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1. Introduction

The notion of an antichain in a partially ordered set was generalized [2] and [3] to

the seemingly natural notion of a “cloud–antichain” {Ai}
N
i=1 . Whereas in antichains

elements of a partially ordered set are compared in cloud–antichains sets of elements

take their role. Elements in different sets Ai , called clouds, are required to be incomparable.

Formally, for every two clouds Ai and Aj we have

Ai ≯ Aj for all Ai ∈ Ai and all Aj ∈ Aj . (1.1)

In [3] further notions of cloud–antichains were introduced. Whereas the logical structure

of the formula (1.1) suggests to speak of an antichain of type (∀,∀) , the new notions

in [3] are of the types (∀,∃) , (∃,∀) , and (∃,∃) .

In the sequal we consider always the partially ordered set P = 2Ωn , the power set

of Ωn = {1, 2, . . . , n} , with set theoretic containment as order relation. {Ai}
N
i=1 is

always a family of subsets of P . It is said to be of type (∃,∀) , if for all i 6= j

there exists an Ai ∈ Ai with Ai 6⊂ Aj and Ai 6⊃ Aj for all Aj ∈ Aj , (1.2)

it is of type (∀,∃) , if for all i 6= j

for all Ai ∈ Ai there exists an Aj ∈ Aj with Ai 6⊂ Aj and Ai 6⊃ Aj (1.3)

and it is of type (∃,∃) , if for all i 6= j there exists an Ai ∈ Ai

and there exists an Aj ∈ Aj with Ai 6⊂ Aj and Ai 6⊃ Aj . (1.4)

The maximal cardinalities N of such systems as functions of n are denoted by

Nn(∃,∀) , Nn(∀,∃) , and Nn(∃,∃) , resp.

Obviously, an analogously defined quantity Nn(∀,∀) equals
(

n
⌊n

2
⌋

)

, because in an

optimal configuration |Ai| = 1 and Sperner’s classical Theorem ([1]) applies. We also

study systems with disjoint clouds. The maximal cardinalities are then denoted by

Mn(∃,∀) , Mn(∀,∃) , and Mn(∃,∃) , resp.

We call two functions f : N → N and g : N → N asymptotically equivalent and write

f(n) ∼ g(n) , if

lim
n→∞

f(n)

g(n)
= 1.
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All the six functions measuring maximal lengths of cloud–antichains in the cases

described are determined up to asymptotic equivalence. Three of the functions are

even determined exactly.
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2. The Results

Theorem 1.

Mn(∃,∀) ∼ 2n−1 .

Theorem 2.

Nn(∃,∀) =
(

k
⌊ k

2
⌋

)

, where k =
(

n
⌊n

2
⌋

)

.

Theorem 3.

Mn(∀,∃) =

{

2, if n = 2
2n−1 − 1, if n ≥ 3

.

Theorem 4.

Nn(∀,∃) ∼ 22
n−2 .

Theorem 5.

Mn(∃,∃) =
(

n
⌊n

2
⌋

)

+
⌊ 2

n−2−( n

⌊ n

2
⌋)

2

⌋

.

Theorem 6.

Nn(∃,∃) ∼ 22
n

.

The proofs are delegated to the following sections. We begin with those for the exact

estimates.

Throughout the paper we use a representation of the partically ordered set (P,⊂) as

sequence space
(

{0, 1}n,≺
)

, where A ∈ P corresponds to S(A) = (a1, a2, . . . , an)

with at =

{

1, if t ∈ A
0, if t /∈ A

and the inclusion A ⊂ B translates into

S(A) ≺ S(B) = (b1, b2, . . . , bn) , which means that at ≤ bt for t = 1, 2, . . . , n .
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3. Proof of Theorem 2

We view the cloud–antichain {Ai}
N
i=1 of type (∃,∀) in {0, 1}n . For x ∈ {0, 1}n

let the weight w(x) be the number of 1’s in x . Let m be the maximal weight of

members of
⋃N

i=1
Ai and let {v1, v2, . . . , vt} be the set of members of

⋃N

i=1
Ai with

weight m . We assume first that m > ⌊n
2
⌋ . It is known that in {0, 1}n there exist

pairwise different members v′
1, v

′
2, . . . , v

′
t of weight m − 1 with the property

v′
j ≤ vj for j = 1, 2, . . . , t. (3.1)

For every i (i = 1, . . . , N) we replace all members of {v1, v2, . . . , vt} in Ai by the

corresponding members of {v′
1, v

′
2, . . . , v

′
t} and call the new cloud A′

i .

