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Abstract. We investigate a few types of generalizations of the Hurwitz
zeta function, written Z(s, a) in this abstract, where s is a complex
variable and a is a parameter in the domain that depends on the type.
In the easiest case we take a ∈ R, and one of our main results is that
Z(−m, a) is a constant times Em(a) for 0 ≤ m ∈ Z, where Em is the
generalized Euler polynomial of degree n. In another case, a is a positive
definite real symmetric matrix of size n, and Z(−m, a) for 0 ≤ m ∈ Z

is a polynomial function of the entries of a of degree ≤ mn. We will also
define Z with a totally real number field as the base field, and will show
that Z(−m, a) ∈ Q in a typical case.

2010 Mathematics Subject Classification: 11B68, 11M06, 30B50, 33E05.

Introduction

This paper is divided into four parts. In the first part we consider a gener-
alization of Hurwitz zeta function given by

(0.1) ζ(s; a, γ) =

∞
∑

n=0

γn(n+ a)−s,

where s ∈ C, 0 < a ∈ R, and γ ∈ C, 0 < |γ| ≤ 1. Clearly the infinite series is
convergent for Re(s) > 1. For γ = 1 this becomes

∑∞
n=0(n+a)−s, which is the

classical Hurwitz zeta function usually denoted by ζ(s, a). This generalization
is not new. It was considered by Lerch in [Le], a work five years after the paper
[Hu] of Hurwitz in 1882. Its analytic properties can be summarized as follows.

Theorem 0.1. For a and γ as above the product (e2πis−1)Γ (s)ζ(s; a, γ) can
be continued to an entire function in s. In addition, there exists a holomorphic
function in (s, a, γ)∈C3, defined for Re(a)>0 and γ /∈

{

x∈R
∣

∣ x≥1
}

with no
condition on s, that coincides with the product when Re(s) > 1, 0 < a ∈ R,
and 0 < |γ| ≤ 1.

The proof will be given in §1.1.
To state a more interesting fact, we first put
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(0.2) e(z) = exp(2πiz) (z ∈ C),

and define a function Ec,n(t) in t for c ∈ C and 0 < n ∈ Z, that is called the
nth generalized Euler polynomial, by

(0.3)
(1 + c)etz

ez + c
=

∞
∑

n=0

Ec,n(t)

n!
zn.

We assume c = −e(α) with α ∈ R, /∈ Z. The function Ec,n(t) was introduced
in [S07]. If c = 1, E1,n(t) is the classical Euler polynomial of degree n. In [S07]
we showed that Ec,n(t) is a polynomial in t of degree n; it is also a polynomial
in (1 + c)−1. Its properties are listed in [S07, pp. 25–26]. We mention here only

(0.3a) Ec,n(1 − t) = (−1)nEc−1,n(t),

(see [S07, (4.3f)]), which will become necessary later. Now we have

Theorem 0.2. For 0 < k ∈ Z, Re(a) > 0, and γ /∈
{

x ∈ R
∣

∣x ≥ 1
}

the value

ζ(1 − k, a; γ) is a polynomial function of a and (γ − 1)−1. More precisely, we
have

(0.4) ζ(1 − k; a, γ) = Ec,k−1(a)/(1 + c−1)

for such k, a, and γ, where c = −γ−1.

This will be proven in §1.2.
As for the original Hurwitz function, there is a well known relation

(0.5) ζ(1 − k, a) = −Bk(a)/k for 0 < k ∈ Z,

where Bk is the k-th Bernoulli polynomial. This is essentially due to Hurwitz;
see [Hu, p. 92]; cf. also [E, p.27, (11)] and [WW, p. 267, 13.14].

In [S07] and [S08] we investigated the critical values of the L-function L(s, χ)
with a Dirichlet character χ, and proved especially (see [S07, Theorem 4.14]
and [S08, Theorem 1.4])

Theorem 0.3. Let χ be a nontrivial primitive Dirichlet character modulo a
positive integer d, and let k be a positive integer such that χ(−1) = (−1)k.

(i) If d = 2q + 1 with 0 < q ∈ Z, then

(0.6) L(1 − k, χ) =
dk−1

2kχ(2) − 1

q
∑

b=1

(−1)bχ(b)E1,k−1(b/d).

(ii) If d = 4d0 with 1 < d0 ∈ Z, then

(0.7) L(1 − k, χ) = (2d0)
k−1

d0−1
∑

a=1

χ(a)E1,k−1(2a/d).

In §1.4 we will give a shorter proof for these formulas by means of (0.4), and
in Section 2 we will prove a functional equation for ζ(s; a, γ) by producing an
expression for ζ(1 − s; a, γ).

The second part of the paper concerns the analogue of (0.1) defined when
the base field is a totally real algebraic number field F. If F 6= Q, there are
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nontrivial units, which cause considerable difficulties, and for this reason we
cannot give a full generalization of which (0.1) is a special case. However,
taking such an F as the base field, we will present a function of a complex
variable s and two parameters a and p in F, that includes as a special case at
least ζ(s; a, γ) with a ∈ Q and γ a root of unity. We then prove in Theorem
3.4 a rationality result on its critical values.

The third part is a kind of interlude. Observing that the formula for L(k, χ)
(not L(1 − k, χ)) involves the Gauss sum G(χ) of χ, we will give in Section 4
a formula for G(χλ)/G(χ) for certain Dirichlet characters χ and λ.

The fourth and final part of the paper, which has a potential of future devel-
opment, concerns the analogue of (0.1) defined for a complex variable s, with
nonnegative and positive definite symmetric matrices of size n in place of n
and a. We will show in Section 5 that it is an entire function of s and also that
its value at s = −m for 0 ≤ m ∈ Z is a polynomial function of the variable
symmetric matrix of degree ≤ mn.

