THE MAXIMAL LENGTH OF CLOUD-ANTICHAINS

Rudolf Ahlswede and Levon H. Khachatrian

Universität Bielefeld
Fakultät für Mathematik
Postfach 100131
33501 Bielefeld
Germany

Institute of Problems
of Information and Automation
Armenian Academy of Sciences
Erevan-44, P. Sevak str. 1
Armenia
Visiting SFB "Diskrete
Strukturen in der Mathematik",
Bielefeld.

1. INTRODUCTION

The notion of an antichain in a partially ordered set was generalized [2] and [3] to the seemingly natural notion of a "cloud-antichain" $\left\{\mathcal{A}_{i}\right\}_{i=1}^{N}$. Whereas in antichains elements of a partially ordered set are compared in cloud-antichains sets of elements take their role. Elements in different sets \mathcal{A}_{i}, called clouds, are required to be incomparable. Formally, for every two clouds \mathcal{A}_{i} and \mathcal{A}_{j} we have

$$
\begin{equation*}
A_{i} \ngtr A_{j} \text { for all } A_{i} \in \mathcal{A}_{i} \text { and all } A_{j} \in \mathcal{A}_{j} . \tag{1.1}
\end{equation*}
$$

In [3] further notions of cloud-antichains were introduced. Whereas the logical structure of the formula (1.1) suggests to speak of an antichain of type (\forall, \forall), the new notions in $[3]$ are of the types $(\forall, \exists),(\exists, \forall)$, and (\exists, \exists).

In the sequal we consider always the partially ordered set $\mathcal{P}=2^{\Omega_{n}}$, the power set of $\Omega_{n}=\{1,2, \ldots, n\}$, with set theoretic containment as order relation. $\left\{\mathcal{A}_{i}\right\}_{i=1}^{N}$ is always a family of subsets of \mathcal{P}. It is said to be of type (\exists, \forall), if for all $i \neq j$
there exists an $A_{i} \in \mathcal{A}_{i}$ with $A_{i} \not \subset A_{j}$ and $A_{i} \not \supset A_{j}$ for all $A_{j} \in \mathcal{A}_{j}$,
it is of type (\forall, \exists), if for all $i \neq j$
for all $A_{i} \in \mathcal{A}_{i}$ there exists an $A_{j} \in \mathcal{A}_{j}$ with $A_{i} \not \subset A_{j}$ and $A_{i} \not \supset A_{j}$
and it is of type (\exists, \exists), if for all $i \neq j$ there exists an $A_{i} \in \mathcal{A}_{i}$
and there exists an $A_{j} \in \mathcal{A}_{j}$ with $A_{i} \not \subset A_{j}$ and $A_{i} \not \supset A_{j}$.
The maximal cardinalities N of such systems as functions of n are denoted by $N_{n}(\exists, \forall), \quad N_{n}(\forall, \exists)$, and $N_{n}(\exists, \exists)$, resp.

Obviously, an analogously defined quantity $N_{n}(\forall, \forall)$ equals $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$, because in an optimal configuration $\left|\mathcal{A}_{i}\right|=1$ and Sperner's classical Theorem ([1]) applies. We also study systems with disjoint clouds. The maximal cardinalities are then denoted by $M_{n}(\exists, \forall), M_{n}(\forall, \exists)$, and $M_{n}(\exists, \exists)$, resp.

We call two functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ asymptotically equivalent and write $f(n) \sim g(n)$, if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

All the six functions measuring maximal lengths of cloud-antichains in the cases described are determined up to asymptotic equivalence. Three of the functions are even determined exactly.

