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Attributions

Based on joint work with Matthew Ballard (Upenn) and Ludmil
Katzarkov (Miami and Wien).

Coming soon to an ArXiv near you!
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The basic motivation for this talk comes from results of various
authors, prompted perhaps by the following results of Dyckerhoff and
Orlov.
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The basic motivation for this talk comes from results of various
authors, prompted perhaps by the following results of Dyckerhoff and
Orlov.

Theorem (Dyckerhoff)

Let f and f ′ define isolated singularities in regular local rings, R,R′.
The full sub(dg)category of compact objects in the category of
functors from MF(R, f ) to MF(R′, f ′) is equivalent to
MF(R⊗ R′, f ⊗ 1− 1⊗ f ′). We write,
(MF(R, f )⊗̂MF(R′, f ′))pe ∼= MF(R⊗ R′, f ⊗ 1 + 1⊗ f ′).
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Definition
A semi-orthogonal decomposition of a triangulated category, T , is a
sequence of full triangulated subcategories, A1, . . . ,Am, in T such
that Ai ⊂ A⊥j for i < j and, for every object T ∈ T , there exists a
diagram:

0 Tm−1 · · · T2 T1 T

Am A2 A1

|||

where all triangles are distinguished and Ak ∈ Ak. We shall denote a
semi-orthogonal decomposition by 〈A1, . . . ,Am〉.
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Theorem (Orlov)
Let X be a hypersurface in Pn which is the zero locus of a
homogeneous polynomial, f , of degree, d.

1 If n + 1− d > 0, there is a semi-orthogonal decomposition,

Db(coh X) = 〈OX(d − n), ...,OX,MF(R, f ,Z)〉.

2 If n + 1− d = 0, there is an equivalence of triangulated
categories,

Db(coh X) = 〈MF(R, f ,Z)〉.
3 If n + 1− d < 0, there is a semi-orthogonal decomposition,

MF(R, f ,Z) ∼=
〈
k, . . . , k(n + 2− d),Db(coh X)

〉
.
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Question
What is the analog of Dyckerhoff’s result in the case of graded matrix
factorizations?
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Question
What is the analog of Dyckerhoff’s result in the case of graded matrix
factorizations?

Question
How does this compare with the standard interpretation of functors
between Db(coh X) and Db(coh Y) as Db(coh X × Y), for
hypersurfaces, X,Y?
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Question
What is the analog of Dyckerhoff’s result in the case of graded matrix
factorizations?

Theorem
Let M,M′ be finitely generated abelian groups. Let
R = k[x0, ..., xn],R′ = k[y0, ..., yn′ ] be M,M′ graded rings with xi, yi

homogeneous. Let f ∈ Rd, f ′ ∈ Rd′ be homogeneous functions such
that f ∈ df , f ′ ∈ df ′ and d ∈ M, d′ ∈ M′ are not torsion. The full
sub(dg)category of compact objects in the category of functors from
MF(R, f ,M) to MF(R′, f ′,M′) is equivalent to
MF(R⊗ R′, f ⊗ 1− 1⊗ f ′,M ⊕M′/(d,−d′)).
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Theorem
Let M,M′ be finitely generated abelian groups. Let
R = k[x0, ..., xn],R′ = k[y0, ..., yn′ ] be M,M′ graded rings with xi, yi

homogeneous. Let f ∈ Rd, f ′ ∈ Rd′ be homogeneous functions such
that f ∈ df , f ′ ∈ df ′ and d ∈ M, d′ ∈ M′ are not torsion. The full
sub(dg)category of compact objects in the category of functors from
MF(R, f ,M) to MF(R′, f ′,M′) is equivalent to
MF(R⊗ R′, f ⊗ 1− 1⊗ f ′,M ⊕M′/(d,−d′)).

Remark
Indepedently, Polishchuk and Vaintrob prove this theorem in the case
where singularities are isolated and M ⊗Z Q,M′ ⊗Z Q ∼= Q.

