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This is a fleshed-out version of my talk, so including a brief section on existence
of Hall polynomials and how that follows from Green’s Formula which is coming
next, and also a little more on Macdonald’s ring of symmetric functions. The main
references are

I.G. Macdonald, Symmetric functions and Hall polynomials (2nd ed.), Oxford
Math. Monographs, Oxford Univ. Press.

A Hubery, Ringel-Hall algebras of cyclic quivers, São Paulo Journal of Math.
Sciences 4 (2010), 351–398.

1. Discrete valuation rings

Let R be a DVR with finite residue field k = Fq and maximal ideal (π). For
example we could take k[[t]] or Zp.

Let modR be the category of finite length R-modules. The indecomposables
are of the form Sm := R/(πm) for m ≥ 1, and the unique simple is S = S1 = k.
Moreover, each indecomposable has a unique composition series

0 ⊂ S ⊂ S2 ⊂ · · · ⊂ Sm, Si = (πm−i) ⊂ R,

so modR is a uniserial category.
The Grothendieck group is simply Z, where the class of Sm is just its length

m = `R(Sm).

1.1. Hom and ext. In the category ModR of all R-modules we have a projective
presentation

0→ R
πm−−→ R→ Sm → 0.

Hence applying Hom(−, X) for a module X, and using that Hom(R,X) ∼= X, we
have the four term exact sequence

0→ Hom(Sm, X)→ X
πm−−→ X → Ext1(Sm, X)→ 0.

Thus

Hom(Sm, X) ∼= socmX = Ker(πm) and Ext1(Sm, X) ∼= X/πmX = Coker(πm).

Moreover

Exti(Sm, X) = 0 for all i ≥ 2,

so the category modR is hereditary.
Moreover, the Euler form vanishes identically:

〈Sm, X〉 :=
∑
i

(−1)i`R(Exti(Sm, X))

= `R(Hom(Sm, X))− `R(Ext1(Sm, X)) = `R(X)− `R(X) = 0.

1
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1.2. Duality. Consider the Prüfer module E in ModR, given by

E := lim−→Sm.

Then the functor
D := Hom(−, E)

induces a duality on modR such that D(X) ∼= X.
Note that when R contains a coefficient field, so is a k-algebra, then we can

instead consider the vector space duality D = Homk(−, k).
Now, applying Hom(X,−) for X ∈ modR to the injective presentation

0→ Sm → E
πm−−→ E → 0,

we get the four term exact sequence

0→ Hom(X,Sm)→ D(X)
πm−−→ D(X)→ Ext1(Sm, X)→ 0.

Since multiplication by πm on D(X) is the dual of multiplication by πm on X we
obtain

Hom(X,Sm) ∼= socmD(X) ∼= D(Ext1(Sm, X)).

2. The algebra of partitions

By the Krull-Remak-Schmidt Theorem, every R-module is a finite direct sum
of indecomposables, unique up to reordering. Thus the isomorphism classes of
R-modules are in bijection with partitions λ = (λ1 ≥ λ2 ≥ · · · ) via

Sλ := Sλ1 ⊕ Sλ2 ⊕ · · ·
Note that `(Sλ) = |λ| =

∑
i λi.

A useful mental image is to regard the indecomposable Sm as a tower of height m,
with the generator at the top. This is appropriate here since the Sm are uniserial.
Then Sλ is a city skyline, consisting of towers for each indecomposable summand,
and so we have reconstructed the Young diagram (or its reflection in maybe the
more standard convention). For example, taking λ = (3, 2, 2, 1) we would draw this
as

λ = (3, 2, 2, 1)

The (Ringel-)Hall algebra of modR therefore has basis indexed by partitions

H =
⊕
λ

Quλ

and is Z-graded, where deg uλ = |λ|.

2.1. Some computations. (1) As an R-module we have Hom(Sa, Sb) ∼= Sd, where
d = min{a, b}. Hence also Ext1(Sa, Sb) ∼= Sd. It follows that for all partitions λ, µ
we have

|Hom(Sλ, Sµ)| = |Ext1(Sλ, Sµ)| = qdλµ , where dλ,µ :=
∑
i,j

min{λi, µj}.

Let λ′ denote the conjugate partition to λ, so given by reflecting the Young
diagram in the line x = y. Then

dλ,µ =
∑
i

λ′iµ
′
i.