One readily verifies that {A′
i}

N
i=1 has again the (∃,∀)–property . Symmetrically, one

can perform a transformation of the clouds via sequences of smallest weight, if this is

smaller than ⌊n
2
⌋ . Iteration of these two kinds of transformation results in a cloud–

antichain {A∗
i }

N
i=1 with the (∃,∀)–property involving only sequences of weight ⌊n

2
⌋ .

There are k =
(

n
⌊n

2
⌋

)

such sequences and every A∗
i can be represented via the usual

incidence relation as a binary vector ui of length k .

Now observe that the (∃,∀)–property is equivalent to the following one: ui 6≻ uj for

all i 6= j . Sperner’s Theorem [1] implies N ≤
(

k
⌊ k

2
⌋

)

.

Conversely, by choosing all clouds consisting of ⌊k
2
⌋ sets with ⌊n

2
⌋ elements each we

achieve this bound.

4. Proof of Theorem 3

We make use of an auxiliary result. For X ⊂ {0, 1}n let Cn(X) be the set of elements

of {0, 1}n which are comparable with at least one element in X .

Lemma 1. If X is an (ordinary) antichain in {0, 1}n , n ≥ 4 , then | Cn(X) |≥

2|X| + 3 .

Proof Suppose that there is an α ∈ X with w(α) = 1 (or w(α) = n − 1 ).

Then necessarily | Cn({α}) r {(0, . . . , 0), (1, . . . , 1)} |= 2n−1 − 1 and Cn({α}) ∩

(X r {α}) = ∅ , which implies | Cn(X) r {(0, . . . , 0), (1, . . . , 1)} |≥| Cn({α}) r
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{(0, . . . , 0), (1, . . . , 1)} | +|X| − 1 = 2n−1 − 2 + |X| . Now 2n−1 − 2 + |X| > 2|X|

holds for n ≥ 5 , because there 2n−1 − 2 >
(

n
⌊n

2
⌋

)

≥ |X| , and for n = 4 , because

there |X| ≤ 4 under the supposition w(α) = 1 for an α ∈ X .

It remains to consider the case, where 2 ≤ w(α) ≤ n − 2 for all α ∈ X . There

is a component, say the n–th , in which some β ∈ X has a 1 . Define now X∗ =
{

(a1, a2, . . . , an−1, an)|(a1, a2, . . . , an) ∈ X
}

where the bar stands for complementation,

and notice that X,X∗ ⊂ Cn(X) −
{

(0, . . . , 0), (1, . . . , 1)
}

and that X∗ ∩ X = ∅ ,

because X is an antichain.

Since en = (0, . . . , 0, 1) ∈ Cn({β}) ⊂ Cn(X) and since en /∈ X ∪ X∗ , we have

| Cn(X) r
{

(0, . . . , 0), (1, . . . , 1)
}

|≥ |X| + |X∗| + 1 = 2|X| + 1

and thus the result.

Now Theorem 3 is readily established. Suppose first that 1 = |A1| = |A2| = · · · =

|As| < 2 ≤ |As+1| ≤ · · · ≤ |AN | with 1 ≤ s ≤
(

n
⌊n

2
⌋

)

.

Define then T = Cn

(
⋃s

i=1
Ai

)

r
(
⋃s

i=1
Ai

)

and conclude with aid of Lemma 1 that

|T | ≥ 2s + 3 − s . Since by the (∀,∃)–property T ∩
(
⋃N

i=1
Ai

)

= ∅ , we have

2n ≥

N
∑

i=1

|Ai| + |T | ≥ s + 2(N − s) + s + 3

and thus N ≤ 2n−1 − 2 for n ≥ 4 .

Furthermore, since
{

(0, . . . , 0), (1, . . . , 1)
}

∩
⋃N

i=1
Ai = ∅ in the remaining case 2 ≤

|A1| ≤ · · · ≤ |AN | we have N ≤ 1

2
(2n − 2) and thus again N ≤ 2n−1 − 1 .

