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Abstract. In this paper, firstly we find an optimal constant for a
convolution problem on the unit circle via the variational method.
Then by using the optimal constant, we give a new and improved
sufficient condition on the initial data to guarantee the corresponding
strong solution blows up in finite time. We also analyze the cor-
responding ordinary difference equation associate to the convolution
problem and give numerical simulation for the optimal constant.
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1 Introduction

Although a rod is always three-dimensional, if its diameter is much less than
the axial length scale, one-dimensional equations can give a good description
of the motion of the rod. Recently Dai [16] derived a new (one-dimensional)
nonlinear dispersive equation including extra nonlinear terms involving second-
order and third-order derivatives for a compressible hyperelastic material. The
equation reads

vτ + σ1vvξ + σ2vξξτ + σ3(2vξvξξ + vvξξξ) = 0,
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where v(ξ, τ) represents the radial stretch relative to a pre-stressed state, σ1 6=
0, σ2 < 0 and σ3 ≤ 0 are constants determined by the pre-stress and the
material parameters. If one introduces the following transformations

τ =
3
√−σ2

σ1
t, ξ =

√
−σ2x,

then the above equation turns into

ut − utxx + 3uux = γ(2uxuxx + uuxxx), (1.1)

where γ = 3σ3/(σ1σ2). In [17], the authors derived that value range of γ is
from -29.4760 to 3.4174 for some special compressible materials. From the
mathematical view point, we regard γ as a real number.
When γ = 1 in (1.1), we recover the shallow water (Camassa-Holm) equation
derived physically by Camassa and Holm in [4] (found earlier by Fuchssteiner
and Fokas [18] as a bi-Hamiltonian generalization of the KdV equation) by ap-
proximating directly the Hamiltonian for Euler’s equations in the shallow water
region, where u(x, t) represents the free surface above a flat bottom. Recently,
the alternative derivations of the Camassa-Holm equation as a model for water
waves, respectively as the equation for geodesic flow on the diffeomorphism
group of the circle were presented in [27] and respectively in [9, 29]. For the
physical derivation, we refer to works in [10, 26]. Some satisfactory results
have been obtained for this shallow water equation. Local well-posedness for
the initial datum u0(x) ∈ Hs with s > 3/2 was proved by several authors,
see [30, 32, 35]. For the initial data with lower regularity, we refer to [33]
and [2]. While the regularized generalized Camassa–Holm equation was an-
alyzed in [15]. Moreover, wave breaking for a large class of initial data has
been established in [5, 7, 8, 30, 38, 39]. However, in [37], global existence of
weak solutions is proved but uniqueness is obtained only under an a priori
assumption that is known to hold only for initial data u0(x) ∈ H1 such that
u0 − u0xx is a sign-definite Radon measure (under this condition, global exis-
tence and uniqueness was shown in [12] also). Also it is worth to note that
the global conservative solutions and global dissipative solutions (with energy
being lost when wave breaking occurs) are constructed in [2, 22, 24] and [3, 25].
Recently, in [21], Himonas, Misio lek, Ponce and the third author showed the
infinite propagation speed for the Camassa-Holm equation in the sense that a
strong solution of the Cauchy problem with compact initial profile can not be
compactly supported at any later time unless it is the zero solution, which is
an improvement of previous results in this direction obtained in [6].
If γ = 0, (1.1) is the BBM equation, a well-known model for surface waves in
a canal [1], and its solutions are global.
For general γ ∈ R, the rod equation (1.1) was studied sketchily by the Con-
stantin and Strauss in [13] first. Local well-posedness of strong solutions to
(1.1) was established by applying Kato’s theory [28] and some sufficient con-
ditions on the initial data were found to guarantee the finite blow-up of the
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corresponding solutions for spatially nonperiodic case. Weak solutions was con-
structed in [14, 23]. Later, in [41], the third author proved the well-posedness
result in detail, and various refined sufficient conditions on the initial data were
found to guarantee the finite blow-up of the corresponding solutions for both
spatially periodic and nonperiodic cases. Recently, blow-up criteria for a spe-
cial class of initial data for the periodic rod equation was presented in [31, 42],
where S = R/Z is the unit circle. Furthermore, in [20], Guo and the third
author have investigated the persistence properties for this rod equation. It
should be mentioned that for γ < 1, (1.1) admits smooth solitary waves ob-
served by Dai and Huo [17]. Let u(x, t) = φ(ξ), ξ = x− ct be the solitary wave
to (1.1). It was shown that φ(ξ) satisfies

±ξ = −√−γ

(

1

2
π + arcsin

2γφ − (γ + 1)c

(1 − γ)c

)

− ln
(
√

c(c − φ) +
√

c(c − γφ))2

(1 − γ)cφ

for γ < 0 and

±ξ =
√

γ ln
(
√

c − γφ) −
√

γ(c − φ))2

(1 − γ)c
− ln

(
√

c − γφ +
√

c − φ)2

(1 − γ)φ

for 0 < γ < 1. In [13] (see [40] also), Constantin and Strauss proved the
stability of these solitary waves by applying a general theorem established by
Grillakis, Shatah and Strauss [19].

