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Abstract.

The asymmetric 2–way communication complexity of a function is a measure of the
minimal amount of information required to be communicated between two parties in
order for one of them to compute the value of the function at the inputs supplied by
the parties. We provide rather sharp lower bounds for this quantity in terms of the
rank of a certain matrix transform of the function. For several sum–type functions such
as the Hamming, Lee or Taxi metrics they are even tight. We emphasize that for this
class of functions the familiar log rank of the function tables gives in general a poor
lower bound.
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1. Introduction.

In this paper we consider the problem of bounding the amount of information that
must be communicated between two parties that cooperate to compute a function. We
consider a class of functions, which may be rather special from a practical point of view.
On the other hand our modest goal made a theoretical analysis possible, which led to
a new bounding technique and thus gives also a better understanding of the subject
on a large scale. Previous work in [4] and [6] examined the computation of sum–type

functions of the form Sn(xn, yn) =
n

∑

t=1

f(xt, yt) , where a party PX contributes an

input xn = (x1, . . . , xn) , and PY contributes an input yn = (y1, . . . , yn) , and both
parties seek to compute the value of Sn . In this paper, we extend these results in two
directions. First, we consider the case where the function f is replaced by a sequence
of functions ft , and second, we consider protocols in which only PY is required to
compute the function.

Specifically, suppose that we are given sequences (Xt)
∞
t=1 , (Yt)

∞
t=1 of finite sets and

a sequence (ft)
∞
t=1 of functions ft : Xt × Yt → G , where G is an abelian group (in

this paper the additive groups on R or the eydic groups of integers mod p for any
positive integer p ). The associated sum–type function Sn : Xn ×Yn → G is defined
by

Sn(xn, yn) =

n
∑

t=1

ft(xt, yt) (1.1)

for all xn = (x1, . . . , xn) ∈ Xn and yn = (y1, . . . , yn) ∈ Yn . Typical examples are
distance functions such as the Hamming distance.

We introduce now our complexity measure, which we denote by C(Sn, 1 ↔ 2+) .
As usual a person (or processor) PX observes output xn and another person PY

observes output yn . They agree in advance on a protocol Q for transmitting alternatively
strings of bits to each other. At the end of this exchange PY must be able to calculate
Sn(xn, yn) . If ℓQ(xn, yn) is the number of bits exchanged for inputs xn and yn ,
then

L(Q) = max
xn∈Xn,yn∈Yn

ℓQ(xn, yn) (1.2)

is the (worst case) length of the protocol Q . Let QSn
denote the set of all protocols

for Sn . Then we define the 2–way communication complexity with respect to an
informed PY by

C(Sn; 1 ↔ 2+) = min
Q∈QSn

L(Q) .

Earlier we considered the larger quantity C(Sn; 1 ↔ 2) based on protocols which
enabled both processors to calculate Sn(xn, yn) .
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In order to get a feeling for the behaviour of C(Sn; 1 ↔ 2+) we state now for
comparison known bounds for C(Sn; 1 ↔ 2) and we also discuss an example. We
thus learn that the lower bound for C(f ; 1 ↔ 2+) of [2] (see (1.9) below) is not very
good. An analysis of this phenomenon led to the new lower bound of this paper.

For a function f : X ×Y → Z and associated function table Mf =
(

f(x, y)
)

x∈X ,y∈Y

Yao introduced the decomposition number Df and Mehlhorn and Schmidt considered
the class of matrices (∆z)z∈Z , where

∆z(x, y) =

{

1 if Mf (x, y) = z

0 otherwise,

with a rank rF(Mf ) over any field F , which is defined by

rF(Mf ) =
∑

z∈Z

rankF(∆z) . (1.3)

Yao’s inequality, in the improved form of Papadimitriou and Sipser [3], states

C(f ; 1 ↔ 2) ≥ log2 Df (1.4)

and Mehlhorn and Schmidt showed that

Df ≥ rF(Mf ) . (1.5)

Quite general and sharp bounds for C(Sn; 1 ↔ 2) were derived in [4] via a 4–words
inequality. For other classes of sum–type functions in many cases even exact results
were obtained by Tamm by evaluating rF(Sn) for the lower bound and by using the
trivial upper bound C(f ; 1 ↔ 2) ≤ ⌈log |X |⌉ + ⌈log |Z|⌉ .