Theorem 1.

$$
M_{n}(\exists, \forall) \sim 2^{n-1} .
$$

Theorem 2.

$$
N_{n}(\exists, \forall)=\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor} \text {, where } k=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Theorem 3.

$$
M_{n}(\forall, \exists)=\left\{\begin{array}{cc}
2, & \text { if } n=2 \\
2^{n-1}-1, & \text { if } n \geq 3
\end{array} .\right.
$$

Theorem 4.

$$
N_{n}(\forall, \exists) \sim 2^{2^{n}-2} .
$$

Theorem 5.

$$
M_{n}(\exists, \exists)=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}+\left\lfloor\frac{2^{n}-2-\left(\begin{array}{c}
\left.\frac{n}{2}\right\rfloor
\end{array}\right)}{2}\right\rfloor .
$$

Theorem 6.

$$
N_{n}(\exists, \exists) \sim 2^{2^{n}} .
$$

The proofs are delegated to the following sections. We begin with those for the exact estimates.

Throughout the paper we use a representation of the partically ordered set (\mathcal{P}, \subset) as sequence space $\left(\{0,1\}^{n}, \prec\right)$, where $A \in \mathcal{P}$ corresponds to $S(A)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{t}=\left\{\begin{array}{ll}1, & \text { if } t \in A \\ 0, & \text { if } t \notin A\end{array}\right.$ and the inclusion $A \subset B$ translates into $S(A) \prec S(B)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, which means that $a_{t} \leq b_{t}$ for $t=1,2, \ldots, n$.

3. Proof of Theorem 2

We view the cloud-antichain $\left\{\mathcal{A}_{i}\right\}_{i=1}^{N}$ of type (\exists, \forall) in $\{0,1\}^{n}$. For $x \in\{0,1\}^{n}$ let the weight $w(x)$ be the number of 1's in x. Let m be the maximal weight of members of $\bigcup_{i=1}^{N} \mathcal{A}_{i}$ and let $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ be the set of members of $\bigcup_{i=1}^{N} \mathcal{A}_{i}$ with weight m. We assume first that $m>\left\lfloor\frac{n}{2}\right\rfloor$. It is known that in $\{0,1\}^{n}$ there exist pairwise different members $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t}^{\prime}$ of weight $m-1$ with the property

$$
\begin{equation*}
v_{j}^{\prime} \leq v_{j} \text { for } j=1,2, \ldots, t \tag{3.1}
\end{equation*}
$$

For every $i \quad(i=1, \ldots, N)$ we replace all members of $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ in \mathcal{A}_{i} by the corresponding members of $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t}^{\prime}\right\}$ and call the new cloud \mathcal{A}_{i}^{\prime}.

One readily verifies that $\left\{A_{i}^{\prime}\right\}_{i=1}^{N}$ has again the (\exists, \forall)-property. Symmetrically, one can perform a transformation of the clouds via sequences of smallest weight, if this is smaller than $\left\lfloor\frac{n}{2}\right\rfloor$. Iteration of these two kinds of transformation results in a cloudantichain $\left\{\mathcal{A}_{i}^{*}\right\}_{i=1}^{N}$ with the (\exists, \forall)-property involving only sequences of weight $\left\lfloor\frac{n}{2}\right\rfloor$. There are $k=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ such sequences and every \mathcal{A}_{i}^{*} can be represented via the usual incidence relation as a binary vector u_{i} of length k.

Now observe that the (\exists, \forall)-property is equivalent to the following one: $u_{i} \nsucc u_{j}$ for all $i \neq j$. Sperner's Theorem [1] implies $N \leq\binom{ k}{\left.\frac{k}{2}\right\rfloor}$.

Conversely, by choosing all clouds consisting of $\left\lfloor\frac{k}{2}\right\rfloor$ sets with $\left\lfloor\frac{n}{2}\right\rfloor$ elements each we achieve this bound.

4. Proof of Theorem 3

We make use of an auxiliary result. For $X \subset\{0,1\}^{n}$ let $\mathcal{C}_{n}(X)$ be the set of elements of $\{0,1\}^{n}$ which are comparable with at least one element in X.

Lemma 1. If X is an (ordinary) antichain in $\{0,1\}^{n}$, $n \geq 4$, then $\left|\mathcal{C}_{n}(X)\right| \geq$ $2|X|+3$.