We conclude this introduction by outlining the rest of the paper. In section 2,
we recall the local well-posedness for (1.1) with initial datum u0 ∈ Hs, s > 3/2,
and the lifespan of the corresponding solution is finite if and only if its first-
order derivative blows up. In section 3, formulation of the optimal constant for
a convolution problem is settled by a variational method described in Struwe’s
book [36]. Then we solve the nonlinear ordinary differential equation in section
4. In section 5, a new blow-up criterion is established by applying the best con-
stant for the convolution problem. Finally, in section 6, another representation
will be showed, and a numerical simulation will be given.

2 Preliminaries

In this section, we concentrate on the periodic case. In [13, 41], it is proved
that

Theorem 2.1 [13, 41] Let the initial datum u0(x) ∈ Hs(S), s > 3/2. Then
there exists T = T (‖u0‖Hs) > 0 and a unique solution u, which depends con-
tinuously on the initial datum u0, to (1.1) such that

u ∈ C ([0, T ); Hs(S)) ∩ C1
(

[0, T ); Hs−1(S)
)

.

Moreover, the following two quantities E and F are invariants with respect to
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time t for (1.1).



















E(u)(t) =

∫

S

(

u2(x, t) + u2
x(x, t)

)

dx,

F (u)(t) =

∫

S

(

u3(x, t) + γu(x, t)u2
x(x, t)

)

dx.

Actually, the local well-posedness was proved for both periodic and nonperiodic
case in the above paper.
The maximum value of T in Theorem 2.1 is called the lifespan of the solution, in
general. If T < ∞, that is lim supt↑T ‖u(., t)‖Hs = ∞, we say that the solution
blows up in finite time. The following theorem tells us that the solution blows
up if and only if the first-order derivative blows up.

Theorem 2.2 [13, 41] Let u0(x) ∈ Hs(S), s > 3/2, and u be the corresponding
solution to problem (1.1) with lifespan T . Then

sup
x∈S,0≤t<T

|u(x, t)| ≤ C(‖u0‖H1). (2.1)

T is bounded if and only if

lim inf
t↑T

inf
x∈S

{γux(x, t)} = −∞. (2.2)

For γ 6= 0, we set

m(t) := inf
x∈S

(ux(x, t)sign{γ}) , t ≥ 0, (2.3)

where sign{a} is the sign function of a ∈ R and we set m0 := m(t = 0).
Then for every t ∈ [0, T ) there exists at least one point ξ(t) ∈ S with m(t) =
ux(ξ(t), t).

Lemma 2.3 [13] Let u(t) be the solution to (1.1) on [0, T ) with initial data
u0 ∈ Hs(S), s > 3/2, as given by Theorem 2.1. Then the function m(t) is
almost everywhere differentiable on [0, T ), with

dm(t)

dt
= utx(ξ(t), t), a.e. on (0, T ).

Consideration of the quantity m(t) for wave breaking comes from an idea of
Seliger [34] originally. The rigorous regularity proof is given in [8] for the
Camassa-Holm equation.
Set Qs = (1 − ∂2

x)s/2, then the operator Q−2 can be expressed by

Q−2f = G ∗ f =

∫

T

G(x − y)f(y)dy

Documenta Mathematica 15 (2010) 267–283



Blow-up of Rod Equation 271

for any f ∈ L2(S) with

G(x) =
cosh(x − [x] − 1/2)

2 sinh(1/2)
, (2.4)

where [x] denotes the integer part of x. Then equation (1.1) can be rewritten
as

ut + γuux + ∂xQ−2

(

3 − γ

2
u2 +

γ

2
u2

x

)

= 0. (2.5)

Just as in [13, 41], it is easy to derive a equation for m(t) from (2.5) as

dm

dt
= −γ

2
m2 +

3 − γ

2
u2(ξ(t), t) −

[

G ∗
(

3 − γ

2
u2 +

γ

2
u2

x

)]

(ξ(t), t) (2.6)

a.e. on (0, T ), where m(t) and ξ(t) are defined in (2.3) and Lemma 2.3.
If γ = 3, it turns out that (2.6) is a Riccati type equation with negative initial
data for any nonconstant u0. So the solutions to (1.1) in periodic case definitely
blow up in finite time with arbitrary nonconstant initial data u0.
In what follows, we assume that 0 < γ < 3.

