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A b s t r a c t - - W e  consider subsets of the n-dimensional grid with the Manhattan metrics, (i.e., the 
Cartesian product of chains of lengths k l , . . . ,  kn) and study those of them which have maximal 
number of induced edges of the grid, and those which are separable from their complement by the 
least number of edges. The first problem was considered for kl . . . . .  kn by Bollob~is and Leader [1]. 
Here we extend their result to arbitrary k l , . . .  ,kn, and give also a simpler proof based on a new 
approach. For the second problem, [1] offers only an inequality. We show that our approach to the 
first problem also gives a solution for the second problem, if all ki = co. If all ki's axe finite, we 
present an exact solution for n = 2. 

K e y w o r d s - - D i s c r e t e  isoperimetric properties, g-order, Lexicographic order, Manhattan metric. 

1 .  I N T R O D U C T I O N  

For  nonnega t ive  integers  k],  k 2 , . . . ,  kn, set 

V n = {x = ( X l , . . . , X n )  : 0  < Xi < ki, xi's are integers}.  

Cons ide r  the  gr id  g raph  M n wi th  the  ver tex  set V n, two vert ices x , y  of  which are  jo ined  by  

an edge iff p ( x , y )  = 1, where  p is the  M a n h a t t a n  metr ic ,  p ( x , y )  = ~-'~i~1 Ixi - Y i l .  Clearly,  the  

g raph  M n m a y  be considered as the  Car t e s i an  p roduc t  of chains of lengths  k l , . . . ,  kn. 

For  A C V n and x,  y c V n, p(x,  y )  = 1, we say t h a t  the  edge (x, y )  is an i n n e r  e d g e  of the  

set  A, if x ,  y E A. Otherwise ,  if one of x, y is in A and the  o ther  is not  in A, the  edge (x, y )  is 

cal led a b o u n d a r y  e d g e  of the  set A. Denote  by  E(A)  (resp.,  R(A)) ,  the  col lect ion of all inner  

(resp. ,  b o u n d a r y )  edges of  A. 

Now let m be an integer.  Cons ider  all the  m-e lement  subsets  of V n and  the  following two 

e x t r e m a l  problems:  

PROBLEM 1. Find a set  A with maximal possible value of  IE(A)I. 

PROBLEM 2. Find a set  A with minimal possible value of  IR(A)I. 

Simi lar  p rob lems  m a y  be considered wi th  respect  to  any g raph  G. Notice  t h a t  if G is regular  

of degree d, t hen  

2. IE(A)] + IR(A) I = d.  ]A I. (1) 

Thus ,  in th is  case, P rob lems  1 and 2 are equivalent  in the  sense t h a t  a solut ion of  one of  these  

p rob lems  is a t  the  same t ime  a solut ion of the  other .  
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In the b inary  case (i.e., when kl = k2 . . . . .  k~ = 1), Problem 1 was first solved by 
Harper  [2], and for arbi t rary  finite k~'s under the Hamming  metric by Lindsey [3]. T h e y  proved 

tha t  for each m, the set of the first m vertices of V ~ in the l e x i c o g r a p h i c  o r d e r ,  gives a solution 

for Problem 1 (and also for Problem 2). Here, by the lexicographic order /2 ,  we mean the order  
induced by the  following relation: a vector x E V ~ precedes y c V ~ if xi < Yi for some i with 

Xl = Y l , . . . , x i - 1  = Y i-1. For the Hamming  metrics, it is na tura l  to assume tha t  all ki 's  are 
finite, as otherwise if, say, ki is infinite, then the set { ( 0 , . . . ,  0, xi, 0 , . . . ,  0), 0 < xi < m -  1} gives 
a solution, since it contains an inner edge between any pair of its vertices. 

In the  nonbinary  case under the Manha t t an  metric, the graph M ~ is not regular, and so the 

equivalence of Problems 1 and 2 is not  insured. It  turned out,  however, tha t  if all ki 's  are infinite, 

these problems have a common  solution. It  is interesting tha t  in the "bounded" case, i.e., when 
all ki ' s  are finite, Problem 2 has no nested s t ructure  of solutions, while Problem 1 always has it, 

and so in this case, our problems are not equivalent. 