Now notice that in the inequality (1.4) and also the weaker

C(f ; 1 ↔ 2) ≥ log rF(Mf ) (1.6)

we cannot replace C(f ; 1 ↔ 2) by C(f ; 1 ↔ 2+) . Inspection of the following example
shows that

0 1 2
0 0 1 2
1 0 1 2
2 4 5 0
3 4 5 0

Df = 6 , rR(Mf ) = 2 + 1 + 1 + 1 + 1 = 6 and thus C(f ; 1 ↔ 2) ≥ 3 . Actually,
with 1 bit PX can tell PY whether x ∈ {0, 1} or x ∈ {2, 3} and then PY can
calculate f(x, y) . With 2 additional bits PY can inform PX about y . Thus we
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have C(f ; 1 ↔ 2) = 3 . However, using only the first step of this protocol we see that
C(f ; 1 ↔ 2+) = 1 .

On the other hand, there are the relations

C(Sn; 1 ↔ 2+) + log ‖Sn‖ ≥ C(Sn; 1 ↔ 2) ≥ C(Sn; 1 ↔ 2+), (1.7)

where ‖Sn‖ denotes the cardinality of the range of Sn .

Therefore, in some cases, such as the case ft : Xt × Yt → N ∪ {0} with

∣

∣

∣

∣

∣

∞
⋃

t=1

{

ft(xt, yt) : (xt, yt) ∈ Xt × Yt

}

∣

∣

∣

∣

∣

= b < ∞,

we can derive from ‖Sn‖ ≤ 0(n) and (1.7)

lim
n→∞

1

n

(

C(Sn; 1 ↔ 2) − C(Sn; 1 ↔ 2+)
)

= 0 . (1.8)

This holds in the particular case that all of the ft are identical.

In these cases the bounds for one complexity measure apply asymptotically to the
other. In [2] there is also for Z with field structure F the bound

C(f ; 1 ↔ 2+) ≥ log rankF(Mf ) . (1.9)

In the example above log rankR(Mf ) = 1 is a sharp bound. However, (1.9) is a
very poor bound for most sum–type functions, because their rank is only linearly
increasing in n (see [5]) and the row and column numbers of the matrices increase
exponentially in n . The results in Section 3 show how bad the linear bound really
is. From [7] we know that the Kronecker product has exponentially increasing rank.
Our idea now was to connect sum–type functions Sn to functions of “product–type”
via an exponential transform of MSn

. This gives excellent, often even exact, results.
Moreover, this quantity often can be evaluated, because it factorizes (see Lemma 2
below).

After the idea is there, the mathematics almost takes care of itself. The Main Theorem
in Section 2 has a short proof. Several consequences, including exact results for distance
functions, are derived in Section 3. Finally, in Section 4 we show how the approach of
[4] fits into the new frame.
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2. Exponential transform, Kronecker product and sum–type functions.

We analyse sum–type functions by looking at their exponential transform.

Formally, for any matrix M = (mij)i∈I,j∈J with entries in R the exponential
transform of M is defined as

Exp(M, z) =
(

zmij
)

i∈I,j∈J
(2.1)

where z ∈ C , the field of complex numbers, and we choose the principal branch at
every opportunity.

We introduce two rank functions, which are associated with R resp. the p elements
cyclic group of integers modulo p . In space saving notation the first quantity is

RankR(M) = max
z∈R

rankR

(

Exp(M, z)
)

(2.2)

and the second quantity is

Rankp(M) = rankC

(

Exp(M, e2πi/p
)

. (2.3)

Sum–type functions Sn =
∑n

t=1 ft suggest the outer product of matrices as a basic
structure for them.

