ ∤ ℓ · Qs−1 .

The same argument applies to Ej . We can thus also write

Ej = E1
j ∪ E2

j , E1
j = [1, r] ∩ Ej , E

2
j = [r + ps Qs−1, n] ∩ Ej . (4.18)

Since r ∈ Ej , we have ps|r and ps|(r + ps Qs−1) .

Now by Lemma 2

|A1
j | ≤ |E1

j | and |A2
j | ≤ |E2

j |

and therefore |Aj | = |A1
j | + |A2

j | ≤ |E1
j | + |E2

j | = |Ej | .

Case: Aj ∩ Ej = ∅ .

This means that no member of Aj has ps as factor. Write

Aj = {rj + ℓ1 Qs−1, rj + ℓ2 Qs−1, . . . , rj + ℓ|Aj |Qs−1}

with 0 ≤ ℓ1 < ℓ2 < · · · < ℓ|Aj | .

By the assumption on Aj in this case for some s′ ≥ s + 1 ps′ |rj + ℓk Qs−1 and
ps′ |rj + ℓk+1 Qs−1 and hence ps′ |(ℓk+1 − ℓk) . This implies

ℓk+1 − ℓk ≥ ps+1 for k = 1, . . . , |Aj | − 1 (4.19)

and therefore
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|Aj | ≤

⌈

|[1, n] ∩ G(rj , s)|

ps+1

⌉

. (4.20)

Now we write [1, n] ∩ G(rj , s) =
{

rj , rj + Qs−1, . . . , rj + (z − 1)Qs−1

}

and conclude
from (4.20) that

|Aj | ≤

⌈

z

ps+1

⌉

. (4.21)

On the other hand by (4.13) we have

|Ej | ≥

⌊

z

ps

⌋

.

The inequality
⌊

z
ps

⌋

≥
⌈

z
ps+1

⌉

would be insured if z
ps

and z
ps+1

are separated by

an integer. Sufficient for this is

z

ps

−
z

ps+1
≥ 1 (4.22)

or (equivalently)

z ≥
psps+1

ps+1 − ps

. (4.23)

By the definition of z

(z − 1)Qs−1 < n < z Qs−1 (4.24)

and hence z > n
Qs−1

. Requiring n ≥ psps+1

ps+1−ps
Qs−1 guarantees (4.23).

For these n |Ej | ≥ |Aj | in both cases and hence |A| ≤ |E(n, 1, s)| .

Finally we show uniqueness. For this we consider [1, n]∩G(rj , s) , which contains ps .

By (ii) in Lemma 2 one has |Ej | =
⌈

z
ps

⌉

. Now, if Aj ∩Ej = ∅ , then |Aj | ≤
⌈

z
ps+1

⌉

and for z ≥ ps ps−1
ps+1−ps

one has |Ej | > |Aj | .

On the other hand, if Aj∩Ej 6= ∅ and if ps ∈ Aj , then all members of A must have
ps as a factor and so A ⊂ E(n, s) . We are left with the case ps /∈ Aj and for some
r 6= ps r ∈ Aj ∩Ej . Here we consider partitions Aj = A1

j ∪A2
j and Ej = E1

j ∪E2
j ,

which are described in (4.17) and (4.18). Now by (i) and (ii) in Lemma 2 one has

|A1
j | ≤ |E1

j | and |A2
j | ≤ |E2

j |.

However, since ps /∈ Aj , by (iii) in Lemma 2 we have |A1
j | < |E1

j | . In any case an
optimal A has to equal E(n, 1, s) .
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Remark 3: Actually we proved a more general result. Replacing [1, n] by [n1, n2]
the maximal cardinality of sets A ⊂ Ns ∩ [n1, n2] without coprimes is assumed by
E[n1, n2] , if n2 − n1 is sufficiently large.

5. The examples

We present now the three examples mentioned in Section 2.

1.) We prove first Proposition 1.

The set proposed by Erdös is E(n, t + 3, 1) =
{

u ∈ N1(n) :
(

u,
∏t+3

i=1 pi

)

> 1
}

. As

competitor we suggest An(t + 3) = B ∪ C , where

B =

{

u ∈ N1(n) :

(

u,

t−1
∏

i=1

pi

)

> 1

}

and

C = {pt+i · pt+j : 0 ≤ i < j ≤ 8}. (5.1)

Notice that by (H) for n ∈ In C ⊂ N1(n) , that B ∩ C = ∅ , and that |C| =
(

9
2

)

=
36 .