David Favero Graded matrix factorizations and functor categories



We have some corollaries:
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Corollary

If M/(d) is finite, let G be the finite group with char(G) = M/(d).
Let A = Sym V with V an M-graded vector space. Let wg be the
restriction of w to the fixed locus of g on V and Ag = Sym Vg. The
space of derived natural transformations, Id→ (m)[t], is{⊕

g∈G
⊕

p=2q Hp−cg(dwg; Ag)m+d(l−q)−vg t = 2l⊕
g∈G

⊕
p=2q+1 Hp−cg(dwg; Ag)m+d(l−q)−vg t = 2l + 1

where H∗(dwg; Ag) is the Koszul cohomology of the ideal (dwg) in
Ag, cg = codim Vg ⊂ V , and vg the degree of the graded rank one
vector space ΛtopW∨ with V = Vg ⊕W a splitting as an M-graded
vector space.
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We can describe complete intersection categories in similar manner:
let R = k[x1, . . . , xn] and (f1, . . . , fc) a regular sequence. Set
S = R/(f1, . . . , fc). Let P be the Z-graded ring R[u1, . . . , uc] with
deg ui = 1 and let w = u1f1 + · · ·+ ucfc. Isik gives a useful
equivalence:

Theorem (Isik)

There is an equivalence, Db(mod S) ∼= MF(P,w,Z). Moreover, this
equivalence restricts to an equivalence, Perf S ∼= MFu(P,w,Z), where
MFu(P,w,Z) is the subcategory of (u1, . . . , uc)-torsion matrix
factorizations. So, Dsg(S) is equivalent to the quotient
MF(P,w,Z)/MFu(P,w,Z).
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What is the (dg) category of functors Dsg(S)→ Dsg(S′)?
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What is the (dg) category of functors Dsg(S)→ Dsg(S′)?

Theorem
The (compact objects in the homotopy category of the derived dg)
category of (colimit preserving) functors Dsg(S)→ Dsg(S′) is
equivalent to the (idempotent completion of the) quotient MF(P⊗k
P′,w⊗ 1− 1⊗ w′,Z)/〈MFu(w) � MF(−w′),MF(w) � MFu(−w′)〉.
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Theorem
The (compact objects in the homotopy category of the derived dg)
category of (colimit preserving) functors Dsg(S)→ Dsg(S′) is
equivalent to the (idempotent completion of the) quotient MF(P⊗k
P′,w⊗ 1− 1⊗ w′,Z)/〈MFu(w) � MF(−w′),MF(w) � MFu(−w′)〉.

Corollary

Dsg(S) is smooth.

There is a spectral sequence

Epq
2 = RpQ(u1,...,uc) HHq(MF(P,w,Z)) =⇒ HHp+q(Dsg(S)).

where Q(u1,...,uc) is the ideal transform associated to (u1, . . . , uc).
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Question
How does this compare with the standard interpretation of functors
between Db(coh X) and Db(coh Y) as Db(coh X × Y), for
hypersurfaces, X,Y?

To answer this question, first we will need to gather the setup a bit
more.
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Question
How does this compare with the standard interpretation of functors
between Db(coh X) and Db(coh Y) as Db(coh X × Y), for
hypersurfaces, X,Y?

Consider a collection of hypersurfaces, Xi ⊆ Pni defined by
polynomials fi of degree di for 1 ≤ i ≤ s. Let Ri be the coordinate
rings of the Pni . Consider the free abelian group of rank s, Zs, with
basis ei, 1 ≤ i ≤ s. Let L be the subgroup generated by diei = djej and
M := Zs /L. Denote by H the torsion subgroup of M. Explicitly,
letting dij be the greatest common divisor of di and dj, H is the finite
subgroup of M generated by the images of di

dij
ei − dj

dij
ej. One has

M/H ∼= Z. Let m be the least common multiple of the di. In this
setting the degree map deg : M → Z can be identified with the
mapping which takes ei to d

di
. Let δ be an element of degree 1.
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Question
How does this compare with the standard interpretation of functors
between Db(coh X) and Db(coh Y) as Db(coh X × Y), for
hypersurfaces, X,Y?

