Graded matrix factorizations and functor categories

David Favero
University of Vienna
May 13, 2011

Attributions

Based on joint work with Matthew Ballard (Upenn) and Ludmil Katzarkov (Miami and Wien).

Coming soon to an ArXiv near you!

The basic motivation for this talk comes from results of various authors, prompted perhaps by the following results of Dyckerhoff and Orlov.

The basic motivation for this talk comes from results of various authors, prompted perhaps by the following results of Dyckerhoff and Orlov.

Theorem (Dyckerhoff)

Let f and f^{\prime} define isolated singularities in regular local rings, R, R^{\prime}. The full sub(dg)category of compact objects in the category of functors from $\operatorname{MF}(R, f)$ to $\operatorname{MF}\left(R^{\prime}, f^{\prime}\right)$ is equivalent to $\operatorname{MF}\left(R \otimes R^{\prime}, f \otimes 1-1 \otimes f^{\prime}\right)$. We write, $\left(\operatorname{MF}(R, f) \hat{\otimes} \operatorname{MF}\left(R^{\prime}, f^{\prime}\right)\right)_{\mathrm{pe}} \cong \operatorname{MF}\left(R \otimes R^{\prime}, f \otimes 1+1 \otimes f^{\prime}\right)$.

Definition

A semi-orthogonal decomposition of a triangulated category, \mathcal{T}, is a sequence of full triangulated subcategories, $\mathcal{A}_{1}, \ldots, \mathcal{A}_{m}$, in \mathcal{T} such that $\mathcal{A}_{i} \subset \mathcal{A}_{j}^{\perp}$ for $i<j$ and, for every object $T \in \mathcal{T}$, there exists a diagram:

where all triangles are distinguished and $A_{k} \in \mathcal{A}_{k}$. We shall denote a semi-orthogonal decomposition by $\left\langle\mathcal{A}_{1}, \ldots, \mathcal{A}_{m}\right\rangle$.

Theorem (Orlov)

Let X be a hypersurface in \mathbb{P}^{n} which is the zero locus of a homogeneous polynomial, f, of degree, d.
(1) If $n+1-d>0$, there is a semi-orthogonal decomposition,

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)=\left\langle\mathcal{O}_{X}(d-n), \ldots, \mathcal{O}_{X}, \operatorname{MF}(R, f, \mathbb{Z})\right\rangle
$$

(2) If $n+1-d=0$, there is an equivalence of triangulated categories,

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)=\langle\operatorname{MF}(R, f, \mathbb{Z})\rangle
$$

(3) If $n+1-d<0$, there is a semi-orthogonal decomposition,

$$
\operatorname{MF}(R, f, \mathbb{Z}) \cong\left\langle k, \ldots, k(n+2-d), \mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)\right\rangle
$$

Question

What is the analog of Dyckerhoff's result in the case of graded matrix factorizations?

Question

What is the analog of Dyckerhoff's result in the case of graded matrix factorizations?

Question

How does this compare with the standard interpretation of functors between $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)$ and $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y)$ as $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X \times Y)$, for hypersurfaces, X, Y ?

Question

What is the analog of Dyckerhoff's result in the case of graded matrix factorizations?

Theorem

Let M, M^{\prime} be finitely generated abelian groups. Let
$R=k\left[x_{0}, \ldots, x_{n}\right], R^{\prime}=k\left[y_{0}, \ldots, y_{n^{\prime}}\right]$ be M, M^{\prime} graded rings with x_{i}, y_{i} homogeneous. Let $f \in R_{d}, f^{\prime} \in R_{d^{\prime}}$ be homogeneous functions such that $f \in d f, f^{\prime} \in d f^{\prime}$ and $d \in M, d^{\prime} \in M^{\prime}$ are not torsion. The full $\operatorname{sub}(\mathrm{dg})$ category of compact objects in the category of functors from $\operatorname{MF}(R, f, M)$ to $\operatorname{MF}\left(R^{\prime}, f^{\prime}, M^{\prime}\right)$ is equivalent to
$\operatorname{MF}\left(R \otimes R^{\prime}, f \otimes 1-1 \otimes f^{\prime}, M \oplus M^{\prime} /\left(d,-d^{\prime}\right)\right)$.

Theorem

Let M, M^{\prime} be finitely generated abelian groups. Let
$R=k\left[x_{0}, \ldots, x_{n}\right], R^{\prime}=k\left[y_{0}, \ldots, y_{n^{\prime}}\right]$ be M, M^{\prime} graded rings with x_{i}, y_{i} homogeneous. Let $f \in R_{d}, f^{\prime} \in R_{d^{\prime}}$ be homogeneous functions such that $f \in d f, f^{\prime} \in d f^{\prime}$ and $d \in M, d^{\prime} \in M^{\prime}$ are not torsion. The full $\operatorname{sub}(\mathrm{dg})$ category of compact objects in the category of functors from $\operatorname{MF}(R, f, M)$ to $\operatorname{MF}\left(R^{\prime}, f^{\prime}, M^{\prime}\right)$ is equivalent to
$\operatorname{MF}\left(R \otimes R^{\prime}, f \otimes 1-1 \otimes f^{\prime}, M \oplus M^{\prime} /\left(d,-d^{\prime}\right)\right)$.