3 The best constant for a convolution problem-formulation

To prove the blow-up result, one of the basic ingredients is to analyze equation
(2.6). It is clear that the difficult part is the convolution term.
In this section, we consider the following convolution problem

G ∗
(

f2 +
α

2
f2

x

)

(x),

where G, defined by (2.4), is the Green function for Q−2 in the unit circle,
α > 0 is a constant, and function f belongs to H1(S).
Direct computation which already done in [43] yields

G ∗ (f2 +
1

2
f2

x)(x) ≥ 1

2
f2(x),

for any x ∈ S.
Therefore,

G ∗
(

f2 +
α

2
f2

x

)

(x) ≥ min{α, 1}G ∗ (f2 +
1

2
f2

x)(x) ≥ min{α, 1}1

2
f2(x).

Our goal is to find an optimal constant C(α) for the following inequality:

G ∗
(

f2 +
α

2
f2

x

)

(x) ≥ C(α)f2(x), (3.1)

for all f ∈ H1(S).
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For this purpose, let

A = {f ∈ H1(S) | ‖f‖L∞ = 1}

and

I[f ](x) = G ∗
(

f2 +
α

2
f2

x

)

(x) =

∫

S

G(x − y)
(

f2(y) +
α

2
f2

x(y)
)

dy.

Since I[f ] is a translation invariant on the unit circle S, we can assume that A
is defined on the interval [0, 1] with f ≥ 0 and f(0) = f(1) = 1 without loss of
generality. Hence finding the best constant for the problem (3.1) is equivalent
to finding the minimum value for

I[f ](0) =
1

2 sinh(1/2)

∫ 1

0

cosh(x − 1/2)
(

f2(x) +
α

2
f2

x(x)
)

dx.

From now on, we follow the variational method discussed in a comprehensive
book written by Struwe [36].
It is clear that

min{α, 1} 1

2 sinh(1/2)

∫ 1

0

(

f2(x) + f2
x(x)

)

dx ≤ I[f ](0)

≤ max{α, 1} cosh(1/2)

2 sinh(1/2)

∫ 1

0

(

f2(x) + f2
x(x)

)

dx,

for any f ∈ A. The above inequality means that I[f ](0) is equivalent to the
H1-norm of f .
Suppose that {fk}∞k=1 is a minimizing sequence, i.e., I[fk](0) → inff∈A I[f ](0),
as k → ∞. Hence it is easy to show that there exists a subsequence {fkj}∞j=1 ⊂
{fk}∞k=1, denoted it by {fk}∞k=1 also, and a function g ∈ A with fk → g as
k → ∞. For the details we refer to [38].
Due to the identities cosh(3x) = cosh3(x) + 3 cosh(x) sinh2(x) and sinh(3x) =
4 sinh3(x) + 3 sinh(x), we have

I [cosh(x − 1/2)/ cosh(1/2)] (0)

=
1

2 sinh(1/2) cosh2(1/2)

×
∫ 1

0

(

cosh3(x − 1/2) +
α

2
cosh(x − 1/2) sinh2(x − 1/2)

)

dx

=
1

2 sinh(1/2) cosh2(1/2)

∫ 1/2

−1/2

(

cosh(3x) +
(α

2
− 3
)

cosh(x) sinh2(x)
)

dx

=
2 sinh(3/2) + (α − 6) sinh3(1/2)

6 sinh(1/2) cosh2(1/2)
=

6 + (α + 2) sinh2(1/2)

6 cosh2(1/2)

= 1 − (4 − α) sinh2(1/2)

6 cosh2(1/2)
< 1 = I[1](0),
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provided that α < 4.
For the case α ≥ 4, we consider the family

β + cosh(x − 1/2)

β + cosh(1/2)
,

where β > 0 is a constant to be determined later. By the same steps, one can
get

I

[

β + cosh(x − 1/2)

β + cosh(1/2)

]

(0)

=
6(β + 1) sinh(1/2) + (α + 2) sinh3(1/2) + 6β cosh(1/2) sinh(1/2) + 3β

6 sinh(1/2)(β + cosh(1/2))2
.