1. Proof of Theorems 0.1, 0.2, and 0.3

1.1. To prove Theorem 0.1, assuming that 0 < a ∈ R and 0 < |γ| ≤ 1, we
start from an easy equality Γ (s)(n+ a)−s =

∫ ∞

0
xs−1e−(n+a)xdx. Therefore

Γ (s)ζ(s; a, γ) =
∞
∑

n=0

Γ (s)γn(n+ a)−s =
∞
∑

n=0

∫ ∞

0

xs−1γne−(n+a)xdx

=

∫ ∞

0

∞
∑

n=0

xs−1γne−(n+a)xdx =

∫ ∞

0

xs−1e−ax

1 − γe−x
dx.

Our calculation is justified for σ = Re(s) > 1, since
∞
∑

n=0

∫ ∞

0

∣

∣xs−1γne−(n+a)x
∣

∣dx ≤
∞
∑

n=0

Γ (σ)(n + a)−σ <∞.

Thus we obtain

(1.1) Γ (s)ζ(s; a, γ) =

∫ ∞

0

xs−1ex(1−a)

ex − γ
dx for Re(s) > 1.

We now consider
∫ 0+

∞

zs−1ez(1−a)

ez − γ
dz

with the standard symbol
∫ 0+

∞
of contour integration. The integral is the sum

of three integrals:
∫ δ

∞,
∮

on the circle |z| = δ, and
∫ ∞

δ , where 0 < δ ∈ R; we

naturally take the limit as δ tends to 0. We take zs−1 = exp
(

(s − 1) log z
)

for the first integral
∫ δ

∞
with log z ∈ R for 0 < z ∈ R; for the evaluation of

the other integrals we continue zs−1 analytically without passing through the
positive real axis. Then the first and third integrals produce

(e(s) − 1)

∫ ∞

δ

xs−1ex(1−a)

ex − γ
dx,

which is meaningful for every s ∈ C and every (a, γ) ∈ C2 such that

Documenta Mathematica 15 (2010) 489–506



492 Goro Shimura

(1.1a) Re(a) > 0 and γ /∈
{

x ∈ R
∣

∣x > 1
}

.

As for
∮

, we first observe that given γ ∈ C, we can find a small δ0 ∈ R, > 0,
such that ez 6= γ for 0 < |z| ≤ δ0, since the map z 7→ w = ez sends the
punctured disc 0 < |z| ≤ δ0 into a punctured disc 0 < |w − 1| < ε that does
not contain γ. (This is clearly so even for γ = 1.) Therefore

∮

is meaningful for
every s ∈ C and sufficiently small δ in both cases γ 6= 1 and γ = 1; the integral
is independent of δ because of Cauchy’s theorem. Now put z = δeiθ with δ
such that 0<δ < δ0 and 0 ≤ θ < 2π. Then zs−1 = exp{(s−1)(log δ+ iθ)}, and
so for s = σ+ iτ with real σ and τ, we have |zs−1| = δσ−1|e−θτ | ≤ δσ−1e2π|τ |.
If γ 6= 1, we see that Min|z|≤δ0

|ez −γ| > 0, and so |ez(1−a)/(ez −γ)| is bounded

for |z| ≤ δ0. If γ = 1, the function ez(1−a)/(ez − γ) is 1/z plus a holomorphic
function at z = 0. Thus for 0 < δ ≤ δ0 we see that

∣

∣

∮
∣

∣ ≤ Mδσ if γ 6= 1 and
∣

∣

∮
∣

∣ ≤Mδσ−1 if γ = 1 with a constant M that depends on a, γ, and δ0, and

so
∮

tends to 0 as δ → 0 if Re(s) > 1, and we obtain

(1.2) (e(s) − 1)Γ (s)ζ(s; a, γ) =

∫ 0+

∞

zs−1ez(1−a)

ez − γ
dz

for 0 < |γ| ≤ 1, 0 < a ∈ R, and Re(s) > 1. (If γ 6= 1, the condition Re(s) > 0
instead of Re(s) > 1 is sufficient.) Now the right-hand side of (1.2) is mean-
ingful for every (s, a, γ) ∈ C3 under condition (1.1a) and so it establishes the
product on the left-hand side as an entire function of s. If γ 6= 1, the contour
integral can define the product for the variables s, a, γ as described in The-
orem 0.1. The integrand as a function of (z, s, a, γ) is not finite in a domain
including γ = 1, and so the result for γ = 1 must be stated separately.

Remark. If 0 < |γ| ≤ 1 and γ 6= 1, then the series of (0.1) is convergent
for Re(s) > 0 and defines a holomorphic function of s there. This is clear if
|γ| < 1. For |γ| = 1 and γ 6= 1, this follows from [S07, Lemma 4.3].

We are interested in the value of ζ(s; a, γ) at s = −m with 0 ≤ m ∈ Z. We
first note

{

(e(s) − 1)Γ (s)
}

s=−m
= 2πi(−1)m/m!.

For s = −m the function zs−1 in the integrand is a one-valued function, and

so
∫ δ

∞
+

∫ ∞

δ
= 0. Therefore

(1.3)

∫ 0+

∞

=

∮

= 2πi · Resz=0
z−m−1e(1−a)z

ez − γ
.

By (0.3), for γ 6= 1 we have

z−m−1e(1−a)z

ez − γ
=

1

1 − γ

∞
∑

n=0

E−γ,n(1 − a)

n!
zn−m−1,

and so the residue in question is (1 − γ)−1E−γ,m(1 − a)/m!. Combining this
with (0.3a) and (1.2), we obtain

(1.4) ζ(−m; a, γ) = Ec,m(a)/(1 + c−1) for 0 ≤ m ∈ Z,
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where c = −γ−1. This proves (0.4). In [S07, p. 26] we showed that Ec, n(t) is a
polynomial in t and (1+c)−1. For c = −γ−1 we have (1+c)−1 = 1+(γ−1)−1,
and so we obtain Theorem 0.2.