Remark

Indepedently, Polishchuk and Vaintrob prove this theorem in the case where singularities are isolated and $M \otimes_{\mathbb{Z}} \mathbb{Q}, M^{\prime} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$.

We have some corollaries:

Corollary

If $M /(d)$ is finite, let G be the finite group with $\operatorname{char}(G)=M /(d)$. Let $A=\operatorname{Sym} V$ with V an M-graded vector space. Let w_{g} be the restriction of w to the fixed locus of g on V and $A^{g}=\operatorname{Sym} V^{g}$. The space of derived natural transformations, $\operatorname{Id} \rightarrow(m)[t]$, is

$$
\begin{cases}\bigoplus_{g \in G} \bigoplus_{p=2 q} \mathrm{H}^{p-c_{g}}\left(d w_{g} ; A^{g}\right)_{m+d(l-q)-v_{g}} & t=2 l \\ \bigoplus_{g \in G} \bigoplus_{p=2 q+1} \mathrm{H}^{p-c_{g}}\left(d w_{g} ; A^{g}\right)_{m+d(l-q)-v_{g}} & t=2 l+1\end{cases}
$$

where $\mathrm{H}^{*}\left(d w_{g} ; A^{g}\right)$ is the Koszul cohomology of the ideal $\left(d w_{g}\right)$ in $A_{g}, c_{g}=\operatorname{codim} V^{g} \subset V$, and v_{g} the degree of the graded rank one vector space $\Lambda^{\text {top }} W^{\vee}$ with $V=V^{g} \oplus W$ a splitting as an M-graded vector space.

We can describe complete intersection categories in similar manner: let $R=k\left[x_{1}, \ldots, x_{n}\right]$ and $\left(f_{1}, \ldots, f_{c}\right)$ a regular sequence. Set $S=R /\left(f_{1}, \ldots, f_{c}\right)$. Let P be the \mathbb{Z}-graded ring $R\left[u_{1}, \ldots, u_{c}\right]$ with $\operatorname{deg} u_{i}=1$ and let $w=u_{1} f_{1}+\cdots+u_{c} f_{c}$. Isik gives a useful equivalence:

Theorem (Isik)

There is an equivalence, $\mathrm{D}^{\mathrm{b}}(\bmod S) \cong \mathrm{MF}(P, w, \mathbb{Z})$. Moreover, this equivalence restricts to an equivalence, $\operatorname{Perf} S \cong \operatorname{MF}_{u}(P, w, \mathbb{Z})$, where $\mathrm{MF}_{u}(P, w, \mathbb{Z})$ is the subcategory of $\left(u_{1}, \ldots, u_{c}\right)$-torsion matrix factorizations. So, $\mathrm{D}_{\mathrm{sg}}(S)$ is equivalent to the quotient $\operatorname{MF}(P, w, \mathbb{Z}) / \operatorname{MF}_{u}(P, w, \mathbb{Z})$.

What is the (dg) category of functors $\mathrm{D}_{\mathrm{sg}}(S) \rightarrow \mathrm{D}_{\mathrm{sg}}\left(S^{\prime}\right)$?

What is the (dg) category of functors $\mathrm{D}_{\mathrm{sg}}(S) \rightarrow \mathrm{D}_{\mathrm{sg}}\left(S^{\prime}\right)$?

Theorem

The (compact objects in the homotopy category of the derived dg) category of (colimit preserving) functors $\mathrm{D}_{\mathrm{sg}}(S) \rightarrow \mathrm{D}_{\mathrm{sg}}\left(S^{\prime}\right)$ is equivalent to the (idempotent completion of the) quotient $\operatorname{MF}\left(P \otimes_{k}\right.$ $\left.P^{\prime}, w \otimes 1-1 \otimes w^{\prime}, \mathbb{Z}\right) /\left\langle\operatorname{MF}_{u}(w) \boxtimes \operatorname{MF}\left(-w^{\prime}\right), \operatorname{MF}(w) \boxtimes \operatorname{MF}_{u}\left(-w^{\prime}\right)\right\rangle$.

Theorem

The (compact objects in the homotopy category of the derived dg) category of (colimit preserving) functors $\mathrm{D}_{\mathrm{sg}}(S) \rightarrow \mathrm{D}_{\mathrm{sg}}\left(S^{\prime}\right)$ is equivalent to the (idempotent completion of the) quotient $\operatorname{MF}\left(P \otimes_{k}\right.$ $\left.P^{\prime}, w \otimes 1-1 \otimes w^{\prime}, \mathbb{Z}\right) /\left\langle\operatorname{MF}_{u}(w) \boxtimes \operatorname{MF}\left(-w^{\prime}\right), \operatorname{MF}(w) \boxtimes \operatorname{MF}_{u}\left(-w^{\prime}\right)\right\rangle$.