Proof Suppose that there is an $\alpha \in X$ with $w(\alpha)=1$ (or $w(\alpha)=n-1)$. Then necessarily $\left|\mathcal{C}_{n}(\{\alpha\}) \backslash\{(0, \ldots, 0),(1, \ldots, 1)\}\right|=2^{n-1}-1$ and $\mathcal{C}_{n}(\{\alpha\}) \cap$ $(X \backslash\{\alpha\})=\varnothing$, which implies $\left|\mathcal{C}_{n}(X) \backslash\{(0, \ldots, 0),(1, \ldots, 1)\}\right| \geq \mid \mathcal{C}_{n}(\{\alpha\}) \backslash$
$\{(0, \ldots, 0),(1, \ldots, 1)\}\left|+|X|-1=2^{n-1}-2+|X|\right.$. Now $\left.2^{n-1}-2+|X|>2\right| X \mid$ holds for $n \geq 5$, because there $2^{n-1}-2>\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} \geq|X|$, and for $n=4$, because there $|X| \leq 4$ under the supposition $w(\alpha)=1$ for an $\alpha \in X$.

It remains to consider the case, where $2 \leq w(\alpha) \leq n-2$ for all $\alpha \in X$. There is a component, say the n-th, in which some $\beta \in X$ has a 1 . Define now $X^{*}=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{n-1}, \bar{a}_{n}\right) \mid\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in X\right\}$ where the bar stands for complementation, and notice that $X, X^{*} \subset \mathcal{C}_{n}(X)-\{(0, \ldots, 0),(1, \ldots, 1)\}$ and that $X^{*} \cap X=\varnothing$, because X is an antichain.

Since $e_{n}=(0, \ldots, 0,1) \in \mathcal{C}_{n}(\{\beta\}) \subset \mathcal{C}_{n}(X)$ and since $e_{n} \notin X \cup X^{*}$, we have

$$
\left|\mathcal{C}_{n}(X) \backslash\{(0, \ldots, 0),(1, \ldots, 1)\}\right| \geq|X|+\left|X^{*}\right|+1=2|X|+1
$$

and thus the result.
Now Theorem 3 is readily established. Suppose first that $1=\left|\mathcal{A}_{1}\right|=\left|\mathcal{A}_{2}\right|=\cdots=$ $\left|\mathcal{A}_{s}\right|<2 \leq\left|\mathcal{A}_{s+1}\right| \leq \cdots \leq\left|\mathcal{A}_{N}\right|$ with $1 \leq s \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Define then $T=\mathcal{C}_{n}\left(\bigcup_{i=1}^{s} \mathcal{A}_{i}\right) \backslash\left(\bigcup_{i=1}^{s} \mathcal{A}_{i}\right)$ and conclude with aid of Lemma 1 that $|T| \geq 2 s+3-s$. Since by the (\forall, \exists)-property $T \cap\left(\bigcup_{i=1}^{N} \mathcal{A}_{i}\right)=\varnothing$, we have

$$
2^{n} \geq \sum_{i=1}^{N}\left|\mathcal{A}_{i}\right|+|T| \geq s+2(N-s)+s+3
$$

and thus $N \leq 2^{n-1}-2$ for $n \geq 4$.
Furthermore, since $\{(0, \ldots, 0),(1, \ldots, 1)\} \cap \bigcup_{i=1}^{N} \mathcal{A}_{i}=\varnothing$ in the remaining case $2 \leq$ $\left|\mathcal{A}_{1}\right| \leq \cdots \leq\left|\mathcal{A}_{N}\right|$ we have $N \leq \frac{1}{2}\left(2^{n}-2\right)$ and thus again $N \leq 2^{n-1}-1$.

On the other hand there is a simple construction: every \mathcal{A}_{i} consists of a sequence $\alpha_{i} \neq(0, \ldots, 0),(1, \ldots, 1)$ and its complement $\bar{\alpha}_{i}$. There are $2^{n-1}-1$ such clouds. The (\forall, \exists)-property holds.