For the reader’s convenience, we give a proof of (0.5) here. If γ = 1, instead
of (0.2) we use zetz/(ez − 1) =

∑∞
n=0Bn(t)zn/n!. Then we obtain (0.5) in the

same manner as in the case γ 6= 1.

1.3. Let us insert here a historical remark. Fixing a positive integer m and
an integer a such that 0 ≤ a ≤ m, Hurwitz considered in [Hu] an infinite series

(1.5) f(s, a) =

∞
∑

n=0

(mn+ a)−s.

Since this depends on m, he also denoted it by f(s, a|m). He proved analytic
continuation of these functions and stated a functional equation for f(1−s, a),
basically following Riemann’s methods for the investigation of ζ(s) in [R].
At that time not much was known about Dirichlet’s L-function beyond his
formulas for the class number of a binary quadratic form and his theorem
about prime numbers in an arithmetic progression. Employing the results
on f(s, a), Hurwitz was able to prove that the L-function for a quadratic
character has analytic continuation and satisfies a functional equation. Using
the standard notation ζ(s, a) =

∑∞
n=0(n+ a)−s employed at present, we have

f(s, a|m) = m−sζ(s, a/m), and so he considered ζ(s, a) only for a ∈ Q. It is
noticeable however that he proved essentially (0.5) as we already said.

As noted at the beginning of the paper, Lerch investigated the series of (0.1);
one can also find an exposition of this topic in [E, p. 27, §1.11]. The paper [Li]
of Lipschitz may be mentioned in this connection.

1.4. Let the symbols be as in Theorem 0.3(i). Put

Λ(s) =
∞
∑

n=1

(−1)nχ(n)n−s.

Then Λ(s) + L(s, χ) = 2
∑∞

n=1 χ(2n)(2n)−s = χ(2)21−sL(s, χ), and so

(1.6) Λ(s) = L(s, χ)
{

χ(2)21−s − 1
}

.

Since
{

a
∣

∣ 1 ≤ a < d
}

=
{

a
∣

∣ 1 ≤ a ≤ q
}

⊔
{

d− a
∣

∣ 1 ≤ a ≤ q
}

, we have

Λ(s)=

q
∑

a=1

∞
∑

n=0

(−1)nd+aχ(a)(nd+a)−s+

q
∑

a=1

∞
∑

n=0

(−1)nd+d−aχ(−a)(nd+d−a)−s,

and so dsΛ(s) equals
q

∑

a=1

(−1)aχ(a)

{ ∞
∑

n=0

(−1)n

(

n+
a

d

)−s

− χ(−1)

∞
∑

n=0

(−1)n

(

n+
d− a

d

)−s}

=

q
∑

a=1

(−1)aχ(a)
{

ζ(s; a/d, −1)− (−1)kζ(s; 1 − a/d, −1)
}

.

Putting s = 1 − k and employing (0.4) and (0.3a), we obtain (0.6).
Our next task is to prove (0.7). Let d = 4d0 with 1 < d0 ∈ Z as in Theorem

1.3(ii). We note an easy fact(see [S08, Lemma 1.3]):
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(1.7) χ(2d0 + a) = −χ(a) for every a ∈ Z.

Observe that
{

x ∈ Z
∣

∣ x > 0, d0 ∤x
}

is a disjoint union

(∗)
{

nd+ a
∣

∣ 0<a<d0, 0 ≤ n∈Z
}

⊔
{

nd+ 2d0 + a
∣

∣ 0<a<d0, 0 ≤ n∈Z
}

⊔
{

nd− a
∣

∣ 0<a<d0, 0<n∈Z
}

⊔
{

nd+ 2d0 − a
∣

∣ 0<a<d0, 0 ≤ n∈Z
}

.

The sum of
∑

χ(x)x−s for x belonging to the first two sets equals

d0−1
∑

a=1

{ ∞
∑

ν=0

χ(a)(4νd0 + a)−s +

∞
∑

ν=0

χ(2d0 + a)
(

2(2ν + 1)d0 + a
)−s

}

.

Employing (1.7), we see that this equals

(1.8)

d0−1
∑

a=1

∞
∑

m=1

(−1)mχ(a)(2md0 + a)−s = (2d0)
−s

d0−1
∑

a=1

χ(a)ζ(s; 2a/d,−1).

Similarly, from the last two sets of (∗) we obtain

d0−1
∑

a=1

{ ∞
∑

ν=1

χ(−a)(4νd0 − a)−s +

∞
∑

ν=0

χ(2d0 − a)
(

2(2ν + 1)d0 − a
)−s

}

= −
d0−1
∑

a=1

∞
∑

m=0

χ(−a)(−1)m(2md0 + 2d0 − a)−s

= −(2d0)
−s

d0−1
∑

a=1

χ(−a)ζ(s; 1 − 2a/d, −1)

by (1.7). Thus, adding (1.8) to this and putting s = 1−k, from (0.4) we obtain

(2d0)
1−kL(1− k, χ) = 2−1

d0−1
∑

a=1

χ(a)
{

E1,k−1(2a/d)−χ(−1)E1,k−1(1− 2a/d)
}

.