Corollary

- $\mathrm{D}_{\text {sg }}(S)$ is smooth.
- There is a spectral sequence

$$
E_{2}^{p q}=\mathbf{R}^{p} Q_{\left(u_{1}, \ldots, u_{c}\right)} \operatorname{HH}^{q}(\operatorname{MF}(P, w, \mathbb{Z})) \Longrightarrow \mathrm{HH}^{p+q}\left(\mathrm{D}_{\mathrm{sg}}(S)\right)
$$

where $Q_{\left(u_{1}, \ldots, u_{c}\right)}$ is the ideal transform associated to $\left(u_{1}, \ldots, u_{c}\right)$.

Question

How does this compare with the standard interpretation of functors between $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)$ and $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y)$ as $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X \times Y)$, for hypersurfaces, X, Y ?

To answer this question, first we will need to gather the setup a bit more.

Question

How does this compare with the standard interpretation of functors between $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)$ and $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y)$ as $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X \times Y)$, for hypersurfaces, X, Y ?

Consider a collection of hypersurfaces, $X_{i} \subseteq \mathbb{P}^{n_{i}}$ defined by polynomials f_{i} of degree d_{i} for $1 \leq i \leq s$. Let R_{i} be the coordinate rings of the $\mathbb{P}^{n_{i}}$. Consider the free abelian group of rank s, \mathbb{Z}^{s}, with basis $\mathbf{e}_{i}, 1 \leq i \leq s$. Let L be the subgroup generated by $d_{i} \mathbf{e}_{i}=d_{j} \mathbf{e}_{j}$ and $M:=\mathbb{Z}^{s} / L$. Denote by H the torsion subgroup of M. Explicitly, letting $d_{i j}$ be the greatest common divisor of d_{i} and d_{j}, H is the finite subgroup of M generated by the images of $\frac{d_{i}}{d_{i j}} \mathbf{e}_{i}-\frac{d_{j}}{d_{i j}} \mathbf{e}_{j}$. One has $M / H \cong \mathbb{Z}$. Let m be the least common multiple of the d_{i}. In this setting the degree map deg : $M \rightarrow \mathbb{Z}$ can be identified with the mapping which takes \mathbf{e}_{i} to $\frac{d}{d_{i}}$. Let δ be an element of degree 1 .

Question

How does this compare with the standard interpretation of functors between $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)$ and $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y)$ as $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X \times Y)$, for hypersurfaces, X, Y ?

The dual group to M can be identified with the set, $D:=\left\{\left(\lambda_{1}, \ldots, \lambda_{s}\right) \mid \lambda_{i}^{d_{i}}=\lambda_{j}^{d_{j}} \forall i, j\right\} \subseteq\left(k^{*}\right)^{s}$ and acts on $\mathbb{A}^{n_{1}+\ldots n_{s}+s} \backslash 0$ by multiplication by λ_{i} on the coordinates, $x_{d_{1}+\ldots+d_{i-1}}$ through $x_{d_{1}+\ldots+d_{i}}$. Let Y denote the hypersurface in $\mathbb{A}^{n_{1}+\ldots n_{s}+s} \backslash 0$ defined by the zero locus of $f_{1}+\ldots f_{s}$ and consider the global quotient stack, $Z:=[Y / D]$.

Theorem (Orlov)

Let $\mathcal{A}=\operatorname{MF}\left(R_{1} \otimes \ldots \otimes R_{s}, f_{1}+\ldots+f_{s}, M\right)$. (which by our theorem is equivalent to $\left.\left(\operatorname{MF}\left(R_{1}, f_{1}, \mathbb{Z}\right) \hat{\otimes}_{k} \cdots \hat{\otimes}_{k} \operatorname{MF}\left(R_{s}, f_{s}, \mathbb{Z}\right)\right)_{\text {pe }}\right)$.
(1) If $a>0$, there is a semi-orthogonal decomposition,

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Z) \cong\left\langle\bigoplus_{h \in H} \mathcal{O}_{Z}((-a+1) \delta h), \ldots, \bigoplus_{h \in H} \mathcal{O}_{Z}(h), \mathcal{A}\right\rangle
$$

(2) If $a=0$, there is an equivalence of triangulated categories,

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Z) \cong \mathcal{A}
$$

(3) If $a<0$, there is a semi-orthogonal decomposition,

$$
\mathcal{A} \cong\left\langle\bigoplus_{h \in H} k(h), \ldots, \bigoplus_{h \in H} k((a+1) \delta h), \mathrm{D}^{\mathrm{b}}(\operatorname{coh} Z)\right\rangle .
$$