Actually, for $n \geq 4$ this construction gives the only optimal configuration. Clearly, by the previous arguments an optimal configuration has clouds of cardinality 2 only. We shall exclude next clouds of the form $\mathcal{A}=\{a, b\}$ with $b \neq \bar{a}$. For such a cloud a and b have a component value in common, say 0 in the first component. But then $(0,1, \ldots, 1)$ cannot be in any other cloud, it has to be in \mathcal{A} and equal, say, a. If now $w(b) \leq n-3$ then there is a c with $w(c)=w(b)+1, c \prec a, c \succ b$, and $c \notin \bigcup_{i=1}^{N} \mathcal{A}_{i}$.

This contradicts the equality $\bigcup_{i=1}^{N} \mathcal{A}_{i}=\{0,1\}^{n} \backslash\{(0, \ldots, 0),(1, \ldots, 1)\}$. If on the other hand $w(b)=n-2 \geq 2$ (since $n \geq 4$), then some d with $w(d)=w(b)-1$ and $d \prec b \prec a$ is not in $\bigcup_{i=1}^{N} \mathcal{A}_{i}$.

Finally the cases $n=2,3$ go by inspection.
In case $n=2$ the only optimal configuration has clouds of cardinality 1 . For $n=3$ there is (up to isomorphism) also the solution $\{\{110\},\{101\},\{011\}\}$ with clouds of cardinality 1 only. Furthermore, there are three non-isomorphic solutions, for instance $\{\{110,001\},\{101,010\},\{011,100\}\},\{\{110,010\},\{101,001\},\{011,100\}\}$, and $\{\{110,010\},\{101,100\},\{011,010\}\}$, with clouds of cardinality 2.

5. Proof of Theorem 5

There are at most $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ clouds with 1 member and the sequences $(0,0, \ldots, 0)$ and $(1,1, \ldots, 1)$ can be eliminated from all clouds. Therefore

$$
N \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}+\left\lfloor 2^{-1}\left(2^{n}-2-\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}\right)\right\rfloor .
$$

We abbreviate the right hand side expression by R and construct now R clouds with the (\exists, \exists)-property .

Case $n=2 \ell$: For $i=1, \ldots,\binom{n}{\ell}$ choose $\mathcal{A}_{i}=\left\{a_{i}\right\}$ with $w\left(a_{i}\right)=\ell$. For $i=$ $\binom{n}{\ell}+1, \ldots, R$ choose $\mathcal{A}_{i}=\left\{b_{i}, \bar{b}_{i}\right\}$ with $1 \leq w\left(b_{i}\right)<\ell$.

Case $n=2 \ell+1$: For $n=3$ the choice $\mathcal{A}_{1}=\{100\}, \mathcal{A}_{2}=\{010\}, \mathcal{A}_{3}=\{001\}$, $\mathcal{A}_{4}=\{011,101,110\}$ works. For $n>3$ there exists a partition of vectors of weight $\ell+1$ into $\left\lfloor\frac{\binom{2 \ell+1}{\ell+1}}{2}\right\rfloor$ disjoint pairs $\mathcal{A}_{i}=\left\{c_{i}, d_{i}\right\}$ with Hamming distance $d_{H}\left(c_{i}, d_{i}\right) \geq$ 4 .

Further, for the next $\binom{2 \ell+1}{\ell}$ indices we define $\mathcal{A}_{i}=\left\{a_{i}\right\}$ with $w\left(a_{i}\right)=\ell$ and for all the remaining indices we set $\mathcal{A}_{i}=\left\{b_{i}, \bar{b}_{i}\right\}$ with $1 \leq w\left(b_{i}\right)<\ell$. The (\exists, \exists)-property is readily verified.