Problem 1 was solved first by Bollob£s and Leader [1] for kl . . . . .  kn. In  the next  section, 
we present a simpler proof, which works for arbi t rary  ki's. I t  turned out  t h a t  the  solution we 

give works either for the "infinite" case or for the "bounded" one. 

Section 3 of our paper  is devoted to Problem 2 in the "infinite" case, i.e., when ki = oc, 

i = 1 , . . .  ,n.  For the "bounded" version, we are able to give an exact  solution for the two- 
dimensional  case only. I t  turned out  tha t  there exist only two sets, "suspicious" to optimality,  

and when m grows, the solution s t ructure  switches ones from one set to  another.  The  s tudy  of 

such switches is of part icular  interest, since, if a problem has no nested s t ructure  of solutions, the  
present techniques, as a rule, cannot  be applied for solving it. Some other  examples of  dealing 

successfully with "jumping" solutions one can find in [4], where there exist m a n y  switches, and 

in [5], with only one switch. Finally, in [2], one can find an edge isoperimetric inequali ty for 
Problem 2, from which an exact solution for some part icular  values of m follows for n > 3. 

2 .  S O L U T I O N  O F  P R O B L E M  1 

Denote  V n'°c -= { ( X l , . . . , x n )  : xi > 0, 1 < i < n}. We introduce an order £ on V n,°° and 

prove that ,  for any m, the set induced by the initial segment of  length m in £ gives a solution of 
Problem 1. 

Notice tha t  £ induces also some order on the set V n. Denote by I~ (m) C V '~ the initial segment  
of length m in this induced order. Throughou t  this section, we assume tha t  1 < kl _< .- - < k,~. 

For x = ( x l , . . . ,  xn) E V ~, denote ]x[ = maxi xi and let ~ be the vector  obta ined from x by 

replacing all entries not  equal to Ix[ by 0. The order $ is defined inductively. For x , y  E V n, we 

say x >E Y iff 

(i) ]x[ > ]y[ ,  or 
(ii) ]x[ = ]y[ and ~ >z; ~r, or 

(iii) ]x[ = ]y[ = t > 1, :~ = 9, and x '  > c  Y', 

where x ~, y~ are obtained from x, y,  respectively, by deleting all entries with xi = yi = t. 

Therefore,  we first order lexicographieally all vectors with b inary  entries, and, in the binary 
case, our  order $ is just  the lexieographic order. As an example, we list the vertices of  V a for 
kl = k2 = k3 = 2 in increasing order of  g: 000 001 010 011 100 101 110 111 002 012 102 112 020 
021 120 121 022 122 200 201 210 211 202 212 220 221 222. 

LEMMA 1. L e t  x >~ y and xi  = Yi. T h e n  x t >e y t ,  where  x~,y ~ are ob ta ined  f rom x , y ,  
respect ively ,  by  de le t ing  the ith entry. 

PROOF. We apply induct ion on n and follow the definition of  the order £.  For n = 1, the l emma 
is obviously true, so let n > 2. If  ]x[ > ]y[ holds, then ]x'[ > ]y ' [ ,  and we are done. If  ]x[ = ]y[ 
and :~ >L  :Y, then either Ix[ = ]x'[ > ]y ' [  or x '  > c  y ' ,  by the definition of the lexicographic order, 
and so x '  >e  Y'. Finally, let ]x[ = ] y [ a n d  ~ = :~. I fx~  = ]x[,  t h e n x '  >e  y '  by (iii) in the 
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definition of  $. If  xi ~ ]x[, then delete all the entries of x , y  which are equal to  ]x[. We get 

vectors x ' ,  y "  of  smaller length with x"  >e  Y ' ,  and the lemma follows by induction. 

We int roduce Vin(j) = { ( X l , . . . , x n )  E V n : xi = j} ,  i = 1 , . . . , n ,  j = O , . . . , k i  and N(x )  as 

the posit ion number  of  x E V ~ in the order £. We also define 

N(A) = E N(x), A~(j) = A A V~n(j), 
xEA 

and int roduce the  compression opera tor  Ci (A), which replaces the par t  Ai (j) of A by the collection 
of the first ]Ai(j)l elements of V~(j )  in order $ simultaneously for each j = 1 , . . . ,  ki. Clearly, 
N(CiA)  <_ N(A)  by L e m m a  1. 