Suppose χ(−1) = (−1)k; then applying (0.3a) to E1,k−1(1 − 2a/d), we obtain
(0.7). The proof of Theorem 0.3 is now complete

1.5. The case d = 4 is excluded in Theorem 0.3(ii). In this case, however,

the matter is simpler. Indeed, for µ4(n) =

(−1

n

)

we have

L(s, µ4) =
∞
∑

m=0

(−1)m(2m+ 1)−s

= 2−s

∞
∑

m=0

(−1)m(m+ 1/2)−s = 2−sζ(s; 1/2, −1),

and so by (0.4) we obtain

(1.9) L(1 − k, µ4) = 2k−2E1,k−1(1/2) = E1,k−1/2

for every odd positive integer k, where E1,n denotes the nth Euler number.
This is classical, except that the result is usually given in terms of L(k, µ4)
instead of L(1 − k, µ4).
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1.6. Let us now show that a special case of Theorem 0.3(ii) can be given in
a somewhat different way. Let ψ be a primitive character whose conductor d
is odd, µ4 the primitive character modulo 4 as above, and k a positive integer
such that ψ(−1) = (−1)k+1; put m = (d− 1)/2. Then

(1.10) L(1 − k, ψµ4) = (−1)m(2d)k−1

m
∑

j=1

(−1)jψ(2j)E1,k−1

(

1
2 + j

d

)

.

This was given in [S07, (6.2)], if in terms of L(k, ψµ4), but we can derive
it also from Theorem 0.3(ii) as follows. Take χ = ψµ4 in (0.7). Then the

sum on the right-hand side of (0.7) is
∑2m

a=1 χ(a)E1,k−1(a/2d), which equals
∑2m

b=1 χ(d − b)E1,k−1

(

(d − b)/2d
)

. Since the bth term is nonvanishing only
for even b, employing (0.3a), we see that the last sum equals ψ(−1) times
∑m

j=1(ψµ4)(d− 2j)E1,k−1

(

(d+ 2j)/2d
)

. Since d− 2j = 2(m− j) + 1, we have

µ4(d− 2j) = (−1)m−j, and so we obtain (1.10).

1.7. We can show that ζ(−m; a, γ) for 0 ≤ m ∈ Z is a polynomial in a by
a formal calculation as follows. Assuming that |γ| < 1, we have

ζ(−m; a, γ) = am +

∞
∑

n=1

γn(n+ a)m = am +

m
∑

ν=0

(

m
ν

)

am−νcν

with cν =
∑∞

n=1 n
νγn, and so ζ(−m; a, γ) is a polynomial in a at least for

|γ| < 1, and so Theorem 0.1 guarantees the same in a larger domain as described
in that theorem

We have cν−1 = γ(1 − γ)−νPν(γ) for 1 ≤ ν ∈ Z with a polynomial Pν

introduced in [S07, (2.16)]; see also [S08, (4.3)]. We showed that Pν+1(γ) = (γ−
1)νE−γ,ν(0) for ν > 0 in [S07, (4.6)] and that γn−2Pn(γ−1) = Pn(γ) in [S07,

(2.19)]; also, Ec,n(t) =
∑n

k=0

(

n
k

)

Ec,k(0)tn−k by [S08, (1.15)]. Combining

these together, we obtain (0.4).
Though clearly this is not the best way to prove (0.4), at least it explains an

elementary aspect of the nature of the problem. In Section 5, we will return to
this idea in our discussion in the higher-dimensional case.

2. The functional equation for ζ(s; a, γ)

2.1. For Re(s) > 1 Hurwitz proved (see [Hu, p. 93, 1)] and [WW, p. 269])

(2.1) ζ(1 − s, a)

=
2Γ (s)

(2π)s

{

cos(πs/2)
∞
∑

n=1

cos(2πna)

ns
+ sin(πs/2)

∞
∑

n=1

sin(2πna)

ns

}

.

Therefore it is natural to ask if there is a meaningful formula for ζ(1−s, a; γ).
Though this was essentially done by Lerch in [Le], here we take a different
approach. For s ∈ C, a ∈ R, p ∈ R, and ν = 0 or 1 we put

(2.2) Dν(s; a, p) =
∑

−a6=n∈Z

(n+ a)ν |n+ a|−ν−se
(

p(n+ a)
)

,
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(2.3) T ν(s; a, p) = gν(s)Dν(s; a, p), gν(s) = π−(s+ν)/2Γ
(

(s+ ν)/2
)

.

These were introduced in [S08]. In particular, we proved

(2.4) T ν(1 − s; a, p) = i−νe(ap)T ν(s; −p, a).
Let γ = e(p) and b = 1 − a with 0 < a < 1. Then it is easy to verify that

(2.5a) D0(s; a, p) = e(ap)ζ(s; a, γ) + e(−bp)ζ(s; b, γ−1),

(2.5b) D1(s; a, p) = e(ap)ζ(s; a, γ) − e(−bp)ζ(s; b, γ−1),

and so

(2.6) 2e(ap)ζ(s; a, γ) = D0(s; a, p) +D1(s; a, p).

Employing (2.3) and (2.4), we obtain

(2.7) 2ζ(1 − s; a, γ) =
g0(s)

g0(1 − s)
D0(s; −p, a) − ig1(s)

g1(1 − s)
D1(s; −p, a).

From (2.5a, b) we see that Dν(s; −p, a) is a linear combination of ζ(s; −p, δ)
and ζ(s; 1 + p, δ−1), where δ = e(a). Thus, for −1 < p < 0 we have

2ζ(1 − s; a, γ) = e(−ap)Aζ(s; −p, δ) + e(−a− ap)Bζ(s; 1 + p, δ−1)

with

(2.8) A =
g0(s)

g0(1 − s)
− ig1(s)

g1(1 − s)
, B =

g0(s)

g0(1 − s)
+

ig1(s)

g1(1 − s)
.