We have two binary opertaions on partitions, namely addition and union

λ+ µ = (λ1 + µ1, λ2 + µ2, . . .) and λ ∪ µ = (λ1, µ1, λ2, µ2, . . .),
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but where we may have to rearrange the parts of λ∪ µ into decreasing order. Note
that λ′ + µ′ = (λ ∪ µ)′, so these operations are conjugate. It follows that we can
regard dλ,µ as an inner product on partitions with respect to the union operation.
This yields the quadratic form n(λ), where

dλ,λ = |λ|+ 2n(λ), n(λ) =
∑
i

(
λ′i
2

)
.

(2) As a ring we have End(Sa) ∼= R/(πa). Thus endomorphisms of Sra can
be regarded as matrices of size r over R/(πa). Using the canonical epimorphism
Sa � S, with kernel Sa−1, we get a surjective group homomorphism

Aut(Sra)� Aut(Sr) ∼= GLr(k)

having kernel those matrices of size r over End(Sa−1) ∼= R/(πa−1). It follows that

|Aut(Sra)| = qar
2

(1− q−1)(1− q−2) · · · (1− q−r).

(3) We next compute u(a)u(b) in the Hall algebra. From our mental picture, we
need to stack a tower of height a on top of a tower of height b, but if we use too
much force, then m floors of the towers will get squashed, and therefore need to be
replaced.

a

b

y a−m

m

b−m

m
 

This suggest we get an extension with middle term corresponding to the partition
(a+ b−m,m) for each 0 ≤ m ≤ d := min{a, b}.

For m = 0 the middle term is Sa+b, so indecomposable and uniserial, so F
(a+b)
(a)(b) =

1.
For 0 < m < d we want a submodule U ≤ Sa+b−m ⊕ Sm such that U ∼= Sb. The

generator of U must therefore be (πa−m, x) (up to a unit of R). We also need the
quotient to be isomorphic to Sa, but if x ∈ πSm, then the quotient will need two

generators. Thus x ∈ Sm \ πSm. We therefore get F
(a+b−m,m)
(a)(b) = qm(1− q−1).

For m = d but a 6= b we want a submodule U ≤ Sa ⊕ Sb with U ∼= Sb and the
quotient isomorphic to Sa. Since Sa 6∼= Sb the generator for U must be (x, 1) for

some x ∈ Sa with πbx = 0. Thus F
(a,b)
(a)(b) = qd.

Finally, for m = d = a = b we want a submodule U ≤ S2
a with U ∼= Sa (and

then necessarily the quotient will be isomorphic to Sa). Here we can take as the
generator (x, 1) for any x ∈ Sa, or (1, y) for anty y ∈ πSa (to avoid repetition).

Hence F
(a,a)
(a)(a) = qa(1 + q−1).

Using Riedtmann’s Formula

FXMN =
|Ext1(M,N)X |
|Hom(M,N)|

× |Aut(X)|
|Aut(M)||Aut(N)|

,

we can compute

|Ext1(Sa, Sb)S(a+b−m,m)
| =

{
qd−m(1− q−1) for 0 ≤ m < d;

1 for m = d.
.
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Suming over m reveals that we have indeed accounted for all possible extensions∑
m

|Ext1(Sa, Sb))S(a+b−m,m)
| = qd = |Ext1(Sa, Sb)|.

(4) At the other extreme we can compute extensions between semisimple mod-
ules, so u(1a)u(1b).

Here we want to place a row of a blocks on top of a row of b blocks, and again
they may overlap by m blocks for 0 ≤ m ≤ d := min{a, b}.

b

ay m

a+ b−m

 

This suggest we get an extension with middle term corresponding to the partition
(2m1a+b−2m) for each 0 ≤ m ≤ d.

For the Hall number, we need to take a submodule of the socle of length b, whose
quotient is again semisimple. We must therefore take the whole of the socle of each
indecomposable S2, and then choose a submodule of Sa+b−2m of length b−m. Thus

F
(2m1a+b−2m)

(1a)(1b)
=
∣∣∣Gr

(
a+ b− 2m

b−m

)
(k)
∣∣∣ =

[
a+ b− 2m

b−m

]
q

where
[
n
m

]
q

is the quantum binomial coefficient, so

[n]q :=
qn − 1

q − 1
, [n]q! := [n]q · · · [2]q[1]q,

[
n

m

]
q

:=
[n]q!