The dual group to M can be identified with the set,
D := {(λ1, ..., λs)|λdi

i = λ
dj
j ∀i, j} ⊆ (k∗)s and acts on An1+...ns+s\0 by

multiplication by λi on the coordinates, xd1+...+di−1 through xd1+...+di .
Let Y denote the hypersurface in An1+...ns+s\0 defined by the zero
locus of f1 + ...fs and consider the global quotient stack, Z := [Y/D].
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Theorem (Orlov)

Let A = MF(R1 ⊗ ...⊗ Rs, f1 + ...+ fs,M). (which by our theorem is
equivalent to (MF(R1, f1,Z)⊗̂k...⊗̂k MF(Rs, fs,Z))pe).

1 If a > 0, there is a semi-orthogonal decomposition,

Db(coh Z) ∼= 〈
⊕
h∈H

OZ((−a + 1)δh), ...,
⊕
h∈H

OZ(h),A〉.

2 If a = 0, there is an equivalence of triangulated categories,

Db(coh Z) ∼= A.

3 If a < 0, there is a semi-orthogonal decomposition,

A ∼= 〈
⊕
h∈H

k(h), . . . ,
⊕
h∈H

k((a + 1)δh),Db(coh Z)〉.
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Example
In the simple case of one variable, Orlov’s theorem in the context of
algebras yields an equivalence between MF(k[x], xd,Z) and
Db(Ad−1). Therefore,

(MF(k[x], xp,Z)⊗̂k MF(k[y], yq,Z)⊗̂k MF(k[z], zr,Z))pe

∼=(Db(Ap−1)⊗̂k Db(Aq−1)⊗̂k Db(Ar−1))pe

∼= Db(Ap−1 ⊗k Aq−1 ⊗k Ar−1).

The stack, Z, defined by this data is the weighted projective line
corresponding to the weight sequence (p, q, r), as introduced by
Geigle and Lenzing where they also show that this is equivalent to the
derived category of a quiver with p + q + r − 1 vertices. This
equivalence was discussed in the talks of Kussin and Lenzing.
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Example
Consider the weight sequence of Dynkin type (this means that a > 0),
(2, 3, 5). We have, a = 30(1

2 + 1
3 + 1

5 − 1) = 1 and, via Orlov’s
theorem, we can compare Db(cohP(2 : 3 : 5)) with
Db(A1 ⊗k A2 ⊗k A5) ∼= Db(E8). We get:

Db(cohP(2 : 3 : 5)) = 〈O,Db(E8)〉.

This matches with the result of Kajiura, Saito, and Takahashi
(discussed by Iyama). Specifically, this is similar to the construction
in their appendix written by Ueda.
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Example

Consider the weight sequence (3, 3, 3). We have,
a = 3(1

3 + 1
3 + 1

3 − 1) = 0 hence we obtain:

Db(cohP(3 : 3 : 3)) = Db(A2 ⊗ A2 ⊗ A2)〉.
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Example

Consider the weight sequence (3, 3, 3). We have,
a = 3(1

3 + 1
3 + 1

3 − 1) = 0 hence we obtain:

Db(cohP(3 : 3 : 3)) = Db(A2 ⊗ A2 ⊗ A2)〉.

Example

Consider the weight sequence (4, 4, 4). We have H ∼= Z4×Z4 and
a = 4(1

4 + 1
4 + 1

4 − 1) = −1 hence we obtain:

Db(A3 ⊗ A3 ⊗ A3)〉 ∼= 〈
⊕
h∈H

k(h),Db(cohP(4 : 4 : 4))〉.

Counting vertices we have 27 on the left hand side and 16+11 on the
right hand side.
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Example

Let f (x, y, z) = x(x− z)(x− λz)− zy2 and
g(u, v,w) = u(u− w)(u− γw)− wv2 define two smooth elliptic
curves, E and F respectively. Then f + g defines a smooth cubic
fourfold containing at least three planes by setting z = w = 0. By
work of Kuznetsov, the category MF(k[x, y, z, u, v,w], f + g,Z) is, in
this case, equivalent to the derived category of a certain gerby K3
surface, Y . On the other hand, letting M = Z⊕Z /(3,−3) with x, y, z
in degree (1, 0) and u, v,w in degree (0, 1), we have
MF(k[x, y, z, u, v,w], f + g,M) ∼=
(MF(k[x, y, z], f ,Z)⊗̂k MF(k[u, v,w], g,Z))pe. From Orlov, ee have
MF(k[x, y, z], f ,Z) ∼= Db(coh E) and
MF(k[u, v,w], g,Z) ∼= Db(coh F). Hence
MF(k[x, y, z, u, v,w], f + g,M) ∼= Db(coh E ×k F). In a moment we
will discuss how Db(coh E ×k F) is a Z3-cover of Db(coh Y).
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Hodge diamond of cubic fourfold and a K3 surface