For x -- (xl ,  • • . ,  xn) E V n'°°, we denote by x the projection of x on the set V n, i.e., the vector,  

whose ith ent ry  equals x_A = min{xi,  ki}, 1 < i < n. 
Since our proof  technique works for n > 3 only, we consider the case n = 2 separately. 

LEMMA 2. Let A C_ V 2 and Ci(A) = A fori  = 1,2. Then [E(Ie(IA[))[ >_ [E(A)[. 

PROOF. One has 

IE(A)I = 21AI - (IA~(0)I + tA2(0)]) .  (2) 

, x2 > 0. We call x corner vector if (xt - 1, x2) c A and (xt,  x2 - 1) Let x = (Xl, x2) • A and Xl 
E A .  

Assume first t ha t  ]AI(0)] _< IA2(0)I. Consider the vector y = (Yl,Y2) E A with Yl = ]A2(0)] 
and Y2 maximal  possible and replace it with some corner vector. I t  is clear tha t  this replacement 

decreases the function N.  So, if there are corner vectors, then using such replacements one can 

t ransform the set A to Ic(m). 
Consider the case where there is no corner vector. If  now IAI(0)I = k2, then A -- IE(m) and 

we are done. Otherwise, if IAI(0)I < k2, replace the set AI(IA2(0)I)  by the set { (x l ,x2)  : 0 _< 
xl  _< ] B 2 ( 0 ) I -  1, x2 = IBt(0)I + 1}. One gets a set B with ]E(B)] = IE(A)], but  N ( D )  < N ( B ) .  
Clearly, there exists at least one corner vector for the set B, and we apply the replacements  above 
to the  set B. The  proof  in case ]AI(0)I > ]A2(0)[ is similar. 

THEOREM 1. ]E(Ie(IAI))I >_ [E(A)] for any  A c_ V% 

PROOF. Assume tha t  ]A] = m and A ~ IE(m). We use induction on n. For n = 1,2, the 
inequali ty is true. Let us proceed with the inductive step for n _> 3. Since for any set A one has 

kl kl 

IE(A)I <_ ~ [ E (A~(j))I + ~ min{ld i ( J ) l ,  [ds(j - 1)1}, 
j = 0  j = l  

(3) 

then,  using the induct ion hypothesis,  it follows tha t  IE(C~A){ ~ [E(A)[. L e m m a  1 implies 

t ha t  N(A)  cannot  increase after the t ransformat ion Ci. Clearly, N(A)  str ict ly decreases, if 
the t ransformat ion  Ci is nontrivial. Therefore, after a finite number  of applications of Ci with 
i = 1 , 2 , . . . , n ,  1 , 2 , . . . ,  one gets a stable set B for which CiB = B holds for i = 1,2 . . . .  ,n.  
Notice tha t  for a stable set, the conditions (x 1,-. •, xn) E B and xi > 0 imply (x 1,. • •, x i -  1, x~ - 1, 

X i + l , . . . , X n )  E B.  

We proceed with more operations,  which decrease the function N and t ransform a stable set B 

into I~(]BI) without  decreasing E.  Denote by x the greatest  vector of B in the order E, and by y 

the least vector  in order $ which is not  in B. Then  x > c  Y. If  now xi = y~ for some i, then  
y E B follows from Lemma 1 and CiB = B. 

Assume tha t  ]x[ = t > ]y[ > 0 and show tha t  T = {z e Y n : ]Z[ = t -  1} C B. Clearly, 
( 0 , . . . , 0 ,  t) E B,  hence, ( t - 1 , . . . , t - 1 , 0 ,  t - 1 )  E B. Therefore, one has only to prove tha t  
P C_ B and Q c_ B, where 

P = { ( t - 1 , . . . , t - l , p , t - 1 ) : l < p < _ t - 1 } ,  Q = { ( t - 1 , . . . , t - l , q ) : O < q < t - 1 } .  
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Since IE(B \ {x})l _> IE(B)I - n and for any z e P \ B, one has IE(B U {z})l = IE(B)I  + n, and 
since N ( z )  < N(x ) ,  after replacing x by z, we either t ransform the set B to IE(m) or P C_ B. 