[m]q![n−m]q!
.

Again, using Riedtmann’s Formula, we have

|Ext1(Sa, Sb)Sm2 ⊕S
a+b−2m
1

| =
[
a

m

]
q

[
b

m

]
q

|GLm(k)|.

Summing over m yields the quantum binomial identity∑
m

[
a

m

]
q

[
b

m

]
q

|GLm(k)| = qab,

an identity which has no obvious classical analogue (since if we set q = 0 then
almost all terms on the left vanish).

(5) Using the duality D = Hom(−, E) we see that F νλµ = F νµλ, and hence that
H is a commutative algebra, and a cocommutative coalgebra.

3. The algebra structure

We introduce the dominance partial order on partitions, so for two partitions λ
and µ of the same size

λ ≤ µ provided λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi for all i.

Note that λ ≤ µ if and only if λ′ ≥ µ′.

Lemma 3.1. If the Hall number F νλµ is non-zero, then λ ∪ µ ≤ ν ≤ λ + µ in the
dominance ordering. Moreover, the Hall number is always non-zero for ν = λ ∪ µ.

Proof. Suppose we have a short exact sequence

0→ Sµ
f−→ Sν

g−→ Sλ → 0.
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Note that if U ≤ Sν is any submodule, then we obtain a short exact sequence

0→ f−1(U)→ U → g(U)→ 0.

For the first inequality note that the length of soci(Sλ) is λ′1 + · · · + λ′i. In our
mental picture, we are just taking the bottom i floors of our tower blocks.

Now, clearly g sends everything in soci(Sν) = Ker(πi) to soci(Sλ), and similarly
f−1(soci(Sν)) ⊂ soci(Sµ). We deduce that

ν′1 + · · ·+ ν′i ≤ λ′1 + µ′1 + · · ·+ λ′i + µ′i,

so that ν′ ≤ λ′ + µ′, and hence ν ≥ λ ∪ µ.

If instead we consider S
(≤i)
ν = Sν1 ⊕ · · · ⊕ Sνi , so the tallest i towers, then

its image under g requires at most i generators, so its length is at most that of

S
(≤i)
λ . Similarly if we intersect this with f(Sµ) then it can again have at most i

indecomposable summands, and so its length is bounded by that of S
(≤i)
µ . Thus

ν1 + · · ·+ νi ≤ λ1 + µ1 + · · ·+ λi + µi,

so that ν ≤ λ+ µ.
Finally, if ν = λ∪µ, then Sν ∼= Sλ⊕§µ, and so we have the split exact sequence.

Using Riedtmann’s Formula, and noting that |Ext1(Sλ, Sµ)Sλ∪µ | = 1, we see that
the Hall number in this case is non-zero. �

With a little bit more work we can also prove some other necessary conditions
for extensions to exist; for example, we must have νi ≥ max{λi, µi} for all i, usually
written ν ⊃ λ, µ. The following example shows that these conditions are insufficient.

Set λ = (2), µ = (1, 1) and ν = (2, 2) we see that λ∪ µ = (2, 1, 1) ≤ ν ≤ (3, 1) =
λ+µ, and also λ, µ ⊂ ν. On the other hand, Sν is not an extension of Sλ by Sµ. To
see this, note that there is essentially only one epimorphism g : Sν = S2

2 � S2 = Sµ,
and its kernel is the socle S2 and not Sλ = S2.

In fact, it is an open problem to describe precisely when an extension exists (see
later).

Theorem 3.2. The u(a) corresponding to the indecomposable modules are alge-
braically independent in H and generate H. Thus

H = Q[u(1), u(2), u(3), . . .]

is a polynomial ring on countable many generators.

Proof. For a fixed n we know that the graded piece Hm has basis the uλ for par-
titions λ of size m. Set xλ := u(λ1)uλ2

· · · . These again have degree m, and so
we can form the matrix expressing the xλ in terms of the uλ. This has coefficients
given by the iterated Hall numbers Fµλ1λ2···, since

xλ =
∑
µ

Fµλ1λ2···uµ.

By repeated use of the previous lemma we see that these Hall numbers are non-zero
only for µ in the range

λ1 ∪ λ2 ∪ · · · = λ ≤ µ ≤ m = λ1 + λ2 + · · · .