Recalling that Γ (s/2)Γ ((s + 1)/2) = 21−sπ1/2Γ (s) and Γ (s)Γ (1 − s) =
π/ sin(πs), we find that

(2.9) A = 21−sπ−se(−s/4)Γ (s), B = 21−sπ−se(s/4)Γ (s),

and so we obtain

(2.10) ζ(1 − s; a, γ)

=
e(−ap)Γ (s)

(2π)s

{

e(−s/4)ζ(s; −p, δ) + e(s/4 − a)ζ(s; p+ 1, δ−1)

}

.

at least when −1 < p < 0 and 0 < a < 1, where γ = e(p) and δ = e(a).
This does not apply to the case γ = 1. In this case we have

2ζ(s; a, 1) = D0(s; a, 0) +D1(s; a, 0) for 0 < a ≤ 1,

Dν(s; 0, a) = δζ(s; 1, δ) + (−1)νδ−1ζ(s; 1, δ−1).

Repeating the same argument as in the case γ 6= 1, we find that

2ζ(1 − s; a, 1) = δAζ(s; 1, δ) + δ−1Bζ(s; 1, δ−1)

with the same A and B as in (2.8) and (2.9), and so

(2.11) ζ(1 − s; a, 1)

=
Γ (s)

(2π)s

{

e

(

a− s

4

)

ζ(s; 1, δ) + e

(

s

4
− a

)

ζ(s; 1, δ−1)

}

.

where δ = e(a), 0 < a ≤ 1. This gives (2.1). Indeed, we have
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e(±a)ζ(s; 1, δ±1) =

∞
∑

m=1

δ±m

ms
=

∞
∑

m=1

cos(2πma) ± i sin(2πma)

ms
,

and so a simple calculation transforms (2.11) into (2.1).
Returning to (2.10) in which we assumed −1 < p < 0, put q = −p. Then

0 < q < 1 and

(2.12)
(2π)s

Γ (s)
ζ
(

1 − s; a, e(q)−1
)

= e(−s/4)

∞
∑

h=0

e
(

a(h+ q)
)

(h+ q)s
+ e(s/4)

∞
∑

h=0

e
(

a(q − h− 1)
)

(h+ 1 − q)s
.

Then employing (0.4), for 0 < s = k ∈ Z we obtain

(2.13)
(2πi)k

(k − 1)!(1 + c−1)
Ec,k−1(a) =

∑

h∈Z

e
(

a(h+ q)
)

(h+ q)k
,

where c = −e(q). This formula was given in [S07, (4.5)]. Thus we have given a
proof of (2.13) different from that of [S07]. (The case k = 1 must be handled
carefully; see [S07, pp. 26–27].) In [S08] we asked the question whether the
parameter k in (2.13) can be extended to a complex variable, and presented
Dν(s; a, p) as an answer. Since (2.13) is a special case of (2.12), we can now
say that (2.12) is another answer to that question.

3. The case of a totally real number field

3.1. Let F be a totally real algebraic number field. We ask whether we can
define a function similar to ζ(s; a, γ) by taking the totally positive integers in
F in place of n in (0.1). We are going to give a partially affirmative answer
to this question. We let g denote the maximal order of F, d the different of
F relative to Q, and a the set of all archimedean primes of F. For each v ∈ a

we denote by Fv the v-completion of F, identified with R. In other words, v
defines an injection of F into R, and for ξ ∈ F we denote by ξv the image of ξ
under this injection. We put [F : Q] = g, Fa =

∏

v∈a Fv, and F×
a =

∏

v∈a F
×
v .

Then Fa can be identified with Rg, and for ξ ∈ F the map ξ 7→ (ξv)v∈a defines
an injection of F into Fa. We then put

ea(ξ) = e
(
∑

v∈a ξv
)

(ξ ∈ Fa),

ξk =
∏

v∈a

ξkv

v , ξa =
∏

v∈a

ξv, (k = (kv)v∈a ∈ Za, ξ ∈ F×
a ).

We also put N(ξ) = NF/Q(ξ) for ξ ∈ F. Then N(ξg) = |N(ξ)| = |ξa| for ξ ∈
F×. We write ξ ≫ 0 if ξv > 0 for every v ∈ a and put g×+ =

{

u ∈ g×
∣

∣u≫ 0
}

.
Now for s ∈ C, a fractional ideal b, and a, p ∈ F we put

(3.1) ζ(s; b, a, p) = [g×+ : U ]−1
∑

0≪ξ∈b+a (mod U)

|N(ξ)|−sea(pξ).

Here the sum is taken over F×/U under the condition that ξ ≫ 0 and ξ− a ∈
b. We take a subgroup U of g×+ of finite index such that u − 1 ∈ a−1b ∩
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p−1(b−1d−1 ∩ a−1d−1) for every u ∈ U. Clearly such a U exists, the sum of
(3.1) is meaningful, and ζ(s; b, a, p) is well defined independently of the choice
of U.

This is an analogue of (0.1), but it should be remembered that here both a
and p belong to F. Thus (1.5) is a special case of (3.1).

Next, let k ∈ Za. With s, b, a, and p as above, we put

(3.2) Dk(s; b, a, p) = [g×+ : U ]−1
∑

06=ξ∈b+a (mod U)

ξ−k|ξ|k−saea(pξ),

where the summation is the same as in (3.1) except that this time we do not
impose the condition ξ ≫ 0. This is well defined and both (3.1) and (3.2) are
convergent for Re(s) > 1.

Lemma 3.2. Let k ∈ Za with kv = 0 or 1 for every v ∈ a. Then the product

Dk(s; b, a, p)
∏

v∈a

Γ
(

(s+ kv)/2
)

can be continued to a meromorphic function of s on the whole s-plane that is
holomorphic except for possible simple poles at s = 0 and 1, which occur only
when k = 0. The pole at s = 0 occurs if and only if k = 0 and a ∈ b.