For two vectors
→
u = (u1, . . . , uℓ) and

→
v = (v1, . . . , vm) ,

→
u ◦

→
v is defined as (an

ℓ×m vector)
→
w = (u1 + v1, u1 + v2, . . . , u1 + vm, u2 + v1, . . . , u2 + vm, . . . , ue + vm) ,

that is, the (i,j)–th component is ui + vj (see [5]). Now the sum–type outer product
of 2 matrices

U =







→
u1
...

→
u r






, V =







→
v 1
...

→
v s






is defined by U ◦ V =











→
u1 ◦

→
v 1

→
u1 ◦

→
v 2

...
→
u r ◦

→
v s











.

These definitions imply directly a first basic fact.

Lemma 1. For Sn =
∑n

t=1 ft

MSn
= Mf1

◦ Mf2
◦ · · · ◦ Mfn

.

A second key observation is, that for two matrices U and V

Exp(U ◦ V, z) = Exp(U, z)
⊗

Exp(V, z), (2.4)

where
⊗

denotes the operation “Kronecker product”. Inductively our next result
follows.
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Lemma 2.

Exp (MSn
, z) =

n
⊗

t=1

Exp (Mft
, z) .

Now, for any positive number z 6= 1 the map τz defined by

τz : f → zf (2.5)

for all real–valued functions on a fixed domain is a bijection and therefore for real–
valued ft(t = 1, 2, . . . )

C(Sn; 1 ↔ 2+) = C(zSn ; 1 ↔ 2+) . (2.6)

Since obviously by the definitions

rankRMzSn = rankRExp (MSn
, z) ,

and since rankR is multiplicative in the Kronecker product of matrices, using also
Lemma 2 we get

Lemma 3.

rankRMzSn =
n

∏

t=1

rankRExp (Mft
, z) .

We are now prepared to derive our key result.

We have by (1.9) the inequality

C(f ; 1 ↔ 2+) ≥ ⌈log rankRMf⌉ . (2.7)

Identity (2.6) and Lemmas 1,2,3 imply

C(Sn; 1 ↔ 2+) ≥
n

∑

t=1

log rankRExp(Mft
, z) for z ∈ R

+ − {1} . (2.8)

Also, with the choice z = e2πi/p we have

eSn·2πi/p = e(Sn mod p)·2πi/p

and therefore

C(Sn mod p; 1 ↔ 2+) ≥

n
∑

t=1

log RankpMft
. (2.9)

We summarize our findings.
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Main Theorem.

(a) For the functions ft : Xt × Yt → R (t ∈ N) with Xt,Yt finite we have for the
sum–type function Sn =

∑n
t=1 ft

C(Sn; 1 ↔ 2+) ≥
n

∑

t=1

log RankRMft

(b) For the functions ft;Xt ×Yt → Γ , the ring of integers, we have for any positive
integer p

C(Sn mod p; 1 ↔ 2+) ≥
n

∑

t=1

log RankpMft
.

3. Consequences of Main Theorem.

Our first Theorem covers all distance functions on sequence spaces such as the Hamming
metric, the Lee metric, the Taxi metric etc.

Theorem 1. If for all t ∈ N Xt = Yt = {0, 1, . . . , αt − 1) and

ft(x, y) =

{

0 if x = y

> 0 if x 6= y,

then

C(Sn; 1 ↔ 2+) = ⌈

n
∑

t=1

log αt⌉ .

Proof. Recalling the definition (2.1) we see that

RankRMft
≥ rankRExp(Mft

, 0) = αt .

The Main Theorem implies therefore

C(Sn; 1 ↔ 2+) ≥ ⌈

n
∑

t=1

log αt⌉ .

The reverse inequality is also true, because PX can encode any argument xn ∈ Xn

with ⌈log |X |⌉ bits and send them to PY , who then calculates Sn(xn, yn) .

Theorem 1 settles a case in which one–way communication is as good as two–way
communication.