As to  the set Q, if t = (t - 1 , . . .  , t  - 1,0) ~ B, then we apply the arguments  above. So let 
t ¢ B. Wi thou t  loss of generality, one may assume tha t  there exists a j for which xj < t - 1 

holds, since otherwise (t - 1 , . . . ,  t - 1) 6 B and we are done. Consider the set T = {(zl . . . .  , z~) : 

zi = xi for i ~ j, 0 < zj < xj}  and replace it with the set S = { ( t -  1 , . . . , t -  1,s) : 0 < s < xj} .  
Then  

[E( (B \ T) U S)l = IE(B)I ,  

but  the function N decreases. Now we have (t - 1 , . . . ,  t - 1, 0) E B, and either B = I z ( m )  or 

( t -  1 , . . . , t -  1) E B, and so T C_ B holds. 

Now let ]x[ = ]y[ = t > 1. I fx~  = y~ = t for s o m e i ,  then by similar reasoning to  above 

y ¢ B. So, we may  assume tha t  for some subscript  i the following holds: xi = t, Yi < t, and 
either i = 1 or xj < t, yj < t for 1 _< j < i. Notice tha t  if xj  > yj for some j ¢ i, then  y C B. 
Indeed, consider the vector z obtained from x by replacing xj by Yi- One has x >E z >e  Y and 
z E B i m p l i e s y  E B. Hence, xj < yj f b r j  ¢ i ,  and s o y j  ¢ 0 for j ¢ i .  I f  n o w y i  ¢ 0, then  

IE(B U {Y})I = IE(B)I + n, and we may replace the vector x by y wi thout  decreasing E ,  but  
with decreasing N.  

Finally, if Yi = 0, then the two following cases are possible. In the first ease, assume xj = 0 for 
all j ¢ i. Then  clearly one could replace x by y wi thout  increasing E. Otherwise,  if xj ¢ 0 for 

some j ¢ i, then similarly to the above consider the sets 

T = { ( z x , . . . , z ~ ) : Z s = X s  f o r s # j ,  a n d 0 < z j  < x j } ,  

S = { ( z l , . . . , Z n ) : z s = y s  f o r s # i ,  a n d 0 < z i < x j } .  

Since T c_ B and S N B  = O, one may replace T by S wi thout  decreasing E,  but  with decreasing N.  
In  order to  complete the  proof  of the whole theorem, we have to consider the case t = 1. In 

this case, x and y are binary vectors, and one may  assume tha t  y is the binary coordinatewise 

negat ion of  x, since otherwise y E B as above. If  there exists a vector z with x >L  z >L Y, 

then y C B, since xi = zi and zj = yj for some i, j .  Therefore, one has to  consider only the  case 

x = (1, 0 , . . . ,  0), y = (0, 1 , . . . ,  1). But  in this case, replacement of x by y str ict ly increases the 
number  of inner edges, which completes the proof. 

3 .  S O L U T I O N  O F  P R O B L E M  2 

Consider first the case when all ki are infinite, i.e., V n = V n'°°. We will show t h a t  any initial 

segment in the order g gives a solution. 

THEOREM 2. IR(Ic(IAI))I < IR(A)I for any  A C V n. 

PROOF. The  proof  is very similar to the proof  of Theorem 1. We go along the lines of  this proof  
and discuss only the differences. So, assume tha t  ]A I = m and A ¢ IE(m). We use induct ion 
on n. For n = 1, the Theorem is obviously true. For n = 2 instead of (2), we have 

IR(A)] = [AI(0)[ + IA2(0)], (4) 

and so we have to maximize the same quant i ty  as in (2) again, which proves this case. 

Let  us proceed with the induction step for n > 3. Instead of (3), one has 

ki 

IR(A)I >- E IR(gi(J)) l  + E ] d i ( j ) l -  [Ai(j - 1)] , (5) 
j = 0  j>_l 

and hence, by the induction hypothesis,  it follows tha t  IR(CiA)I < IR(A)I. Therefore,  we may  
restrict  ourselves to  consider only a stable set B. 
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Denote  again by x the  greatest  vector of B in the order g,  and by y the least vector  in order  g 
which is not  in B. Then  x >e  y. We may  assume xi ~ Yi for 1 < i < n. 

Assume t h a t  ]x[ = t > ]y[ > 0 and show tha t  T = {z • V '~ : ]z[ = t -  1} C_ B. Clearly, 

( 0 , . . . , 0 , t )  • B, hence, (t - 1 , . . . , t  -- 1,0, t - 1) • B. Therefore, one has to prove only tha t  
P C B and Q c_ B where 

P = { ( t - 1 , . . . , t -  l , p , t - 1 )  : l < p < t - 1 } ,  Q = {(t - 1 , . . . , t -  l ,q)  : O <<_ q < t - 1 } .  