This is included in [S00, Lemma 18.2], as Dk(s; b, a, p) is a special case of
the series Dk(s, κ) of [S00, (18.1)]. Notice that Dk(s; b, a, p) is finite at s = 0
for every k.

Lemma 3.3. For 0 < µ ∈ Z and k ∈ Za with kv = 0 or 1 the following
assertions hold:

(i) Dk(1 − µ; b, a, p) = 0 if kv − µ /∈ 2Z for some v ∈ a.
(ii) Suppose kv − µ ∈ 2Z for every v ∈ a; then Dk(1 − µ; b, a, p) ∈ Qab,

where Qab denotes the maximal abelian extension of Q; in particular, Dk(1 −
µ; b, a, 0) ∈ Q.

Proof. Suppose kv − µ /∈ 2Z for one particular v. Then Γ
(

(s + kv)/2
)

has
a pole at s = 1 − µ, and so (i) follows from Lemma 3.2. As for (ii), that
Dk(1−µ; b, a, 0) ∈ Q is given in Proposition 18.10(ii) of [S00]. For any p ∈ F,
we see that Dk(s; b, a, p) is a finite Qab-linear combination of Dk(s; b′, a′, 0)
with several (b′, a′), and so Dk(1 − µ; b, a, p) ∈ Qab.

Now our principal result on ζ(s; b, a, p) can be stated as follows.

Theorem 3.4. (i) ζ(s; b, a, p) can be continued to a meromorphic function

of s on the whole s-plane, which is holomorphic except for a possible simple

pole at s = 1.
(ii) Let 0 < µ ∈ Z. Then ζ(1 − µ; b, a, p) ∈ Qab, and in particular, ζ(1 −

µ; b, a, 0) ∈ Q.

Proof. For ξ ∈ F× we note an easy fact
∑

k∈Za/2Za

ξ−k|ξ|k =

{

2g if ξ ≫ 0,

0 otherwise,

where g = [F : Q]. Therefore we obtain
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(3.3) 2gζ(s; b, a, p) =
∑

k∈Za/2Za

Dk(s; b, a, p),

and so assertion (i) follows immediately from Lemma 3.2. Take µ as in (ii).
By Lemma 3.3(i), the terms on the right-hand side of (3.3) vanish except for
the term with k such that kv − µ ∈ 2Z for every v. Therefore we obtain the
desired result from Lemma 3.3(ii), and our proof is complete.

4. Some explicit expressions for Gauss sums

4.1. There are two kinds of formulas for the critical values of L(s, χ): one is
for L(k, χ) and the other for L(1−k, χ). The former involves π and the Gauss
sum of χ, whereas the latter does not. In a sense L(1 − k, χ) is conceptually
more natural than L(k, χ), but there is an interesting aspect in the computation
of L(k, χ), since it allows us to find an explicit expression for a certain Gauss
sum. This can be achieved by computing L(k, χ) in two different ways, which
involve two different Gauss sums. Let us begin with the definition of a Gauss
sum and an easy lemma.

Given a primitive or an imprimitive Dirichlet character χ′ modulo a positive
integer, we take the primitive character χ associated with χ′, and define the
Gauss sum G(χ′) to be the same as the Gauss sum G(χ) of χ, given by

(4.1) G(χ) =

d
∑

a=1

χ(a)e(a/d),

where d is the conductor of χ. Now we have an elementary

Lemma 4.2. (i) Let χ1, . . . , χm be Dirichlet characters. Then the number

G(χ1) · · ·G(χm)/G(χ1 · · ·χm) belongs to the field generated by the values of

χ1, . . . , χm over Q.
(ii) Let ψ and χ be primitive characters of conductor c and d, respectively.

If c and d are relatively prime, then

(4.2) G(ψχ) = ψ(d)χ(c)G(ψ)G(χ).

Proof. For the proof of (i) see [S78, Proposition 4.12], which generalizes [S76,
Lemma 8]. In the setting of (ii) take r, s ∈ Z so that cr + ds = 1. Then for
x, y ∈ Z the map (x, y) 7→ xds+ycr gives a bijection of (Z/cZ)× (Z/dZ) onto
Z/cdZ, and so

G(ψχ) =

c
∑

x=1

d
∑

y=1

e
(

(xds+ ycr)/cd
)

ψ(xds)χ(ycr)

=

c
∑

x=1

ψ(xds)e(xs/c)

d
∑

y=1

χ(ycr)e(yr/d),

which proves (4.2).

Theorem 4.3. Let χ be a primitive character of conductor d such that
χ(−1) = −1, and let λ(m) =

(

3
m

)

. Suppose d is odd and 0 < d/9 ∈ Z.
Then
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(4.3)
G(χλ)

G(χ)
=

{

2
√

3χ(2)

d−1
∑

a=1

(χλ)(a)

}/{ d−g
∑

j=1−g

(−1)jχ(j)

}

,

where g = [d/6] + 1.

Proof. In [S07, Theorem 6.3(v)] we gave a formula for L(k, χλ). Taking k = 1
and χ̄ in place of χ, we obtain

2
√

3χ(2)(πi)−1G(χ)L(1, χ̄λ) =

d−g
∑

j=1−g

(−1)jχ(j),

since E1,0(t) = 1. Now χ̄λ is primitive and has conductor 4d, and so the
formula [S07, (4.34)] applied to χ̄λ produces

(πi)−1G(χλ)L(1, χ̄λ) =

d−1
∑

a=1

(χλ)(a).

Taking the quotient of these two formulas, we obtain (4.3).