Direct computation yields

I

[

β + cosh(x − 1/2)

β + cosh(1/2)

]

(0) < 1,

provided that
6β(β − 1)

sinh2(1/2)
> α − 4.

The above inequality implies that 1 is not the minimizer for I[f ](0), in other
words, there exists region U where the value of g is strictly less than 1.
Let φ be a smooth function with compact support in U . One can choose ǫ is
sufficient small such that g + ǫφ ∈ A. Now we set

i(t) = I[g + tǫφ](0) =

∫ 1

0

G(x)
(

(g + tǫφ)2 +
α

2
(gx + tǫφx)2

)

dx,

where t ∈ R such that g + tǫφ ∈ A. Since g is the minimizer, we have

0 = i′(0) = ǫ

∫ 1

0

(2Ggφ + αGgxφx)dx = ǫ

∫ 1

0

(2Gg − α(Ggx)x)φdx.

Therefore the equation for g in the region g < 1 reads

α(Ggx)x = 2Gg, with G(x) =
cosh(x − 1/2)

2 sinh(1/2)
.

Just as what was done in [38], we have the following claim that g < 1 at all
points except 0 and 1. So the equation for g is

α(Ggx)x = 2Gg, in (0, 1), with g(0) = g(1) = 1. (3.2)

After changing variable we can rewrite (3.2) as

cosh(x)g′′(x) + sinh(x)g′(x) − 2

α
cosh(x)g(x) = 0, (3.3)
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x ∈ (−1/2, 1/2), where prime means taking derivative with respect to x.

If α = 1, equation (3.3) has been solved in [43] as

g =
1 + arctan(sinh(x − 1/2)) sinh(x − 1/2)

1 + arctan(sinh(1/2)) sinh(1/2)
, (3.4)

for x ∈ [0, 1].

For general case α 6= 1, we will solve the equation in the next section.

However, here we can find the optimal constant for the functional I achieved
by g satisfying the equation (3.3). Actually, from the equation (3.2), one has

Gg2 +
α

2
Gg2

x =
α

2
(Gggx)x .

Therefore,

I[g](0) =

∫ 1

0

α

2
(Gggx)x

=
α

2 tanh(1/2)
(g(1/2)g′(1/2 − 0) − g(−1/2)g′(−1/2 + 0))

=
α

tanh(1/2)
g′(1/2 − 0),

since g(x) is an even function on [−1/2, 1/2], and g(−1/2) = g(1/2) = 1.

Hence, we have the following theorem

Theorem 3.1 For all f ∈ H1(S), and α > 0, the following inequality holds

G ∗
(

f2 +
α

2
f2

x

)

(x) ≥ C(α)f2(x), (3.5)

with

C(α) =
α

tanh(1/2)
g′(1/2 − 0), (3.6)

where g(x) is an even function on [−1/2, 1/2] satisfying (3.3).

C(1) =
1

2
+

arctan(sinh(1/2))

2 sinh(1/2) + 2 arctan(sinh(1/2)) sinh2(1/2)
≈ 0.869,

which has been founded in [43].

Remark 3.1 From the above variational approach, it implies that C(α) < 1
for any α > 0.
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4 Solve the ordinary differential equation

For our convenience, we rewrite the equation (3.3) as

cosh(x)u′′
λ(x) + sinh(x)u′

λ(x) − λ(λ + 1) cosh(x)uλ(x) = 0, (4.1)

x ∈ (−1/2, 1/2), with λ =
√

α+8−√
α

2
√

α
> 0.

Now, letting s = sinh(x) and vλ(s) = uλ(x), then (4.1) changes to

(1 + s2)v′′λ(s) + 2sv′λ(s) − λ(λ + 1)vλ(s) = 0. (4.2)

In general, the solution to (4.2) can be represented as the following power series:

vλ(s) = 1 +

∞
∑

n=1

∏n−1
k=0 (λ − 2k)(λ + 1 + 2k)

(2n)!
s2n, (4.3)

with convergence radius of 1. Hence it is convergent at s = sinh(1/2).
It is easy to find that, (4.3) is a polynomial with finite terms for λ being a
positive even number, i.e., λ = 2m, k ∈ N. For λ = 2m + 1, the solution to
(4.2) can be obtained by

vλ(s) = −v1(s)

∫ s

0

dτ

v2
1(τ)(1 + τ2)