6. Proof of Theorem 1

Since $M_{n}(\forall, \exists) \geq M_{n}(\exists, \forall)$ we conclude from Theorem 3 that $M_{n}(\exists, \forall) \leq 2^{n-1}-1$. The issue is to construct a cloud-antichain meeting asymptotically this bound.
We make use of the

General form of Baranyai's Theorem

Let n_{1}, \ldots, n_{t} be natural numbers such that $\sum_{i=1}^{t} n_{i}=\binom{n}{k}$, then $\binom{\Omega_{n}}{k}$ can be partitioned into disjoint sets P_{1}, \ldots, P_{t} such that $\left|P_{i}\right|=n_{i}$ and each $\ell \in \Omega_{n}$ is contained in exactly $\left\lceil\frac{n_{i} \cdot k}{n}\right\rceil$ or $\left\lfloor\frac{n_{i} \cdot k}{n}\right\rfloor$ members of P_{i}.

Our main auxiliary result is
Lemma 2. For positive integers n, k, λ with $2 k-n \leq \lambda<k$ the set $\binom{\Omega_{n}}{k}$ has a partition $P(n, k, \lambda)=\left\{P_{1}, P_{2}, \ldots, P_{\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor}\right\}$ with $P_{i}=\left\{a_{i}, b_{i}\right\},\left|a_{i} \cap b_{i}\right|=\lambda$.

Proof For $\lambda=0$ or $\lambda=2 k-n$, the statement follows from Baranyai's Theorem. We proceed by induction:

If at least one of the numbers $\binom{n-1}{k},\binom{n-1}{k-1}$ is even, then we can define (by forgetting the last element n)

$$
P(n, k, \lambda)=P(n-1, k, \lambda) \cup P(n-1, k-1, \lambda-1) .
$$

If $\binom{n-1}{k} \equiv\binom{n-1}{k-1} \equiv 1 \bmod 2$, then there remain 2 sets: $v=\binom{\Omega_{n-1}}{k} \backslash P(n-1, k, \lambda)$, $u=\binom{\Omega_{n-1}}{k-1} \backslash P(n-1, k-1, \lambda-1)$. Since the labelling of the elements in Ω_{n-1} does not matter, v can be any member of $\binom{\Omega_{n-1}}{k}$ and u can be any member of $\binom{\Omega_{n-1}}{k-1}$. Particularly, we can assume that $|v \cap u|=\lambda$.

For even $n=2 \ell$ as well as for odd $n=2 \ell+1$ we define the cloud-antichain

$$
\left.P=\bigcup_{s=\ell-\left\lfloor\frac{\ell-1}{7}\right\rfloor}^{s=\ell+\left\lfloor\frac{\ell-1}{7}\right\rfloor} P\left(n, s, \ell-s+3\left\lfloor\frac{\ell-1}{7}\right\rfloor\right) \text { and calculate }|P|=\sum_{i=-\left\lfloor\frac{\ell-1}{7}\right\rfloor}^{\left\lfloor\frac{\ell-1}{7}\right\rfloor}\binom{n}{\ell+i}\right\rfloor \sim \frac{1}{2} 2^{n}
$$

It remains to be seen that P has the $(\exists, \forall)-$ property. For this consider two clouds $\{a, b\}$ and $\left\{a^{\prime}, b^{\prime}\right\}$ with $|a|=|b|=s,\left|a^{\prime}\right|=\left|b^{\prime}\right|=s^{\prime}$ and w.l.o.g. $s<s^{\prime}$ and $a \subset a^{\prime}$. We claim that $b \not \subset a^{\prime}$, because otherwise $a \cup b \subset a^{\prime}$ in contradiction to

$$
\begin{aligned}
|a \cup b| & =2 s-\left(\ell-s+3\left\lfloor\frac{\ell-1}{7}\right\rfloor\right)=3 s-3\left\lfloor\frac{\ell-1}{7}\right\rfloor-\ell \geq 3\left(\ell-\left\lfloor\frac{\ell-1}{7}\right\rfloor\right)-3\left\lfloor\frac{\ell-1}{7}\right\rfloor-\ell \\
& =2 \ell-6\left\lfloor\frac{\ell-1}{7}\right\rfloor>\ell+\left\lfloor\frac{\ell-1}{7}\right\rfloor \geq s^{\prime} .
\end{aligned}
$$