On the other hand there is a simple construction: every Ai consists of a sequence

αi 6= (0, . . . , 0), (1, . . . , 1) and its complement αi . There are 2n−1 − 1 such clouds.

The (∀,∃)–property holds.

Actually, for n ≥ 4 this construction gives the only optimal configuration. Clearly,

by the previous arguments an optimal configuration has clouds of cardinality 2 only.

We shall exclude next clouds of the form A = {a, b} with b 6= a . For such a cloud a

and b have a component value in common, say 0 in the first component. But then

(0, 1, . . . , 1) cannot be in any other cloud, it has to be in A and equal, say, a . If

now w(b) ≤ n − 3 then there is a c with w(c) = w(b) + 1 , c ≺ a , c ≻ b , and

c /∈
⋃N

i=1
Ai .
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This contradicts the equality
⋃N

i=1
Ai = {0, 1}n r

{

(0, . . . , 0), (1, . . . , 1)
}

. If on the

other hand w(b) = n − 2 ≥ 2 (since n ≥ 4 ), then some d with w(d) = w(b) − 1

and d ≺ b ≺ a is not in
⋃N

i=1
Ai .

Finally the cases n = 2, 3 go by inspection.

In case n = 2 the only optimal configuration has clouds of cardinality 1. For n = 3

there is (up to isomorphism) also the solution
{

{110}, {101}, {011}
}

with clouds of

cardinality 1 only. Furthermore, there are three non–isomorphic solutions, for instance
{

{110, 001}, {101, 010}, {011, 100}
}

,
{

{110, 010}, {101, 001}, {011, 100}
}

, and
{

{110, 010}, {101, 100}, {011, 010}
}

, with clouds of cardinality 2.

5. Proof of Theorem 5

There are at most
(

n
⌊n

2
⌋

)

clouds with 1 member and the sequences (0, 0, . . . , 0) and

(1, 1, . . . , 1) can be eliminated from all clouds. Therefore

N ≤

(

n

⌊n
2
⌋

)

+

⌊

2−1

(

2n − 2 −

(

n

⌊n
2
⌋

))⌋

.

We abbreviate the right hand side expression by R and construct now R clouds with

the (∃,∃)–property .

Case n = 2ℓ : For i = 1, . . . ,
(

n
ℓ

)

choose Ai = {ai} with w(ai) = ℓ . For i =
(

n
ℓ

)

+ 1, . . . , R choose Ai = {bi, bi} with 1 ≤ w(bi) < ℓ .

Case n = 2ℓ + 1 : For n = 3 the choice A1 = {100} , A2 = {010} , A3 = {001} ,

A4 = {011, 101, 110} works. For n > 3 there exists a partition of vectors of weight

ℓ+1 into ⌊
(2ℓ+1

ℓ+1 )
2

⌋ disjoint pairs Ai = {ci, di} with Hamming distance dH(ci, di) ≥

4 .

Further, for the next
(

2ℓ+1

ℓ

)

indices we define Ai = {ai} with w(ai) = ℓ and for all

the remaining indices we set Ai = {bi, bi} with 1 ≤ w(bi) < ℓ . The (∃,∃)–property

is readily verified.
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6. Proof of Theorem 1

Since Mn(∀,∃) ≥ Mn(∃,∀) we conclude from Theorem 3 that Mn(∃,∀) ≤ 2n−1 − 1 .

The issue is to construct a cloud–antichain meeting asymptotically this bound.

We make use of the

General form of Baranyai’s Theorem

Let n1, . . . , nt be natural numbers such that
∑t

i=1
ni =

(

n
k

)

, then
(

Ωn

k

)

can be

partitioned into disjoint sets P1, . . . , Pt such that |Pi| = ni and each ℓ ∈ Ωn is

contained in exactly ⌈ni·k
n

⌉ or ⌊ni·k
n

⌋ members of Pi .

Our main auxiliary result is

Lemma 2. For positive integers n, k, λ with 2k − n ≤ λ < k the set
(

Ωn

k

)

has a

partition P (n, k, λ) =
{

P1, P2, . . . , P⌊ 1
2 (

n

k)⌋
}

with Pi = {ai, bi}, |ai ∩ bi| = λ .

Proof For λ = 0 or λ = 2k − n , the statement follows from Baranyai’s Theorem.