Example

In the simple case of one variable, Orlov's theorem in the context of algebras yields an equivalence between $\operatorname{MF}\left(k[x], x^{d}, \mathbb{Z}\right)$ and $\mathrm{D}^{\mathrm{b}}\left(A_{d-1}\right)$. Therefore,

$$
\begin{aligned}
& \left(\operatorname{MF}\left(k[x], x^{p}, \mathbb{Z}\right) \hat{\otimes}_{k} \operatorname{MF}\left(k[y], y^{q}, \mathbb{Z}\right) \hat{\otimes}_{k} \operatorname{MF}\left(k[z], z^{r}, \mathbb{Z}\right)\right)_{\mathrm{pe}} \\
\cong & \left(\mathrm{D}^{\mathrm{b}}\left(A_{p-1}\right) \hat{\otimes}_{k} \mathrm{D}^{\mathrm{b}}\left(A_{q-1}\right) \hat{\otimes}_{k} \mathrm{D}^{\mathrm{b}}\left(A_{r-1}\right)\right)_{\mathrm{pe}} \\
\cong & \mathrm{D}^{\mathrm{b}}\left(A_{p-1} \otimes_{k} A_{q-1} \otimes_{k} A_{r-1}\right) .
\end{aligned}
$$

The stack, Z, defined by this data is the weighted projective line corresponding to the weight sequence (p, q, r), as introduced by Geigle and Lenzing where they also show that this is equivalent to the derived category of a quiver with $p+q+r-1$ vertices. This equivalence was discussed in the talks of Kussin and Lenzing.

Example

Consider the weight sequence of Dynkin type (this means that $a>0$), $(2,3,5)$. We have, $a=30\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-1\right)=1$ and, via Orlov's theorem, we can compare $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} \mathbb{P}(2: 3: 5))$ with $\mathrm{D}^{\mathrm{b}}\left(A_{1} \otimes_{k} A_{2} \otimes_{k} A_{5}\right) \cong \mathrm{D}^{\mathrm{b}}\left(E_{8}\right)$. We get:

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} \mathbb{P}(2: 3: 5))=\left\langle\mathcal{O}, \mathrm{D}^{\mathrm{b}}\left(E_{8}\right)\right\rangle
$$

This matches with the result of Kajiura, Saito, and Takahashi (discussed by Iyama). Specifically, this is similar to the construction in their appendix written by Ueda.

Example

Consider the weight sequence $(3,3,3)$. We have, $a=3\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}-1\right)=0$ hence we obtain:

$$
\left.\mathrm{D}^{\mathrm{b}}(\operatorname{coh} \mathbb{P}(3: 3: 3))=\mathrm{D}^{\mathrm{b}}\left(A_{2} \otimes A_{2} \otimes A_{2}\right)\right\rangle
$$

Example

Consider the weight sequence $(3,3,3)$. We have, $a=3\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}-1\right)=0$ hence we obtain:

$$
\left.\mathrm{D}^{\mathrm{b}}(\operatorname{coh} \mathbb{P}(3: 3: 3))=\mathrm{D}^{\mathrm{b}}\left(A_{2} \otimes A_{2} \otimes A_{2}\right)\right\rangle
$$

Example

Consider the weight sequence $(4,4,4)$. We have $H \cong \mathbb{Z}_{4} \times \mathbb{Z}_{4}$ and $a=4\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}-1\right)=-1$ hence we obtain:

$$
\left.\mathrm{D}^{\mathrm{b}}\left(A_{3} \otimes A_{3} \otimes A_{3}\right)\right\rangle \cong\left\langle\bigoplus_{h \in H} k(h), \mathrm{D}^{\mathrm{b}}(\operatorname{coh} \mathbb{P}(4: 4: 4))\right\rangle
$$

Counting vertices we have 27 on the left hand side and $16+11$ on the right hand side.

Example

Let $f(x, y, z)=x(x-z)(x-\lambda z)-z y^{2}$ and
$g(u, v, w)=u(u-w)(u-\gamma w)-w v^{2}$ define two smooth elliptic curves, E and F respectively. Then $f+g$ defines a smooth cubic fourfold containing at least three planes by setting $z=w=0$. By work of Kuznetsov, the category $\operatorname{MF}(k[x, y, z, u, v, w], f+g, \mathbb{Z})$ is, in this case, equivalent to the derived category of a certain gerby $K 3$ surface, Y. On the other hand, letting $M=\mathbb{Z} \oplus \mathbb{Z} /(3,-3)$ with x, y, z in degree $(1,0)$ and u, v, w in degree $(0,1)$, we have $\operatorname{MF}(k[x, y, z, u, v, w], f+g, M) \cong$
$\left(\operatorname{MF}(k[x, y, z], f, \mathbb{Z}) \hat{\otimes}_{k} \operatorname{MF}(k[u, v, w], g, \mathbb{Z})\right)_{\mathrm{pe}}$. From Orlov, ee have $\operatorname{MF}(k[x, y, z], f, \mathbb{Z}) \cong \mathrm{D}^{\mathrm{b}}(\operatorname{coh} E)$ and
$\operatorname{MF}(k[u, v, w], g, \mathbb{Z}) \cong \mathrm{D}^{\mathrm{b}}(\operatorname{coh} F)$. Hence
$\operatorname{MF}(k[x, y, z, u, v, w], f+g, M) \cong \mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} E \times_{k} F\right)$. In a moment we will discuss how $\mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} E \times_{k} F\right)$ is a \mathbb{Z}_{3}-cover of $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y)$.