Moreover, the Hall number for µ = λ is non-zero. Thus, if we arrange the rows and
columns of the matrix with respect to the dominance ordering, then the matrix will
be upper triangular with non-zero entries on the diagonal. Thus the xλ also form
a basis for Hn, as required. �
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4. Hopf algebra structure

We will see in the next lecture (on Green’s Formula) that the Hall algebra is in
fact a Hopf algebra. Moreover, the inner product given by

{uλ, uµ} := δλµ
q|λ|

|Aut(Sλ)|
is a Hopf pairing, so in particular

{xy, z} = {x⊗ y,∆(z)} =
∑
{x, z′}{y, z′′}, where ∆(z) =

∑
z′ ⊗ z′′.

Since the Sm are uniserial, every submodule and quotient module is again inde-
composable, and hence

∆(u(m)) =
∑

a+b=m

|Aut(Sm)|
|Aut(Sa)||Aut(Sb)|

u(a) ⊗ u(b).

If we therefore set

c0 := 1, cm := (1− q−1)u(m) for m ≥ 1,

then

H = Q[c1, c2, c3, . . .] and ∆(cm) =
∑

a+b=m

ca ⊗ cb.

Moreover,

{cm, cn} = δmn(1− q−1).

4.1. Primitive elements. There are actually many such generators for H satisfy-
ing the same comultiplication rule, but we can get a canonical choice of generators
by finding primitive elements, so elements pm of degree m such that ∆(pm) =
pm ⊗ 1 + 1⊗ pm.

The easiest way to do this is via generating functions.

Proposition 4.1. Suppose we have a commutative Hopf algebra H, and elements
xm, ym for m ≥ 1. We also set x0 = 1. Form the generating functions

X(T ) :=
∑
m≥0

xmT
m and Y (T ) :=

∑
m≥1

ymT
m−1.

Suppose that Y (T ) = d
dT logX(T ), equivalently X(T )Y (T ) = d

dTX(T ), or in terms
of the elements themselves

mxm =

m∑
a=1

yaxm−a.

Then

∆(xm) =
∑

a+b=m

xa ⊗ xb if and only if ∆(ym) = ym ⊗ 1 + 1⊗ ym.

Moreover, under these conditions, if we have a symmetric Hopf pairing {−,−} on
H, then Ȳ (T ) = d

dT log X̄(T ), where

X̄(T ) :=
∑
m≥0

{xm, xm}Tm and Ȳ (T ) =
∑
m≥1

1
m{ym, ym}T

m−1.

Theorem 4.2. In the Hall algebra H set

pm :=
∑
|λ|=m

(1− q)(1− q2) · · · (1− q`(λ)−1)uλ,

where `(λ) is the length of the partition, so the number of non-zero parts.
Then the pm are primitive and generate H, and {pm, pn} = δmnm/(1− q−m).
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Sketch. The idea is to apply the previous proposition, using xm = cm and ym =
(1− q−m)pm. We therefore just need to show that

mxm − ym =
∑

0<a<m

yaxm−a.

The idea is now to use the observation that
∑
λ F

µ
λ(a) equals the number of

injective maps from Sa to Sµ, divided out by |Aut(Sa)|, and a map is injective
provided it does not factor through the canonical epimorphism Sa � Sa−1. Also,
given such an injective map, say with cokernel Sλ, then `(λ) = `(µ) unless the
extension was split.

In particular, we do not need to do any actual computations of Hall numbers. �

Corollary 4.3. For a partition λ = (1m12m2 · · · ) set

zλ(t) :=
∏
r

(
mr!

( r

1− q−r
)mr)

.

Then, writing pλ := pλ1
pλ2
· · · = pm1

1 pm2
2 · · · as usual, these form a basis for the

Hall algebra H and

{pλ, pµ} = δλµzλ(q−1).

Proof. We know that the pm generate H, and so by computing the dimensions of
each graded piece Hm we know that the pλ form a basis for H. The formula for
their inner product now follows by induction, using that tha pm are primitive. �

5. Hall polynomials

Recall that the isomorphism classes of finite length R-modules are indexed by
partitions, and is therefore independent of R.