We choose now G = {0, 1, . . . , p−1} , that is, we consider Sn mod p and give precise
results in some basic cases.
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Theorem 2. If for all t ∈ N Xt = Yt and all ft are Hamming distances, that is,

ft(x, y) =

{

0 if x = y

1 if x 6= y
, then

(a) | C(Sn mod 2; 1 ↔ 2+) −
∑

t∈Tn
log |Xt| |≤ ε

where Tn = {t : 1 ≤ t ≤ n, |Xt| > 2} ,

ε =

{

0 if Tn = {1, 2, . . . , n}

1 otherwise.

In particular, if Tn = ∅ , necessarily

C(Sn mod 2; 1 ↔ 2+) = 1 .

(b) C(Sn mod p; 1 ↔ 2+) = ⌈
∑n

t=1 log |Xt|⌉ for p > 2 .
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Proof.

a.) We determine ranks by computing det Exp(Mft
, z) .

Since Mft
=











0 1 . . . 1
1 0 1 . . . 1
1 1 0 1 . . . 1
. . . . . . . . . . . . . . . . . .

1 1 . . . 1 0











, we have

det Exp(Mft
, z) =

∣

∣

∣

∣

∣

∣

∣

1 z . . . z

z 1 z . . . z

. . . . . . . . . . . . . . . . . .

z . . . z 1

∣

∣

∣

∣

∣

∣

∣

=
(

1 + (αt − 1)z
)

(1 − z)αt−1 and therefore

det Exp(Mft
,−1) = (1 − αt + 1)2αt−1 =

{

0 if αt = 2

6= 0 if αt > 2.

Furthermore, in case αt = 2 we have

rankCExp(Mft
, eπi) = rankC

(

1 −1
−1 1

)

= 1 .

By the Main Theorem we have

C(Snmod 2; 1 ↔ 2+) ≥
∑

t∈Tn

log |Xt| + ε .

For the upper bound we use the following protocol. PX sends for input (x1, . . . , xn)
the subword with letters in positions Tn and with one more bit he sends the

value of
∑

t∈{1,2,...,n}rTn

xt mod 2 to PY .

PY can compute the parities of the Hamming distance for the letters in positions
Tn and also outside Tn , because there αt = 2 . He then just adds these parities
mod 2 .

b.) By the previous calculation

det Exp
(

Mft
, e2πi/p

)

=
(

1 − (αt − 1)e2πi/p
)

(1 − e2πi/p)αt−1

6= 0 for p > 2

and by the Main Theorem

C(Snmod p; 1 ↔ 2+) ≥ ⌈
n

∑

t=1

log |Xt|⌉ .

For the reverse inequality the protocol, in which PX transmits his input, suffices.
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Theorem 3. If for all t ∈ N Xt = Yt = {0, 1, . . . , αt − 1} and all ft are Taxi
metrics, that is, ft(x, y) = |x − y| , then

(a) C(Sn mod 2; 1 ↔ 2+) = 1

(b) C(Sn mod p; 1 ↔ 2+) =
∑n

t=1 log |Xt| for p > 2 .

Proof. (a) The protocol, in which PX sends
∑n

t=1 xt mod 2 to PY , does it (as in
the special case of a Hamming distance over binary alphabets).

(b) Here we have Mft
=









0 1 2 . . . αt − 1
1 0 1 . . . αt − 2
...

...
αt − 1 αt − 2 . . . 0









Tαt
, det

(

Exp(Mft
, z)

)

=

∣

∣

∣

∣

∣

∣

∣

∣

1 z z2 z3 . . . zαt−1

z 1 z z2 . . . zαt−2

...
zαt−1 zαt−2 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

= Tαt−1 − z2Tαt−1 = (1 − z2)Tαt−1 and T2 = 1 − z2 .

For z = e2πi/p and p > 2 we have therefore 1−z2 6= 0 and thus rankCExp(Mft
e2πi/p) =

|Xt| . The Main Theorem and the standard protocol give the result.

Theorem 4. If for t ∈ N Xt = Yt = {0, 1, . . . , αt−1} and ft = Λt , where
Λt(xt, yt) = min(xt, yt) , then

C(Sn mod p; 1 ↔ 2+) =

n
∑

t=1

log |Xt|

for all p ≥ 2 .