Hodge diamond of cubic fourfold and a $K 3$ surface

Hodge diamond of cubic fourfold and a $K 3$ surface

Remark

Furthermore, on each elliptic curve, E, F the autoequivalence (1) is a composition of Dehn twists. Hence this autoequivalence can be viewed as a symplectic automorphism of the mirror. The action of \mathbb{Z}_{3} on $\mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} E \times_{k} F\right)$ is given by $(1,-1)$. This can therefore be considered as a product of sympletic automorphisms of the product of the two mirrors. The relationship between the surfaces $E \times_{k} F$ and Y can then be seen by viewing the mirror of $E \times_{k} F$ as a three to one symplectic cover of the mirror of Y.

Orbit Categories

Definition

Let Γ be a finitely generated abelian group of rank at most one which is a subgroup of the automorphism group of a triangulated category \mathcal{T}. The orbit category of \mathcal{T} by Γ, denoted \mathcal{T} / Γ has the same objects as \mathcal{T} with morphisms from A to B given by

$$
\operatorname{Hom}_{\mathcal{T} / \Gamma}(A, B)=\bigoplus_{g \in \Gamma} \operatorname{Hom}_{\mathcal{T}}(A, g(B))
$$

Composition of morphisms is defined in the obvious way.

Orbit Categories

Definition

Let \mathcal{T} and \mathcal{S} be triangulated categories and Γ a group of triangulated automorphisms of \mathcal{T}. We say that \mathcal{T} is a Γ-cover of \mathcal{S} if there is a fully faithful functor,

$$
F: \mathcal{T} / \Gamma \rightarrow \mathcal{S}
$$

such that every object in \mathcal{S} is a summand of the essential image of F.

Orbit Categories

The following proposition is inspired by work of Keller, Murfet, and van den Bergh:

Proposition

Let M be a finitely generated abelian group and L be a finite subgroup of M of order n. Let S be an M-graded ring and assume that n is a unit in S. Denote by T the ring S with the M / L grading given by $S_{[m]}:=\bigoplus_{l \in L} S_{l m}$. The category, $\operatorname{MF}(S, f, M)$ is an L-cover of $\operatorname{MF}(T, f, M / L)$.

Orbit Categories

Proposition

Let M be a finitely generated abelian group and L be a finite subgroup of M of order n. Let S be an M-graded ring and assume that n is a unit in S. Denote by T the ring S with the M / L grading given by $S_{[m]}:=\bigoplus_{l \in L} S_{l m}$. The category, $\operatorname{MF}(S, f, M)$ is an L-cover of $\operatorname{MF}(T, f, M / L)$.

Example

Let $R=k\left[x_{0}, \ldots, x_{n}\right]$ and $R=k\left[x_{0}, \ldots, x_{m}\right]$ are \mathbb{Z}-graded rings over k and w, w^{\prime} be homogeneous polynomials with $\operatorname{deg} w=d$ and $\operatorname{deg} w^{\prime}=d^{\prime}$. Let m be the least common multiple of d and d^{\prime}. Equip $R \otimes_{k} R^{\prime}$ with the \mathbb{Z} grading $\left(R \otimes_{k} R^{\prime}\right)_{s}:=\bigoplus_{d^{\prime} i+d j=s} R_{i} \otimes R_{j}$. The category, $\left(\operatorname{MF}(R, w, \mathbb{Z}) \hat{\otimes}_{k} \operatorname{MF}\left(R^{\prime}, w^{\prime}, \mathbb{Z}\right)\right)_{\text {pe }}$ is a \mathbb{Z}_{m}-cover of $\operatorname{MF}\left(R \otimes_{k} R^{\prime}, w \otimes 1+1 \otimes w^{\prime}, \mathbb{Z}\right)$.