We have also seen in §2.1 (1) that |Hom(Sλ, Sµ)| = qdλ,µ, where q is the size of
the residue field k and dλ,µ is an integer depending only on the partitions. We can
interpret this as saying there is a polynomial hλ,µ(t) ∈ Z[t] (namely hλ,µ = tdλ,µ)
such that, for any R with finite residue field k = Fq, we have |Hom(Sλ, Sµ))| =
hλ,µ(q). In other words, there exists a universal polynomial giving the sizes of the
homomorphism groups.

Extending the example in §2.1 (2), we see that there is also a universal polynomial
aλ(t) ∈ Z[t] giving the sizes of the automorphism groups, so for any R with finite
residue field k = Fq we have |Aut(Sλ)| = aλ(q). Explicitly we have

aλ(t) = tdλ,λ
∏
r

(1− t−1)(1− t−2) · · · (1− t−mr ) for λ = (1m12m23m3 · · · ).

Note that aλ(t) is a monic polynomial in u.

Lemma 5.1. Suppose we have a function f = p/a such that p, a ∈ Z[t] and a is
monic. If f(q) ∈ Z for infinitely many q ∈ Z, then f ∈ Z[t].

Proof. Since a is monic we can write f = g+ h/a where g ∈ Z[t] and e = deg(h) <
deg(a) = d. Then we can find a positive rational number c such that |h(q)/a(q)| <
c/qd−e for all integers q sufficiently large. Since f(q) ∈ Z for infinitely many such
q, we must have h(q) = 0 and hence f = g ∈ Z[t]. �

Theorem 5.2. There is a universal polynomial fνλµ(t) ∈ Z[t] giving the sizes of
the Hall numbers F νλµ, so for any R with finite residue field k = Fq we have F νλµ =

fνλµ(q).



8 ANDREW HUBERY

Proof. The idea is to use Green’s Formula to initiate an induction. We will see this
in the next lecture, so for now we will just state it for the category modR (so we
use that the Euler form vanishes identically). For fixed µ, ν, ξ, η we have∑

ε

F εµνF
ε
ξη/aε =

∑
α,β,γ,δ

FµαβF
ν
γδF

ξ
α,γF

η
βδ

aαaβaγaδ
aµaνaξaδ

.

Now suppose we wish to compute F θµν . If Sθ is decomposable, say θ = ξ ∪ η, then
any other extension Sε of Sη by Sν must satisfy θ < ε ≤ ξ+ η, and so we can write

F θµνF
θ
ξη/aθ =

∑
ε

F εµνF
ε
ξη/aε −

∑
ε>θ

F εµνF
ε
ξη/aε.

We can apply Green’s formula to the first sum on the right and hence express it
in terms of Hall numbers involving partitions of size strictly smaller that |θ|, so by
induction each of these Hall numbers is given by a universal integer polynomial.
Similarly we can apply induction on the dominance order for partitions of size |θ| to
deduce that the Hall numbers appearing in the second sum are also given by univer-
sal integer polynomials. Using that the polynomials aλ are all monic, we conclude
that the whole of the right hand side is of the form (integer polynomial)/(monic
integer polynomial). Finally, by Riedtmann’s Formula, and using that every ex-
tension of Sη by Sξ with middle term Sθ is necessarily split, we see that F θξη/aθ
is a quotient of two monic integer polynomials. It therefore follows that F θµν is of
the form (integer polynomial)/(monic integer polynomial), so is itself an integer
polynomial by the previous lemma.

It remains to prove the case when Sθ is indecomposable. In this case we saw
in §2.1 (3) that the Hall numbers are either zero or one, depending only on the
partitions, so we are done. �

6. Macdonald’s ring of symmetric functions

Consider the power series ring Γ̃ := Q[[X1, X2, X3, . . .]]. We can describe its

elements as follows. Given α ∈ N(N)
0 , set Xα :=

∏
iX

αi
i , a finite monomial. Then

the elements of Γ̃ are of the form
∑
α cαX

α with cα ∈ Q. We say that a monomial

Xα has degree |α| =
∑
i αi, and an element f ∈ Γ̃ has degree d provided it is of

the form f =
∑
|α|=d cαX

α. Writing Γd for the subspace of elements of degree d,

we see that Γ :=
⊕

d Γd is a subring of Γ̃.

Now, by regarding Xi as the i-th co-ordinate function on sequences in Q(N), so
Xi(x) = xi, we can view Γ as a ring of functions Q(N) → Q. Then f ∈ Γ has degree
d if and only if f(λx) = λdf(x) for all λ ∈ Q and all x ∈ Q(N).