In [S07, Theorem 6.3] we gave eight formulas for L(k, χλ), where λ is a
“constant” character and χ is a “variable” character. In the above theorem
we employed only one of those formulas. We can actually state results about
G(χλ)/G(χ) in the other seven cases, but they are not so interesting, since we
can apply (4.2) to χλ in those cases, and the case we employed in the above
theorem is the only case to which (4.2) is not applicable. Even in that case,
the significance of (4.3) is rather obscure. Still, the formula is clear-cut and
nontrivial, and we state it here with the hope that future researchers will be
able to clarify its nature in a better perspective.

We end our discussion of this subject by showing the quantity of (4.3) can
be determined in a different way. We begin with some preliminary results.

Lemma 4.4. Let χ and ψ be primitive characters of conductor pm and pn,
respectively, where p is a prime number and m, n are positive integers. Sup-
pose m ≥ n and χψ has conductor pm. Then

(4.4) G(χ)G(ψ) = G(χψ)

pn

∑

a=1

χ(1 − pm−na)ψ(a).

This was given in [S76, (4.2)].

Lemma 4.5. Let χ be a primitive character of conductor c, where c = 3m

with m > 1 or c = 2m with m > 3, and let µ3 and µ4 denote the primitive
characters of conductor 3 and 4, respectively. Let χ′ = χµ3 if c = 3m and
χ′ = χµ4 if c = 2m. Then G(χ′) = εG(χ) with ε = ±1 determined by
χ(1 − 3m−1) = e(ε/3) if c = 3m and χ(1 − 2m−2) = e(ε/4) if c = 2m.

Proof. We first consider the case c = 2m. By (4.4), G(χ)G(µ4)/G(χ′) = β− γ
with β = χ(1−2m−2) and γ = χ(1+2m−2). Since m > 3,we have (1−2m−2)2 ≡
1−2m−1 (mod 2m), (1−2m−2)(1+2m−2) ≡ 1 (mod 2m), and (1−2m−2)4 ≡ 1
(mod 2m), and so β4 = βγ = 1. Suppose β = ±1. Then χ(1− 2m−1) = 1, and
so χ(1 − 2m−1a) = χ(1 − 2m−1)a = 1 for every a ∈ Z, which means that χ
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has conductor ≤ 2m−1, a contradiction. Thus β 6= ±1, and so β = εi with
ε = ±1. Since G(µ4) = 2i, we have G(χ)/G(χ′) = (β − β−1)/2i = ε, which
proves the case c = 2m.

If c = 3m, we have similarly G(χ)G(µ3)/G(χ′) = β−γ with β = χ(1−3m−1)
and γ = χ(1 + 3m−1). We easily see that βγ = β3 = 1 and β 6= 1. Since

G(µ3) =
√

3i, we have G(χ)/G(χ′) = (β − β−1)/
√

3i = ε, and ε is determined
by β = e(ε/3). This completes the proof.

4.6. Returning to the setting of Theorem 4.3, put d = 3mf with m ∈ Z and
0 < f ∈ Z, 3 ∤ f ; put also χ = χ0χ1 with characters χ0 and χ1 of conductor
3m and f, respectively. Since λ = µ3µ4, we have χλ = χ0µ3χ1µ4. By (4.2) we
have G(χ1µ4) = 2iχ1(4)µ4(f)G(χ1), and so

G(χλ) = (χ1µ4)(3
m)(χ0µ3)(4f)G(χ0µ3)G(χ1µ4)

= 2i(−1)mχ0(f)χ(4)χ1(3
m)λ(f)G(χ0µ3)G(χ1).

Also, G(χ) = χ0(f)χ1(3
m)G(χ0)G(χ1). Therefore

G(χλ)/G(χ) = 2i(−1)mλ(f)χ(4)G(χ0µ3)/G(χ0).

Applying Lemma 4.5 to G(χ0µ3)/G(χ0), we thus obtain

(4.5) G(χλ)/G(χ) = 2i(−1)mλ(f)χ(4)ε,

where ε = ±1 is determined by χ0(1 − 3m−1) = e(ε/3).

5. The case of a domain of positivity

5.1. There is a natural analogue of ζ(s; a, γ) defined on the space of sym-
metric matrices. To be explicit, with a positive integer n we denote by V the
set of all real symmetric matrices of size n, and write h > 0 resp. h ≥ 0 for
h ∈ V when h is positive definite resp. nonnegative. We put VC = V ⊗R C,

κ = (n+ 1)/2, P =
{

h ∈ V
∣

∣h > 0
}

, and

H =
{

x+ iy ∈ VC

∣

∣x ∈ V, y ∈ P
}

.

For h ∈ V we denote by λ(h) and µ(h) the maximum and minimum absolute
value of eigenvalues of h, respectively. We easily see that V is a normed
space with λ(h) as the norm of h, that is, λ(ch) = |c|λ(h) for c ∈ R and
λ(h + k) ≤ λ(h) + λ(k). For 0 ≤ d ∈ Z we denote by Sd the space of all
C-valued homogeneous polynomial functions on V of degree d. Here are two
easy facts:

(5.1) tr(gh) ≥ λ(h)µ(g) if g, h ∈ P.

(5.2) |ξ(h)| ≤ cξλ(h)
d for every ξ ∈ Sd and h ∈ V with a positive constant

cξ that depends only on ξ.

To prove (5.1), we may assume that g is diagonal. For g = diag[µ1, . . . , µn]
we have tr(gh) =

∑n
i=1 µihii ≥ µ(g)tr(h) ≥ µ(g)λ(h), since tr(h) is the sum of

all eigenvalues of h. As for (5.2), given h ∈ V, take an orthogonal matrix p so
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that h = tp · diag[κ1, . . . , κn]p with κi ∈ R. Since |pij | ≤ 1 and |κi| ≤ λ(h),
we see that |hij | ≤ nλ(h), from which we obtain (5.2).