Orbit Categories

Example

Consider a quartic $K 3$ surface, Y, defined by $f(x, y, z, w)$ in \mathbb{P}^{3}. Let $t^{2}-f$ be the quartic double solid, Q, in weighted projective space $\mathbb{P}(2: 1: 1: 1: 1)$. Notice that $\operatorname{MF}\left(k[t], t^{2}, \mathbb{Z}\right)=\mathrm{D}^{\mathrm{b}}\left(A_{1}\right)$ is equivalent to the derived category of vector spaces. Hence, $\left(\operatorname{MF}\left(k[t], t^{2}, \mathbb{Z}\right) \hat{\otimes}_{k} \operatorname{MF}(k[x, y, z, w], f, \mathbb{Z})\right)_{\mathrm{pe}} \cong \operatorname{MF}(k[x, y, z, w], f, \mathbb{Z}) \cong$ $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y)$. Therefore, $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y)$ is a \mathbb{Z}_{2}-cover of $\operatorname{MF}\left(k[t, x, y, z, w], t^{2}-f, \mathbb{Z}\right)$, an admissible subcategory of $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Q)$. By work of Ingalls and Kuznetsov, in certain special cases, this admissible subcategory is equivalent to the derived category of an Enriques surface obtained from a \mathbb{Z}_{2} action on the $K 3$.

Orbit Categories

Example

Let A be the free abelian group generated by $\mathbf{e}_{0}, \ldots, \mathbf{e}_{n}$ and B be the subgroup generated by $d \mathbf{e}_{i}-d \mathbf{e}_{j}$ for all i, j. Let $M:=A / B$. Let R be the polynomial algebra $k\left[x_{0}, \ldots, x_{n}\right]$ which its natural \mathbb{Z} grading, and let $f:=x_{0}^{d}+\cdots+x_{n}^{d}$ be the Fermat polynomial. We have:

$$
\left.\mathrm{D}^{\mathrm{b}}\left(A_{d-1}\right)^{\otimes n+1}\right) \cong\left(\operatorname{MF}\left(k[x], x^{d}, \mathbb{Z}\right)^{\hat{\otimes} n+1}\right)_{\mathrm{pe}} \cong \operatorname{MF}(R, f, M)
$$

Let $C \cong \mathbb{Z}_{d}^{\oplus n}$ be the subgroup generated by $\mathbf{e}_{i}-\mathbf{e}_{j}$ for all i, j. Then $(A / B) / C \cong \mathbb{Z}$. Hence one realizes $\mathrm{D}^{\mathrm{b}}\left(A_{d-1}^{\otimes n+1}\right)$ as a $\mathbb{Z}_{d}^{\oplus n}$-cover of $\operatorname{MF}(R, f, \mathbb{Z})$.

Orbit Categories

More generally, consider a partition,
$\mathcal{P}=\left\{0, \cdots i_{0}\right\} \cdots\left\{i_{m-1}+1, \cdots, i_{m}\right\}$ of the set $\{0, \ldots, n\}$ into m
parts. Let $D_{\mathcal{P}} \cong \mathbb{Z}_{d}^{\oplus n+1-m}$ be the subgroup generated by $\mathbf{e}_{i}-\mathbf{e}_{j}$ for all i, j in the same part of the partition and $M_{\mathcal{P}}:=M / D_{\mathcal{P}}$. One obtains, $\mathrm{D}^{\mathrm{b}}\left(\bmod -\left(A_{d-1}\right)^{\otimes n+1}\right)$ as a $\mathbb{Z}_{d}^{\oplus n+1-m}$-cover of $\operatorname{MF}\left(R, f, M_{\mathcal{P}}\right)$ which is equivalent to

$$
\begin{array}{r}
\left(\operatorname { M F } \left(k\left[x_{0}, \ldots, x_{i_{0}}, x_{0}^{d}+\cdots+x_{i_{0}}^{d}, \mathbb{Z}\right) \hat{\otimes}_{k} \cdots\right.\right. \\
\left.\left.\hat{\otimes}_{k} \operatorname{MF}\left(k\left[x_{i_{m-1}+1}, \ldots, x_{i_{m}}\right], x_{i_{m-1}+1}^{d}+\cdots+x_{i_{m}}^{d}\right), \mathbb{Z}\right)\right)_{\mathrm{pe}},
\end{array}
$$

Notice that varying the partitions, one gets a partially ordered collection of covers with maximal element $\mathrm{D}^{\mathrm{b}}\left(A_{d-1}^{\otimes n+1}\right)$ and minimal element, $\operatorname{MF}(R, f, \mathbb{Z})$.

Some applications to the Hodge conjecture

Theorem
Let Y be the unique $K 3$ surface of Picard rank 20 with polarization of degree 14. The Hodge conjecture over \mathbb{Q} holds for n-fold products of Y.

Some applications to the Hodge conjecture

Theorem

Let Y be the unique $K 3$ surface of Picard rank 20 with polarization of degree 14. The Hodge conjecture over \mathbb{Q} holds for n-fold products of Y.