Let π be any finitary permutation of N, so π fixes almost all elements. We can
then define both π(f) for a function f , by setting π(Xi) = Xπ(i), and π(x) for a

sequence x, by setting π(x)i := xπ−1(i). It follows that (π(f))(x) = f(π−1(x)). We
call a function symmetric provided π(f) = f for all finitary permutations π.

Note that the degrees of f and π(f) are the same, so π acts on each Γn. We write
Λd for the symmetric functions of degree d, and Λ :=

⊕
d Λd. This is Macdonald’s

ring of symmetric functions.
Let us write α ∼ β provided there exists a finitary permutation π with α = β(π).

Then for each α there exists a unique partition λ with α ∼ λ. Set

mλ :=
∑
α∼λ

Xα.

Then the mλ form a basis for Λ, called the basis of monomial functions. In partic-
ular, each graded piece Λd is finite dimensional. We also have the following special
functions in Λ.
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Elementary symmetric functions:

ed :=
∑
|α|=d

Xα, α ∈ {0, 1}(N).

Complete symmetric functions:

hd :=
∑
|α|=d

Xα, α ∈ N(N)
0 .

Power sum functions:

pd :=
∑
i

Xd
i .

Each of these forms a set of algebraically-independent generators for Λ. We there-
fore write, for a partition λ,

eλ :=
∏
i

eλi , hλ :=
∏
i

hλi , pλ :=
∏
i

pλi ,

so that each of the eλ, hλ and pλ determines a basis of Λ.
We can relate Λ to the usual rings of symmetric polynomials as follows. For all

m ≤ n we have compatible embeddings Qm ↪→ Qn ↪→ Q(N), given by extending by
zero. The polynomial algebra Rm := Q[X1, . . . , Xm] can be regarded as polynomial
functions on Qm, and so by restricting functions we obtain compatible surjective
algebra homomorphisms Γ� Rn � Rm. Moreover, these respect the action of fini-
tary permutations, and so we have compatible surjective algebra homomorphisms
Λ� Sn � Sm, where Sm := RSm

m is the usual ring of symmetric polynomials.
In this way we see that, in the category of graded rings

Γ = lim←−Rn and Λ = lim←−Sn.

Next consider the bijection

Q(N) ×Q(N) → Q(N), (x, y) 7→ x ∪ y := (x1, y1, x2, y2, . . .).

This yields a comultiplication on Λ where

∆(f) =
∑

f ′ ⊗ f ′′ provided f(x ∪ y) =
∑

f ′(x)f ′′(y).

For, fixing y, the function x 7→ f(x ∪ y) is again in Λ, so can be written as∑
λ cλ(y)mλ. Moreover, if f has degree d, then we only need to consider parti-

tions λ of size at most d, so this is a finite sum. Now each function fλ(y) = cλ(y)
is also symmetric, and so we have written ∆(f) =

∑
λmλ ⊗ fλ.

From this definition the following identities are clear.

(1) ∆(ed) =
∑
a+b=d ea ⊗ eb, where e0 := 1.

(2) ∆(hd) =
∑
a+b=d ha ⊗ hb, where h0 := 1.

(3) ∆(pd) = pd ⊗ 1 + 1⊗ pd.
In this way Λ becomes a commutative and cocommutative Hopf algebra, where

the antipode sends pn to −pn.

6.1. Extension of scalars. We now extend scalars and consider the Hopf algebra
Λt := Λ⊗Q Q[t]. We endow this with a symmetric bilinear form

{pλ, pµ} := δλµzλ(t),

where zλ(t) was defined earlier. This is then a Hopf pairing, which follows by noting
that

zλ∪µ(t) = zλ(t)zµ(t)
∏
r

(
ar + br
ar

)
, λ = (1a12a2 · · · ), µ = (1b12b2 · · · ).
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Thus Λt is a self-dual Hopf algebra with this pairing. In fact, this also holds after
specialising t to any number which is not a root of unity.

Theorem 6.1. There is a homomorphism of self-dual Hopf algebras

Φ: Λt → H, pn 7→ pn, t 7→ q−1.

The map Φ is an isomorphism if we take the generic Hall algebra (using the Hall
polynomials), or just surjective if we take any particular prime power q.