We proceed by induction:

If at least one of the numbers
(

n−1

k

)

,
(

n−1

k−1

)

is even, then we can define (by forgetting

the last element n )

P (n, k, λ) = P (n − 1, k, λ) ∪ P (n − 1, k − 1, λ − 1).

If
(

n−1

k

)

≡
(

n−1

k−1

)

≡ 1 mod 2 , then there remain 2 sets: v =
(

Ωn−1

k

)

r P (n− 1, k, λ) ,

u =
(

Ωn−1

k−1

)

r P (n− 1, k − 1, λ− 1) . Since the labelling of the elements in Ωn−1 does

not matter, v can be any member of
(

Ωn−1

k

)

and u can be any member of
(

Ωn−1

k−1

)

.

Particularly, we can assume that |v ∩ u| = λ .

For even n = 2ℓ as well as for odd n = 2ℓ + 1 we define the cloud–antichain

P =

s=ℓ+⌊ ℓ−1

7
⌋

⋃

s=ℓ−⌊ ℓ−1

7
⌋

P
(

n, s, ℓ − s + 3⌊
ℓ − 1

7
⌋
)

and calculate |P | =

⌊ ℓ−1

7
⌋

∑

i=−⌊ ℓ−1

7
⌋

⌊

(

n
ℓ+i

)

2
⌋ ∼

1

2
2n.

It remains to be seen that P has the (∃,∀)–property . For this consider two clouds

{a, b} and {a′, b′} with |a| = |b| = s , |a′| = |b′| = s′ and w.l.o.g. s < s′ and

a ⊂ a′ . We claim that b 6⊂ a′ , because otherwise a ∪ b ⊂ a′ in contradiction to
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|a ∪ b| = 2s −
(

ℓ − s + 3⌊
ℓ − 1

7
⌋
)

= 3s − 3⌊
ℓ − 1

7
⌋ − ℓ ≥ 3

(

ℓ − ⌊
ℓ − 1

7
⌋
)

− 3⌊
ℓ − 1

7
⌋ − ℓ

= 2ℓ − 6⌊
ℓ − 1

7
⌋ > ℓ + ⌊

ℓ − 1

7
⌋ ≥ s′.

We claim also that b 6⊂ b′ , because otherwise a ∩ b ⊂ a′ ∩ b′ in contradiction to

|a∩ b| = ℓ−s+3⌊ ℓ−1

7
⌋ > ℓ−s′ +3⌊ ℓ−1

7
⌋ . b′ 6⊂ b and a′ 6⊂ b obviously holds, because

|a′| = |b′| = s′ > s = |b| . Finally, we claim that a 6⊂ b′ because otherwise a ⊂ a′ ∩ b′

in contradiction to |a| > |a ∩ b| > |a′ ∩ b′| . We have shown that {a, b} and {a′, b′}

are not comparable in the sense (∃,∀) .

Remark Bernhard Herwig [6] was the first to show that lim infn→∞ Mn(∀,∃)2−n =

c > 0 . By arguments based on the marriage theorem he actually proved that c ≥ 1

18
.

7. Proof of Theorem 4

Since necessarily (0, 0, . . . , 0), (1, 1, . . . , 1) /∈
⋃N

i=1
Ai , we have {Ai}

N
i=1 ⊂ Ω′ ,

P
(

{0, 1}n r {(0, 0, . . . , 0), (1, 1, . . . , 1)}
)

and thus N ≤ 22
n−2 . On the other hand

let us consider {Ai}
N∗

i=1 ⊂ Ω′ , where each Ai contains a subset {α, α} and N∗ is

maximal. The (∀,∃)–property holds.

There are 2n−1 − 1 sets {α, α} and therefore

|Ω′| − N∗ =
2

n−1−1
∑

k=0

(

2n−1 − 1

k

)

· 2k = 32
n−1

.

This implies N∗ = 22
n−2 − 32

n−1

∼ 22
n−2 .

8. Proof of Theorem 6

Consider all clouds containing at least 2 sequences of weight ⌊n
2
⌋ . This defines a

cloud–antichain of type (∃,∃) and length N = 22
n

− 2
2

n−( n

⌊ n

2
⌋)

(

(

n
⌊n

2
⌋

)

+ 1
)

∼ 22
n

.

Clearly, Nn(∃,∃) ≤ 22
n

.
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