Idea of the proof:

Similarly to the previous example, due to Orlov's theorem and results of Kuznetsov, $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} Y) \cong \operatorname{MF}\left(k\left[x_{0}, \ldots, x_{5}\right], x_{0}^{3}+\ldots+x_{5}^{3}, \mathbb{Z}\right)$. Therefore by our theorem, $\mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} Y^{n}\right)$ is a \mathbb{Z}_{3}^{n-1}-cover of $\operatorname{MF}\left(k\left[x_{0}, \ldots, x_{6 n-1}, x_{0}^{3}+\ldots+x_{6 n-1}^{3}, \mathbb{Z}\right)\right.$. By work of Shioda and Ran (which we also reproduce using a matrix factorization argument), over \mathbb{C}, all (p, p)-cycles in the cohomology of a cubic hypersurface are algebraic. Using grading changes, we use this to deduce that all (p, p)-cycles in the cohomology of Y^{n} are algebraic.

Some applications to dimensions of triangulated categories

Some applications to dimensions of triangulated categories

Roughly, the dimension of a triangulated category \mathcal{T} is the minimal number of triangles it takes to produce any object from a fixed object. More precisely the definition is as follows:

Some applications to dimensions of triangulated categories

Roughly, the dimension of a triangulated category \mathcal{T} is the minimal number of triangles it takes to produce any object from a fixed object. More precisely the definition is as follows:

For a subcategory \mathcal{I} of \mathcal{T} we denote by $\langle\mathcal{I}\rangle$ the full subcategory of \mathcal{T} whose objects are summands of direct sums of shifts of objects in \mathcal{I}.

Some applications to dimensions of triangulated categories

Roughly, the dimension of a triangulated category \mathcal{T} is the minimal number of triangles it takes to produce any object from a fixed object. More precisely the definition is as follows:

For a subcategory \mathcal{I} of \mathcal{T} we denote by $\langle\mathcal{I}\rangle$ the full subcategory of \mathcal{T} whose objects are summands of direct sums of shifts of objects in \mathcal{I}.

For two subcategories \mathcal{I}_{1} and \mathcal{I}_{2} we denote by $\mathcal{I}_{1} * \mathcal{I}_{2}$ the full subcategory of objects $X \in \mathcal{T}$ such that there is a distinguished triangle $X_{1} \rightarrow X \rightarrow X_{2} \rightarrow X_{1}[1]$ with $X_{i} \in \mathcal{I}_{i}$.

Some applications to dimensions of triangulated categories

Roughly, the dimension of a triangulated category \mathcal{T} is the minimal number of triangles it takes to produce any object from a fixed object. More precisely the definition is as follows:

For a subcategory \mathcal{I} of \mathcal{T} we denote by $\langle\mathcal{I}\rangle$ the full subcategory of \mathcal{T} whose objects are summands of direct sums of shifts of objects in \mathcal{I}.

For two subcategories \mathcal{I}_{1} and \mathcal{I}_{2} we denote by $\mathcal{I}_{1} * \mathcal{I}_{2}$ the full subcategory of objects $X \in \mathcal{T}$ such that there is a distinguished triangle $X_{1} \rightarrow X \rightarrow X_{2} \rightarrow X_{1}[1]$ with $X_{i} \in \mathcal{I}_{i}$.

Further set $\mathcal{I}_{1} \diamond \mathcal{I}_{2}=\left\langle\mathcal{I}_{1} * \mathcal{I}_{2}\right\rangle$. By setting $\langle\mathcal{I}\rangle_{1}:=\langle\mathcal{I}\rangle$ we are able to inductively define $\langle\mathcal{I}\rangle_{n}:=\langle\mathcal{I}\rangle_{n-1} \diamond\langle\mathcal{I}\rangle$.

Some applications to dimensions of triangulated categories

Summary

$\mathcal{I}_{1} \diamond \mathcal{I}_{2}$ is the full subcategory of objects $X \in \mathcal{T}$ such that there is a distinguished triangle $X_{1} \rightarrow X \rightarrow X_{2} \rightarrow X_{1}[1]$ with $X_{i} \in \mathcal{I}_{i}$ closed under summands. Define $\langle\mathcal{I}\rangle_{n}:=\langle\mathcal{I}\rangle_{n-1} \diamond\langle\mathcal{I}\rangle$.

Some applications to dimensions of triangulated categories

Summary

$\mathcal{I}_{1} \diamond \mathcal{I}_{2}$ is the full subcategory of objects $X \in \mathcal{T}$ such that there is a distinguished triangle $X_{1} \rightarrow X \rightarrow X_{2} \rightarrow X_{1}[1]$ with $X_{i} \in \mathcal{I}_{i}$ closed under summands. Define $\langle\mathcal{I}\rangle_{n}:=\langle\mathcal{I}\rangle_{n-1} \diamond\langle\mathcal{I}\rangle$.

Definition

Let X be an object in \mathcal{T}. The generation time of X, denoted $\Theta(X)$, is

$$
\Theta(X):=\min \left\{n \in \mathbb{N} \mid \mathcal{T}=\langle X\rangle_{n+1}\right\}
$$

X is called a strong generator if $\Theta(X)$ is finite.