Proof.

Mft
=

















0 0 0 . . . 0 0
0 1 1 . . . 1 1
0 1 2 . . . 2 2
...

...
...

0 1 2 . . . αt − 2 αt − 2
0 1 2 . . . αt − 2 αt − 1

















,
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det
(

Exp(Mft
, z)

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1 1
1 z z . . . z z

1 z z2 . . . z2 z2

...
...

...
...

1 z z2 . . . zαt−2 zαt−2

1 z z2 . . . zαt−2 zαt−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By subtracting the first row from the second one, the second one from the third, fourth
and so on, then in the resulting matrix the third one from the fourth etc, we finally
get

det
(

Exp(Mft
, z)

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1 1
0 z − 1 z − 1 . . . z − 1 z − 1
0 0 z2 − z . . . z2 − z z2 − z
...

...
...

...
...

0 0 0 . . . zαt−2 − zαt−3 zαt−2 − zαt−2

0 0 0 . . . 0 zαt−1 − zαt−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

αt−1
∏

r=1

(zr − zr−1) =

αt−1
∏

r=1

(z − 1)zr−1 .

For z = e2πi/p the determinant is unequal to zero for all p ≥ 2 . Again, the Main
Theorem and the standard protocol give the result.

Our last sum–type function is the inner product. We choose Xt = Yt = {0, 1, . . . , α −
1} , ft = f (t ∈ N) , where f(x, y) = x · y .

Then

Mf =













0 0 . . . 0
0 1 . . . α − 1
0 2 . . . 2(α − 1)
...
0 α − 1 . . . (α − 1)2













,

det
(

Exp(Mf , z)
)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
1 z z2 . . . zα−1

1 z2 (z2)2 . . . (z2)α−1

...
...

1 zα−1 (zα−1)2 . . . (zα−1)α−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

which is a Vandermonde determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a1 a2
1 . . . aα−1

1

1 a2 a2
2 . . . aα−1

2
...
1 aα a2

α . . . aα−1
α

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
α

∏

m=2

m−1
∏

ℓ=1

(am − am−ℓ)
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with a1 = 1, a2 = z, a3 = z2, . . . , aα = zα−1 .

Its value is
α

∏

m=2

m−1
∏

ℓ=1

(zm−1 − zm−1−ℓ), which is

unequal to zero for z ∈ R − {0,+1,−1} .

RankR(Mf ) = α and with the Main Theorem we complete the proof of the following
result.

Theorem 5. If Xt = Yt = {0, 1, . . . , α−1} for t ∈ N and if Sn(xn, yn) =
∑n

t=1 xt ·
yt , then

C(Sn; 1 ↔ 2+) = ⌈n log α⌉ .

Remark. Notice that for the inner product rankRMf = 1 . This shows how much
better it is to work with Exp(Mf , z) .

4. A new look at 4–words property and inequality.

In [4] we found a general 4–words inequality and used it for the analysis of C(Sn; 1 ↔
2) , if Sn(xn, yn) =

∑n
t=1 f(xt, yt) and f satisfies the 4–words property

f(x, y) + f(x′, y′) − f(x, y′) − f(x′, y) = 0 (4.1)

for all x, y ∈ X = Y .

It is clear that (4.1) is equivalent to

zf(x,y) · zf(x′,y′) = zf(x,y′) · zf(x′,y) (4.2)

for x, y ∈ X .

Therefore a submatrix of Mf satisfying the 4–words property corresponds to a submatrix
of Exp(Mf , z) with rank not exceeding 1. Therefore the 4–word inequality (Theorem
1 of [4]) can be expressed also in the following form:

If N1(M) is the maximal size (= number of rows times number of columns) of
submatrices of matrix M , whose rank does not exceed 1, then

N1

(

n
⊗

1

M
)

= N1(M)n . (4.3)
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The Decomposition Lemma of [4] also has a simple interpretation:

A k × ℓ submatrix has rank smaller than 2 iff it can be expressed as a product of a
k × 1 and a 1 × ℓ matrix.
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