1
00

0 1 0
0 0 00

0 1 21 01

1
00

0 1 0
0 0 00
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Hodge diamond of cubic fourfold and a K3 surface

1
00

0 1 0
0 0 00

0 1 20 01

1
00

0 1 0
0 0 00
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Remark
Furthermore, on each elliptic curve, E,F the autoequivalence (1) is a
composition of Dehn twists. Hence this autoequivalence can be
viewed as a symplectic automorphism of the mirror. The action of Z3
on Db(coh E ×k F) is given by (1,−1). This can therefore be
considered as a product of sympletic automorphisms of the product of
the two mirrors. The relationship between the surfaces E ×k F and Y
can then be seen by viewing the mirror of E ×k F as a three to one
symplectic cover of the mirror of Y .
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Orbit Categories

Definition
Let Γ be a finitely generated abelian group of rank at most one which
is a subgroup of the automorphism group of a triangulated category
T . The orbit category of T by Γ, denoted T /Γ has the same objects
as T with morphisms from A to B given by

HomT /Γ(A,B) =
⊕
g∈Γ

HomT (A, g(B)).

Composition of morphisms is defined in the obvious way.
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Orbit Categories

Definition
Let T and S be triangulated categories and Γ a group of triangulated
automorphisms of T . We say that T is a Γ-cover of S if there is a
fully faithful functor,

F : T /Γ→ S,

such that every object in S is a summand of the essential image of F.
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Orbit Categories
The following proposition is inspired by work of Keller, Murfet, and
van den Bergh:

Proposition
Let M be a finitely generated abelian group and L be a finite subgroup
of M of order n. Let S be an M-graded ring and assume that n is a unit
in S. Denote by T the ring S with the M/L grading given by
S[m] :=

⊕
l∈L Slm. The category, MF(S, f ,M) is an L-cover of

MF(T, f ,M/L).
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Orbit Categories

Proposition
Let M be a finitely generated abelian group and L be a finite subgroup
of M of order n. Let S be an M-graded ring and assume that n is a unit
in S. Denote by T the ring S with the M/L grading given by
S[m] :=

⊕
l∈L Slm. The category, MF(S, f ,M) is an L-cover of

MF(T, f ,M/L).

Example

Let R = k[x0, ..., xn] and R = k[x0, ..., xm] are Z-graded rings over k
and w,w′ be homogeneous polynomials with deg w = d and
deg w′ = d′. Let m be the least common multiple of d and d′. Equip
R⊗k R′ with the Z grading (R⊗k R′)s :=

⊕
d′i+dj=s Ri ⊗ Rj. The

category, (MF(R,w,Z)⊗̂k MF(R′,w′,Z))pe is a Zm-cover of
MF(R⊗k R′,w⊗ 1 + 1⊗ w′,Z).
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Orbit Categories

Example

Consider a quartic K3 surface, Y , defined by f (x, y, z,w) in P3. Let
t2 − f be the quartic double solid, Q, in weighted projective space
P(2 : 1 : 1 : 1 : 1). Notice that MF(k[t], t2,Z) = Db(A1) is equivalent
to the derived category of vector spaces. Hence,
(MF(k[t], t2,Z)⊗̂k MF(k[x, y, z,w], f ,Z))pe ∼= MF(k[x, y, z,w], f ,Z) ∼=
Db(coh Y). Therefore, Db(coh Y) is a Z2-cover of
MF(k[t, x, y, z,w], t2 − f ,Z), an admissible subcategory of Db(coh Q).
By work of Ingalls and Kuznetsov, in certain special cases, this
admissible subcategory is equivalent to the derived category of an
Enriques surface obtained from a Z2 action on the K3.
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Orbit Categories

Example
Let A be the free abelian group generated by e0, ..., en and B be the
subgroup generated by dei − dej for all i, j. Let M := A/B. Let R be
the polynomial algebra k[x0, ..., xn] which its natural Z grading, and
let f := xd

0 + · · ·+ xd
n be the Fermat polynomial. We have:

Db(Ad−1)⊗n+1) ∼= (MF(k[x], xd,Z)⊗̂n+1)pe ∼= MF(R, f ,M).