, (4.4)

where

v1(s) = s

(

1 +

∞
∑

n=1

∏n
k=1(λ + 2k)(λ + 1 − 2k)

(2n + 1)!
s2n

)

is another solution to (4.2), which is independent of (4.3).
Due to the strategic steps established here, we can write down the solutions to
(4.2) for λ ∈ N. For example, we have

u1(x) = −s

∫ s

0

dτ

τ2(1 + τ2)
= 1 + s arctan s = 1 + sinh(x) arctan(sinh(x)),

(3.4) is recovered again. We also can write down the following solutions.

u2(x) = 1 + 3s2 = 1 + 3 sinh2(x),

u3(x) = −s

(

1 +
5

3
s2

)
∫ s

0

dτ

τ2
(

1 + 5
3τ2
)2

(1 + τ2)

= 1 +
15

4
s2 + s

(

9

4
+

15

4
s2

)

arctan s

= 1 +
15

4
sinh(x)2 + s

(

9

4
+

15

4
sinh(x)2

)

arctan (sinh(x)) ,
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u4(x) = 1 + 10s2 +
35

3
s4 = 1 + 10 sinh2(x) +

35

3
sinh4(x),

u5(x) = 1 +
105

64
s2(7 + 9s2) +

15

64
s(15 + 70s2 + 63s4) arctan s

= 1 +
105

64
sinh2(x)

(

7 + 9 sinh2(x)
)

+
15

64
sinh(x)

(

15 + 70 sinh2(x) + 63 sinh4(x)
)

arctan (sinh(x)) ,

u6(x) = 1 + 21s2 + 63s4 +
231

5
s6

= 1 + 21 sinh2(x) + 63 sinh4(x) +
231

5
sinh6(x).

For general λ > 0, we only have the form of (4.2) at present. We will do some
computation in section 6.

5 Blow-up criteria

After local well-posedness of strong solutions (see Theorem 2.1) is established,
the next question is whether this local solution can exist globally. As far as
we know, the only available global existence result is for the case γ = 1: see
the paper by Constantin [5] for a PDE approach, and the paper by Constantin
and McKean [11] for an approach based on the integrable structure of the
equation. If the solution exists only for finite time, how about the behavior
of the solution when it blows up? What induces the blow-up? On the other
hand, to find sufficient conditions to guarantee the finite time blow-up or global
existence is of great interest, especially for sufficient conditions added on the
initial data.
The main theorem of this section is as following:

Theorem 5.1 Let 0 < γ < 3. Assume that u0 ∈ H2(S) satisfies m0 < 0 and

m2
0 >

3 − γ

2γ

(

1 − C

(

2γ

3 − γ

))

cosh(1/2)

sinh(1/2)
‖u0‖2

H1(S), (5.1)

where C
(

2γ
3−γ

)

is defined by (3.6). Then the life span T > 0 of the correspond-

ing solution to (1.1) is finite.

Remark 5.1 When γ = 1, we recover the theorem established in [43]. The
cases for γ < 0 and γ > 3 were discussed in [41, 42].

First, we have the following blow-up result for a Riccati type ordinary differ-
ential equation.
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Lemma 5.2 [43] Assume that a differentiable function y(t) satisfies

y′(t) ≤ −Cy2(t) + K, (5.2)

with constants C, K > 0. If the initial datum y(0) = y0 < −
√

K
C , then the

solution to (5.2) goes to −∞ in finite time.

Secondly, let us recall the best constant for a Sobolev inequality proved in [38].

‖f‖2
L∞(S) ≤

cosh(1/2)

2 sinh(1/2)
‖f‖2

H1(S), (5.3)

for f ∈ H1(S). Moreover, it is an optimal constant for the Sobolev imbedding
H1 ⊂ L∞ in the sense that (5.3) holds if and only if f(x) = λG(x−y) for some
λ, y ∈ R.
We start the proof for the main theorem from (2.6).

dm

dt
= −γ

2
m2 +

3 − γ

2
u2(ξ(t), t) −

[

G ∗
(

3 − γ

2
u2 +

γ

2
u2

x

)]

(ξ(t), t)

= −γ

2
m2 +

3 − γ

2
u2(ξ(t), t) − 3 − γ

2

[

G ∗
(

u2 +
1

2

2γ

3 − γ
u2

x

)]

(ξ(t), t)

≤ −γ

2
m2 +

3 − γ

2
u2(ξ(t), t) − 3 − γ

2
C

(

2γ

3 − γ

)

u2(ξ(t), t)

≤ −γ

2
m2 +

3 − γ

2

(

1 − C

(

2γ

3 − γ

))

u2(ξ(t), t)

≤ −γ

2
m2 +

3 − γ

2

(

1 − C

(

2γ

3 − γ

))

cosh(1/2)

2 sinh(1/2)
‖u0‖2

H1(S),

where we used (3.5) and (5.3).
So, the proof can be completed by using the condition in Theorem 5.1 and
Lemma 5.2.