Using generating functions, we show that

ed 7→ q(
m
2 )u(1m) and hd 7→

∑
|λ|=m

uλ.

6.2. Hall-Littlewood functions. The Hall-Littlewood functions Pλ(t) are char-
acterised by the two properties:

(1) there exist integer polynomials bλµ(t) such that

Pλ(t) = eλ′ +
∑
µ<λ

βλµ(t)eµ′ .

(2) setting bλ(t) =
∏
r(1− t)(1− t2) · · · (1− tmr ) for λ = (1m12m2 · · · ) we have

{Pλ(t), Pµ(t)} = δλµ/bλ(t).

Note that, using the notation introduced earlier, aλ(t) = tdλ,λbλ(t−1).
The Hall-Littlewood functions have the property that Pλ(0) = sλ, the Schur

function, and Pλ(1) = mλ, the monomial function. The dual Schur functions
Sλ(t) are given by taking the dual basis with respect to the symmetric bilinear
form. Note that Sλ(0) = sλ. The Littlewood-Richardson coefficients cνλµ are the
structure constants with respect to the Schur functions, so

sλsµ =
∑
ν

cνλµsν .

It follows that if
Pλ(t)Pµ(t) =

∑
ν

gνλµ(t)Pν(t),

then the polynomial gνλµ(t) has constant term cνλµ.

Proposition 6.2. Under the map Φ: Λt → H we have

Pλ(t) 7→ qn(λ)uλ, sλ 7→ bλ, Sλ(t) 7→ b∗λ,

where bλ is Lusztig’s canonical basis.

Proof. We just prove the formula for Pλ(t). Suppose |λ′| = d, and write λ′ =
(a1, a2, . . .). Then (1a1) ∪ (1a2) ∪ · · · = (1d) and (1a1) + (1a2) + · · · = λ. Thus

eλ′ 7→
∑

(1d)≤µ≤λ

aλµ(q)uµ,

for some polynomials aλµ(t). Moreover, aλλ(q) is non-zero. In fact, the Hall number
Fλ(1a1 )(2a2 )··· = 1 since the corresponding filtration of Sλ has to be the socle filtration,

which is unique. Thus aλλ(q) =
∑
i

(
ai
2

)
= n(λ), and so

Pλ(t) 7→ qn(λ)uλ +
∑
µ<λ

āλµ(q)uµ.

On the other hand we know that

{uλ, uµ} = δλµq
|λ|/aλ(q), so that {qn(λ)uλ, qn(µ)uµ} = δλµ/bλ(q).

The result follows. �
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In Macdonald’s book he also introduces the functions qn(t) = (1 − t)P(n)(t),
which we shall denote by cn. The cλ then form the basis dual to the basis of
monomial functions, and under Φ the cn map to the cn := (1− q−1)u(n) discussed
earlier.

Comparing the structure constants of the Pλ(t) and the uλ we have

fνλµ(t) = qn(ν)−n(λ)−n(µ)gνλµ(t−1).

Thus gνλµ has degree at most N := n(ν)− n(λ)− n(µ), and

fνλµ(t) = cνλµt
N + lower order terms.

In fact, we have the following stronger result.

Theorem 6.3. The Hall polynomial fνλµ is non-zero if and only if cνλµ is non-zero.

There is no known characterisation of when the Littlewood-Richardson coeffi-
cients are non-zero, and although there are various algorithms to compute them
explicitly, it is also known that computing them is a P-complete problem.

Proposition 6.4. The Littlewood-Richardson coefficients satisfy the identity∑
ε

cελµc
ε
ξη =

∑
α,β,γ,δ

cλαβc
µ
βδc

ξ
αγc

η
βδ.

Proof. Note that by Riedtmann’s Formula, the rational function

f εξη(t)tdξ,ηaξ(t)aη(t)/aε(t)

counts, for a given DVR R with finite residue field k = Fq, the size of the set

Ext1(Sξ, Sη)Sε , and so is an integer polynomial. Thus if we take Green’s Formula
and multiply through by aλ(q)aµ(q)aξ(q)aη(q), then every term is a Laurent poly-
nomial of degree at most N = |λ|+ |µ|+ n(λ) + n(µ) + n(ξ) + n(η). The identity
above is then given by comparing the coefficients of tN on both sides. �
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