Let C ∼= Z⊕n
d be the subgroup generated by ei − ej for all i, j. Then

(A/B)/C ∼= Z. Hence one realizes Db(A⊗n+1
d−1 ) as a Z⊕n

d -cover of
MF(R, f ,Z).
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Orbit Categories

More generally, consider a partition,
P = {0, · · · i0} · · · {im−1 + 1, · · · , im} of the set {0, ..., n} into m
parts. Let DP ∼= Z⊕n+1−m

d be the subgroup generated by ei − ej for all
i, j in the same part of the partition and MP := M/DP . One obtains,
Db(mod− (Ad−1)⊗n+1) as a Z⊕n+1−m

d -cover of MF(R, f ,MP) which
is equivalent to

(MF(k[x0, ..., xi0 , x
d
0 + · · ·+ xd

i0 ,Z)⊗̂k · · ·
⊗̂k MF(k[xim−1+1, ..., xim ], xd

im−1+1 + · · ·+ xd
im),Z))pe,

Notice that varying the partitions, one gets a partially ordered
collection of covers with maximal element Db(A⊗n+1

d−1 ) and minimal
element, MF(R, f ,Z).
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Some applications to the Hodge conjecture

Theorem
Let Y be the unique K3 surface of Picard rank 20 with polarization of
degree 14. The Hodge conjecture over Q holds for n-fold products of
Y .
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Some applications to the Hodge conjecture

Theorem
Let Y be the unique K3 surface of Picard rank 20 with polarization of
degree 14. The Hodge conjecture over Q holds for n-fold products of
Y .

Idea of the proof:
Similarly to the previous example, due to Orlov’s theorem and results
of Kuznetsov, Db(coh Y) ∼= MF(k[x0, ..., x5], x3

0 + ...+ x3
5,Z).

Therefore by our theorem, Db(coh Yn) is a Zn−1
3 -cover of

MF(k[x0, ..., x6n−1, x3
0 + ...+ x3

6n−1,Z). By work of Shioda and Ran
(which we also reproduce using a matrix factorization argument),
over C, all (p, p)-cycles in the cohomology of a cubic hypersurface
are algebraic. Using grading changes, we use this to deduce that all
(p, p)-cycles in the cohomology of Yn are algebraic.
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Some applications to dimensions of triangulated categories
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Some applications to dimensions of triangulated categories
Roughly, the dimension of a triangulated category T is the minimal
number of triangles it takes to produce any object from a fixed object.
More precisely the definition is as follows:
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Some applications to dimensions of triangulated categories
Roughly, the dimension of a triangulated category T is the minimal
number of triangles it takes to produce any object from a fixed object.
More precisely the definition is as follows:

For a subcategory I of T we denote by 〈I〉 the full subcategory of T
whose objects are summands of direct sums of shifts of objects in I.
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Some applications to dimensions of triangulated categories
Roughly, the dimension of a triangulated category T is the minimal
number of triangles it takes to produce any object from a fixed object.
More precisely the definition is as follows:

For a subcategory I of T we denote by 〈I〉 the full subcategory of T
whose objects are summands of direct sums of shifts of objects in I.

For two subcategories I1 and I2 we denote by I1 ∗ I2 the full
subcategory of objects X ∈ T such that there is a distinguished
triangle X1 → X → X2 → X1[1] with Xi ∈ Ii.
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Some applications to dimensions of triangulated categories
Roughly, the dimension of a triangulated category T is the minimal
number of triangles it takes to produce any object from a fixed object.
More precisely the definition is as follows:

For a subcategory I of T we denote by 〈I〉 the full subcategory of T
whose objects are summands of direct sums of shifts of objects in I.