6 Another presentation and numerical simulation

We have the equation (4.2), and the local solution to (4.2) can be represented
as the power series (4.4), which is convergent at s = sinh(1/2) = 0.521 · · · .
By the transformation of variables

z := −s2, yλ(s) := vλ(s)

and let
a := −λ/2, b := (λ + 1)/2, c := 1/2,

then

vλ(s) = 1 +

∞
∑

n=1

zn

n!

n−1
∏

k=0

(a + k)(b + k)

c + k
=: F (a, b, c; z), (6.1)
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where F (a, b, c; z) is called the hypergeometric function, a regular solution of
the hypergeometric differential equation

z(1 − z)y′′
λ(z) + [c − (a + b + 1)z]y′

λ(z) − abyλ(z) = 0.

Since

F ′(a, b, c; z) =
ab

c
F (a + 1, b + 1, c + 1; z),

we obtain the analytic expression

C(α) =
cosh2(1/2)F (a + 1, b + 1, c + 1;− sinh2(1/2))

sinh(1/2)F (a, b, c;− sinh2(1/2))
,

where α = 2/(λ(λ + 1)).

Although the value of C(α) for each λ can be obtained by calling the hyper-
geometric functions in softwares such as Mathematica, Maple or MATLAB,
generally the calculation based on (6.1), thus the calculations are not efficient.
In the following, we give an efficient method for calculating C(α).

Define

qλ(s) :=
v′λ(s)

λ(λ + 1)vλ(s)
, λ > 0,

then qλ(s) is the solution of the following initial value problem of the first order
ordinary differential equation

q′λ(s) +
2s

1 + s2
qλ(s) + µq2

λ(s) =
1

1 + s2
, qλ(0) = 0, (6.2)

where µ := λ(λ + 1).

Thus

C(α) =
cosh2(1/2)qλ(sinh(1/2))

sinh(1/2)
. (6.3)

By using MATLAB programme, we can plot the graph of C(α) as Fig. 1. Here
α is taken from 0.01 to 10 with equal step length 0.01. The detailed MATLAB
code is given in the appendix.
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From Fig. 1 we see that C(α) is a strictly increasing function of α which can
be proved analytically as follows.

Differentiate both sides of (6.2) with respect to µ, we have a linear differential
equation of qλµ(s) = ∂qλ(s)/∂µ:

q′λµ(s) + 2

(

µqλ(s) +
s

1 + s2

)

qλµ(s) + q2
λ(s) = 0, qλ(0) = 0. (6.4)

The solution to (6.4) is

qλµ(s) = − 1

1 + s2

∫ s

0

(1 + τ2) exp

(

−2µ

∫ s

τ

qλ(t) dt

)

q2
λ(τ) dτ < 0. (6.5)

While

qλα(s) =
∂qλ(s)

∂µ

∂µ

∂α
= qλµ · −2

α2
> 0.

This completes the proof due to (6.3).

7 Appendix

Fig. 1 is plotted by two MATLAB routines for calculating C(α). We use
MATLAB because of its advantage of efficient vector operations. The argument
alpha can be a vector.
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1. The main function routine, MATLAB m-file named bestc.m:

function C=bestc(alpha)

% Input: alpha, may be a scalar or a vector;

% Output: C, the best coefficient corresponding to alpha, When alpha is
a vector, C is also a vector with the same size as alpha.

T=.52109530549374738495; % T = sinh(1/2)

G=2.4401300568286909964; % G = T+Tˆ(-1)

options=odeset(’RelTol’,2.221e-14,’ABsTol’,1e-15); % Set ODE solver’s
relative error tolerance and absolute error tolerance.

[S,Y]=ode45(@rod,[0,T],0*alpha,options,alpha); % Call ODE solver
ode45.

C=Y(end,:)*G;

% End of the main routine.

2. The ODE-file named rod.m is as follows:

function dqds = rod(s,q,alpha)

dqds = (1-2*s*q)/(1+sˆ2)-2*q.ˆ2./alpha;

% End of the ODE-file.
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