Since [R(B \ {x})[ _< ]R(B)[ + n and for any z c P \ B one has [R(B U {z})] = IR(B)[ - n, and 

since N ( z )  < N(x ) ,  after replacing x by z, we either t ransform the set B into IF(m)  or P G B. 

As to  the set Q, i f t  = ( t - l , . . . ,  t - l ,  0) E B, then one can apply the arguments  from above. Let 

t ¢ B.  Notice tha t  there exists a j for which xj < t - 1  holds. Consider the set T = { ( z l , . . . ,  z,~) : 

zi = x~ for i • j, 0 < zj ~ Xj} and replace it by the set S = {(t - 1 , . . .  , t  - 1,s)  : 0 < s < xj} .  
T h e n  

]R((B \ T )  U S)[ = [R(B)[, 

but  the  funct ion N decreases. Now we have (t - 1 , . . . ,  t - 1,0) E B, and either B -- I e ( m )  or 

( t -  1 , . . . , t -  1) c B. Thus  T C_ B holds. 

Now let ]x[ = ]y[ = t > 1. Then  for some i, one has x~ = t, Yi < t, and either i = 1 or xj,  yj < t 
for j < i. There  is no loss of  generali ty to assume tha t  xj < yj for j ~ i, and so yj ~ 0 for j ~ i. 

I f  now Yi ~ 0, then [R(B U {y})[ = tR(B)[ - n, and we may  replace the vector x by y wi thout  

increasing R, bu t  with decreasing N. 

Finally, if Yi -- 0, then similarly (see the proof  of Theorem 1) we replace the vector  x by the  
vector  y or the set T by the set S wi thout  increasing R, but  with decreasing N. 

In the last case t = 1, the proof  is quite similar to the proof  of Theorem 1). 

Consider  now the "bounded" 2-dimensional version of this problem, i.e., let kl, k2 < oo and 

kl <_ k2. Let A be an opt imal  m-element  subset. We may  restrict our a t tent ion considering the 

case m < klk2/2 only, because the number  of boundary  edges of the set and its complement  axe 

the same. 

THEOREM 3. 

(i) I f m  <_ [ ~ ] ,  then [R(IE(m))] < [R(A)[ for any A C_ Y2; 
(ii) i f  L ~ J  <- m < klk2/2, then IR(IL(m) <_ IR(A)I for any A G V 2. 

PROOF. Wi thou t  loss of  generality, we may assume tha t  A is stable, i.e., Ci(A) = A for i = 1,2. 

Denote  by 11 (respectively, by 12), the number  of vectors of A of the form (0, x) (respectively, 
(x, 0)). Then  the two following cases are possible: 

CASE 1. 11 K k l  and 12 < k2. Here, the number  of boundary  edges for such a set A equals 
s imply 11 + 12. I t  is clear tha t  A is inside an ll x 12 rectangular  area, and so if m = q2 _[_ p, then 

tR(A)I >_ 2q, i f p  = 0, or IR(A)I >_ 2q + 1, i f p  > 0, i.e., the square is an opt imal  solution. 

CASE 2. ll = kl o r  12 = k2. Assume first t ha t  only one of these inequalities holds. Then  

[R(A)[ > min{kl ,  k2} = kl, and clearly, I t ( m )  has exactly kl bounda ry  edges. 

Now let 11 = kl and 12 = k2 hold. Then [R(A)I = k l + k 2 -  ( r + c ) ,  where r and c axe, 
respectively, the numbers  of completely filled rows and columns of the grid V n in the set A. One 

has kl + k2 - r - c > kl, because otherwise, if r + c > k2, then IA] >_ klr  + k 2 c -  rc > klk2/2,  
which contradic ts  our assumptions.  

Therefore,  the solution of  our problem is either Ic(m)  or I£(m) .  Notice tha t  the number  of 
b o u n d a r y  edges for the first set is an increasing function of m, while for the second set, it increases 
first, and then jumps  between kl and kl + 1. Hence, as m increases until some mo, there may  
exist two solutions, among  which is IF(m), and for mo < m < klk2/2, the set IL(m)  is better.  
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