For two subcategories I1 and I2 we denote by I1 ∗ I2 the full
subcategory of objects X ∈ T such that there is a distinguished
triangle X1 → X → X2 → X1[1] with Xi ∈ Ii.

Further set I1 � I2 = 〈I1 ∗ I2〉. By setting 〈I〉1 := 〈I〉 we are able to
inductively define 〈I〉n := 〈I〉n−1 � 〈I〉.
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Some applications to dimensions of triangulated categories

Summary
I1 � I2 is the full subcategory of objects X ∈ T such that there is a
distinguished triangle X1 → X → X2 → X1[1] with Xi ∈ Ii closed
under summands. Define 〈I〉n := 〈I〉n−1 � 〈I〉.
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Some applications to dimensions of triangulated categories

Summary
I1 � I2 is the full subcategory of objects X ∈ T such that there is a
distinguished triangle X1 → X → X2 → X1[1] with Xi ∈ Ii closed
under summands. Define 〈I〉n := 〈I〉n−1 � 〈I〉.

Definition
Let X be an object in T . The generation time of X, denoted U(X), is

U(X) := min {n ∈ N |T = 〈X〉n+1}.

X is called a strong generator if U(X) is finite.
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Some applications to dimensions of triangulated categories

Definition
Let X be an object in T . The generation time of X, denoted U(X), is

U(X) := min {n ∈ N |T = 〈X〉n+1}.

X is called a strong generator if U(X) is finite.

Definition
The dimension of a triangulated category T is the minimal generation
time among the strong generators.
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Some applications to dimensions of triangulated categories

Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.
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Some applications to dimensions of triangulated categories

Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.

Theorem (Rouquier)
Let X be a reduced separated scheme of finite type over k. One has:

1 dim(X) ≤ dim Db
coh(X)
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Some applications to dimensions of triangulated categories

Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.

Theorem (Rouquier)
Let X be a reduced separated scheme of finite type over k. One has:

1 dim(X) ≤ dim Db
coh(X)

2 if X is a smooth quasi-projective variety, then
dim Db

coh(X) ≤ 2 dim X.
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Some applications to dimensions of triangulated categories

Theorem (Rouquier)
For a separated scheme of finite type over a perfect field, X, the
dimension of Db

coh(X) is finite.

Theorem (Rouquier)
Let X be a reduced separated scheme of finite type over k. One has:

1 dim(X) ≤ dim Db
coh(X)

2 if X is a smooth quasi-projective variety, then
dim Db

coh(X) ≤ 2 dim X.

Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).
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Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
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Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
2 projective spaces,
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Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
2 projective spaces,
3 and smooth quadrics.
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Some applications to dimensions of triangulated categories

Conjecture (Orlov)

Let X be a smooth variety. Then dim Db
coh(X) = dim(X).

Theorem (Rouquier)
The above conjecture holds for ;

1 smooth affine varieties,
2 projective spaces,
3 and smooth quadrics.

Theorem (Orlov)
The above conjecture holds for smooth curves. More generally, if C is
a smooth curve, then the spectrum of Db(C) contains {1, 2} with
equality if and only if C = P1.
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Proposition

Let L ⊆ M be a finite subgroup. The categories, MF(R, f ,M) and
MF(R, f ,M/L) have the same Rouquier dimension.
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Proposition

Let L ⊆ M be a finite subgroup. The categories, MF(R, f ,M) and
MF(R, f ,M/L) have the same Rouquier dimension.

Example

Let (d0, .., dn) be a weight sequence with
∑s

i=1
1
di
≤ 1 containing

either {2}, {3, 3}, {3, 4}, or {3, 5}. Let k be a field whose
characteristic does not divide any of the di then Orlov’s Conjecture
holds for the weighted fermat hypersurface defined by f . Similarly,
the Rouquier dimension of Db(Ad0−1 ⊗ ...⊗ Adn−1) is equal to n− 2.
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Some applications to dimensions of triangulated categories

Proposition

Let L ⊆ M be a finite subgroup. The categories, MF(R, f ,M) and
MF(R, f ,M/L) have the same Rouquier dimension.

Example
Orlov’s Conjecture holds for the product, E × F of two elliptic curves
and the infamous K3 surface obtained as a Z3 quotient.
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