We claim also that $b \not \subset b^{\prime}$, because otherwise $a \cap b \subset a^{\prime} \cap b^{\prime}$ in contradiction to $|a \cap b|=\ell-s+3\left\lfloor\frac{\ell-1}{7}\right\rfloor>\ell-s^{\prime}+3\left\lfloor\frac{\ell-1}{7}\right\rfloor . b^{\prime} \not \subset b$ and $a^{\prime} \not \subset b$ obviously holds, because $\left|a^{\prime}\right|=\left|b^{\prime}\right|=s^{\prime}>s=|b|$. Finally, we claim that $a \not \subset b^{\prime}$ because otherwise $a \subset a^{\prime} \cap b^{\prime}$ in contradiction to $|a|>|a \cap b|>\left|a^{\prime} \cap b^{\prime}\right|$. We have shown that $\{a, b\}$ and $\left\{a^{\prime}, b^{\prime}\right\}$ are not comparable in the sense (\exists, \forall).

Remark Bernhard Herwig [6] was the first to show that $\liminf _{n \rightarrow \infty} M_{n}(\forall, \exists) 2^{-n}=$ $c>0$. By arguments based on the marriage theorem he actually proved that $c \geq \frac{1}{18}$.

7. Proof of Theorem 4

Since necessarily $(0,0, \ldots, 0),(1,1, \ldots, 1) \notin \bigcup_{i=1}^{N} \mathcal{A}_{i}$, we have $\left\{\mathcal{A}_{i}\right\}_{i=1}^{N} \subset \Omega^{\prime} \triangleq$ $\mathcal{P}\left(\{0,1\}^{n} \backslash\{(0,0, \ldots, 0),(1,1, \ldots, 1)\}\right)$ and thus $N \leq 2^{2^{n}-2}$. On the other hand let us consider $\left\{\mathcal{A}_{i}\right\}_{i=1}^{N^{*}} \subset \Omega^{\prime}$, where each \mathcal{A}_{i} contains a subset $\{\alpha, \bar{\alpha}\}$ and N^{*} is maximal. The (\forall, \exists)-property holds.

There are $2^{n-1}-1$ sets $\{\alpha, \bar{\alpha}\}$ and therefore

$$
\left|\Omega^{\prime}\right|-N^{*}=\sum_{k=0}^{2^{n-1}-1}\binom{2^{n-1}-1}{k} \cdot 2^{k}=3^{2^{n-1}}
$$

This implies $N^{*}=2^{2^{n}-2}-3^{2^{n-1}} \sim 2^{2^{n}-2}$.

8. Proof of Theorem 6

Consider all clouds containing at least 2 sequences of weight $\left\lfloor\frac{n}{2}\right\rfloor$. This defines a cloud-antichain of type (\exists, \exists) and length $\left.N=2^{2^{n}}-2^{2^{n}-\left(\left\lfloor\frac{n}{2}\right\rfloor\right.}\right)\left(\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}+1\right) \sim 2^{2^{n}}$. Clearly, $N_{n}(\exists, \exists) \leq 2^{2^{n}}$.

References

[1] E. Sperner, "Ein Satz über Untermengen einer endlichen Menge", Math. Z. 27, 544-548.
[2] R. Ahlswede and Z. Zhang, "An identity in combinatorial extremal theory", Advances in Mathematics, 80, 2, 137-151, 1990.
[3] R. Ahlswede and Z. Zhang, "On cloud-antichains and related configurations", Discrete Mathematics 85, 225-245, 1990.
[4] R. Ahlswede and Z. Zhang, "A new direction in extremal theory", to appear in J. Comb. Inf. Syst. Sc.
[5] Z. Baranyai, "On the factorization of the complete uniform hypergraph", Colloquia Mathematica Societatis, János Bolyai 10. Infinite and finite sets, Kesztely, Hungary, 91-108, (eds.: A. Hajnal, R. Rado, V.T. Sós), 1973.
[6] B. Herwig, Private communication, Sept. 1991.