Some applications to dimensions of triangulated categories

Definition

Let X be an object in \mathcal{T}. The generation time of X, denoted $\Theta(X)$, is

$$
\Theta(X):=\min \left\{n \in \mathbb{N} \mid \mathcal{T}=\langle X\rangle_{n+1}\right\} .
$$

X is called a strong generator if $\Theta(X)$ is finite.

Definition

The dimension of a triangulated category \mathcal{T} is the minimal generation time among the strong generators.

Some applications to dimensions of triangulated categories

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, X, the dimension of $\mathrm{D}_{\text {coh }}^{\mathrm{b}}(X)$ is finite.

Some applications to dimensions of triangulated categories

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, X, the dimension of $\mathrm{D}_{\text {coh }}^{\mathrm{b}}(X)$ is finite.

Theorem (Rouquier)

Let X be a reduced separated scheme of finite type over k. One has:
(1) $\operatorname{dim}(X) \leq \operatorname{dim} \mathrm{D}_{\text {coh }}^{\mathrm{b}}(X)$

Some applications to dimensions of triangulated categories

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, X, the dimension of $\mathrm{D}_{\text {coh }}^{\mathrm{b}}(X)$ is finite.

Theorem (Rouquier)

Let X be a reduced separated scheme of finite type over k. One has:
(1) $\operatorname{dim}(X) \leq \operatorname{dim} \mathrm{D}_{\text {coh }}^{\mathrm{b}}(X)$
(2) if X is a smooth quasi-projective variety, then $\operatorname{dim} \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X) \leq 2 \operatorname{dim} X$.

Some applications to dimensions of triangulated categories

Theorem (Rouquier)

For a separated scheme of finite type over a perfect field, X, the dimension of $\mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X)$ is finite.

Theorem (Rouquier)

Let X be a reduced separated scheme of finite type over k. One has:
(1) $\operatorname{dim}(X) \leq \operatorname{dim} \mathrm{D}_{\text {coh }}^{\mathrm{b}}(X)$
(2) if X is a smooth quasi-projective variety, then $\operatorname{dim} \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X) \leq 2 \operatorname{dim} X$.

Conjecture (Orlov)
Let X be a smooth variety. Then $\operatorname{dim} \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X)=\operatorname{dim}(X)$.

Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then $\operatorname{dim} \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X)=\operatorname{dim}(X)$.

Theorem (Rouquier)

The above conjecture holds for ;
(1) smooth affine varieties,

Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then $\operatorname{dim} \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X)=\operatorname{dim}(X)$.

Theorem (Rouquier)

The above conjecture holds for ;
(1) smooth affine varieties,
(2) projective spaces,

Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then $\operatorname{dim} \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X)=\operatorname{dim}(X)$.

Theorem (Rouquier)

The above conjecture holds for ;
(1) smooth affine varieties,
(2) projective spaces,
(3) and smooth quadrics.

Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then $\operatorname{dim} \mathrm{D}_{\mathrm{coh}}^{\mathrm{b}}(X)=\operatorname{dim}(X)$.

Theorem (Rouquier)

The above conjecture holds for ;
(1) smooth affine varieties,
(2) projective spaces,
(3) and smooth quadrics.

Theorem (Orlov)

The above conjecture holds for smooth curves. More generally, if C is a smooth curve, then the spectrum of $\mathrm{D}^{\mathrm{b}}(C)$ contains $\{1,2\}$ with equality if and only if $C=\mathbb{P}^{1}$.

Some applications to dimensions of triangulated categories

Proposition
Let $L \subseteq M$ be a finite subgroup. The categories, $\operatorname{MF}(R, f, M)$ and $\operatorname{MF}(R, f, M / L)$ have the same Rouquier dimension.

Some applications to dimensions of triangulated categories

Proposition

Let $L \subseteq M$ be a finite subgroup. The categories, $\mathrm{MF}(R, f, M)$ and $\operatorname{MF}(R, f, M / L)$ have the same Rouquier dimension.

Example

Let $\left(d_{0}, . ., d_{n}\right)$ be a weight sequence with $\sum_{i=1}^{s} \frac{1}{d_{i}} \leq 1$ containing either $\{2\},\{3,3\},\{3,4\}$, or $\{3,5\}$. Let k be a field whose characteristic does not divide any of the d_{i} then Orlov's Conjecture holds for the weighted fermat hypersurface defined by f. Similarly, the Rouquier dimension of $\mathrm{D}^{\mathrm{b}}\left(A_{d_{0}-1} \otimes \ldots \otimes A_{d_{n}-1}\right)$ is equal to $n-2$.

Some applications to dimensions of triangulated categories

Proposition
Let $L \subseteq M$ be a finite subgroup. The categories, $\mathrm{MF}(R, f, M)$ and $\operatorname{MF}(R, f, M / L)$ have the same Rouquier dimension.

Example

Orlov's Conjecture holds for the product, $E \times F$ of two elliptic curves and the infamous $K 3$ surface obtained as a \mathbb{Z}_{3} quotient.