Therefore we have

|An(t + 3)| = |B| + 36. (5.2)

Furthermore, no k + 1 = t + 4 numbers of An(t + 3) are coprimes, because we can
take in B at most t − 1 and in C at most 4 pairwise relatively prime integers.

For comparison we write E(n, t + 3, 1) in the form E(n, t + 3, 1) = B
.
∪ D , where

D = {pt, pt+1, pt+2, pt+3}∪{p
2
t , p

2
t+1, p

2
t+2, p

2
t+3}∪{pt+i·pt+j : 0 ≤ i ≤ 3, 1 ≤ j ≤ 8, i < j}.

Notice here that by (H) for n ∈ In p3
t (and a fortiori p3

t+1 . . . ) exceeds n and so
does pt · pt+9 (and a fortiori pt+1pt+9 . . . ).

Since |D| = 4 + 4 + 8 + 7 + 6 + 5 = 34 we conclude with (5.2) that

|An(t + 3)| − |E(n, t + 3, 1)| = |B| + 36 − (|B| + 34) = 2 > 0.
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The hypothesis (H) remains to be verified. It is perhaps interesting to know that
among the prime numbers less than 5000 there is only one t , which satisfies (H),
namely t = 209 . The relevant primes pt, . . . , pt+9 are

P209 P210 P211 P212 P213 P214 P215 P216 P217 P218

1289 1291 1297 1301 1303 1307 1319 1321 1327 1361

We calculate (in our heads of course) that

P209 · P218 = 1289 · 1361 = 1754329 > P216 · P217 = 1321 · 1327 = 1752967

and that P 2
209 = 12892 > 1361 = P218 .

Hence for k = 212 and for all n with P209 · P218 = 1754329 > n ≥ 1752967 =
P216 · P217 one has f(n, k, 1) ≥ |E(n, k, 1)|+ 2 . Curiously, P209 · P218 − P216 · P217 =
1362 = P218 + 1 . Also, if P209 where smaller by 2 these 4 primes would not suffice
for the construction.

2.) Notice that in the previous notation by (5.1) C ∩ N∗ = C and that |D ∩ N∗| =
|D| − 4 . Since |C| − |D| = 2 , we conclude that

|An(t + 3) ∩ N∗| − |E∗(n, t + 3, 1)| = |(B ∩ N∗)
.
∪ C| − |(B ∩ N∗)

.
∪ (D ∩ N∗)| = 6 > 0 .

3.) Choose s = 25 and consider p25 = 101 , p26 = 103 , p27 = 107 , p28 = 109 ,
p29 = 113 , p30 = 127 . Verify that 109·113 < 101·127 and choose n ∈ [109·113, 101·
127) .

For these parameters

E∗(n, 2, 25) = {101 ·m : m ∈ N}∪{103 ·m : m ∈ N}∩
{

u ∈ N∗
1(n) :

(

u,
∏24

i=1 pi

)

= 1
}

= {101; 101 · 103, 101 · 107, 101 · 109, 101 · 113} ∪ {103; 103 · 107, 103 · 109, 103 · 113}

and |E∗(n, 25)| = 9 .

As competitor we choose

A∗
n(2, 25) = {P25+i · P25+j : 0 ≤ i < j ≤ 4}.

Its largest element 109 · 113 does not exceed n and since only 5 primes are involved
as factors, no 3 products with 2 factors can be relatively prime. However,

|A∗
n(2, 25)| =

(

5

2

)

= 10 > 9.
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6. Proof of Theorem 3

Let us define now
QP′ =

∏

p∈P′

p (6.1)

and replace Qs−1 by QP′ in the earlier definitions. Thus we replace

G(r, s) by G(r, P′) = {u ∈ N : u ≡ r mod QP′} ∩ NP′ in Section 4 and establish the
generalizations of Lemmas 1, 2 and also of Theorem 2.

Just keep in mind that P′ takes the role of {p1, . . . , ps−1} , q1 takes the role of ps ,
and q2 takes the role of ps+1 .

Thus the sufficient condition n ≥ ps ps+1

ps+1−ps
Qs−1 is to be replaced by

n ≥
q1q2

q2 − q1
QP′ . (6.2)
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