We now consider three types of infinite series:

(5.3) Φ(s; L, a, z) =
∑

h∈L

det
(

2πi(h− z)
)−s

e
(

tr(a(h− z))
)

,

(5.4) F (s; L, a, z) =
∑

h∈L, h+a>0

det(h+ a)−se
(

tr(hz)
)

,

(5.5) F0(s; L, a, z) =
∑

0≤h∈L

det(h+ a)−se
(

tr(hz)
)

.

Here s ∈ C, L is a lattice in V, a ∈ V, z ∈ H, and the sum of (5.4) is extended
over all h ∈ L such that h+ a ∈ P ; the sum of (5.3) is simply over all h ∈ L;
in (5.5) we assume that a > 0 and the sum is extended over all nonnegative
h in L. For z ∈ H and s ∈ C we define det(−2πiz)s so that it coincides with
det(2πp)s if z = ip with p ∈ P.

Lemma 5.2. For every ξ ∈ Sd the infinite series

(5.6)
∑

h∈L, h+a>0

det(h+ a)sξ(h+ a)e
(

tr(hz)
)

converges absolutely and locally uniformly for (s, a, z) ∈ C× V × H.

Proof. For a fixed positive number α the number of h ∈ L such that λ(h)≤α
is finite, as

{

h∈V
∣

∣λ(h)≤α
}

is compact and L is discrete in V. Thus, to prove
the convergence of (5.6), we can restrict h to those that satisfy λ(h) > λ(a)+1
for every a ∈ A, where A is a fixed compact subset of V. For such an h we
have 1 ≤ λ(h + a) < 2λ(h) and det(h + a) ≤ λ(h + a)n ≤ 2nλ(h)n. Also,
by (5.2), |ξ(h + a)| ≤ cξλ(h + a)d ≤ cξ2

dλ(h)d. Thus for Re(s) = σ we have
| det(h + a)sξ(h + a)| ≤ 2nσ+dcξλ(h)

nσ+d. On the other hand, for 0 < N ∈ Z

the number of h ∈ L such that N ≤ λ(h) < N + 1 is less than CN b with
positive constants C and b. Put g = 2πIm(z). Then |e(tr(hz)

)

| = e−tr(gh).
Since −tr(gh) ≤ −λ(h)µ(g) by (5.1), our partial sum can be majorized by
2nσ+dcξC

∑∞
N=1(N + 1)nσ+d+be−Nµ(g), which proves our lemma.

Theorem 5.3. (i) The infinite series of (5.3) converges absolutely and locally
uniformly in (s, a, z) ∈

{

s ∈ C
∣

∣ Re(s) > n
}

× V × H. Thus it defines a
holomorphic function in s for Re(s) > n.

(ii) The infinite series of (5.4) and (5.5) converge absolutely and locally uni-

formly in (s, a, z) ∈ C× V × H, and so they define entire functions of s.
(iii) For Re(s) > n we have

(5.7) vol(V/L)F (κ− s; L, a, z) = Γn(s)Φ(s; L′, a, z),

where L′ =
{

x ∈ V
∣

∣ tr(xL) ⊂ Z
}

and

Γn(s) = πn(n−1)/4

n−1
∏

k=0

Γ
(

s− (k/2)
)

.
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(iv) For 0 ≤ m ∈ Z the values F (−m; L, a, z), F0(−m; L, a, z), and Φ(κ+
m; L, a, z) are polynomial functions of a of degree ≤ mn, whose coefficients

depend on L and z.

Statement (iv) for F0 can be taken literally, but the cases of F and Φ require
some clarifications, which will be given in the proof.

Proof. Assertion (i) is included in [S82, Lemma 1.3]; (ii) follows from Lemma
5.2. To prove (iii), given s ∈ C and p ∈ P, we consider a function g on V
defined by

g(u) =

{

e−tr(up) det(u)s−κ (u ∈ P ),

0 (u /∈ P ),

and define its Fourier transform ĝ by

ĝ(t) =

∫

V

e
(

− tr(ut)
)

g(u)du (t ∈ V ),

where du =
∏

i≤j duij . As shown in [S82, (1.22)], ĝ(t) = Γn(s) det(p+2πit)−s,

provided Re(s) > κ − 1. Then the Poisson summation formula establishes
equality (5.7) with both sides multiplied by e

(

tr(az)
)

for z = (−2πi)−1p
when the series of (5.3) and (5.4) are convergent, which is the case at least
when Re(s) > n. Since both sides of (5.7) are holomorphic in z if Re(s) > n,
we obtain (iii) as stated.

To prove (iv), take a C-basis B of
∑mn

d=0 Sd. For 0 ≤ m ∈ Z we have

(5.8) F0(−m; L, a, z) =
∑

0≤h∈L

det(h+ a)me
(

tr(hz)
)

.

We can put det(h+a)m =
∑

β∈B β(a)fβ(h) with polynomial functions fβ , and
so

(5.8a) F0(−m; L, a, z) =
∑

β∈B

β(a)Gβ(z) with

(5.8b) Gβ(z) =
∑

0≤h∈L

fβ(h)e
(

tr(hz)
)

.

Thus F0(−m; L, a, z) is a polynomial in a as stated in (iv). This argument is
basically valid for F in place of F0, but the functions corresponding to Gβ in
that case may depend on a. To avoid that difficulty, we first take a compact
subset A of V and restrict a to A. As shown in the proof of Lemma 5.2, we
can find a subset M of L independent of a such that

{

h ∈ L
∣

∣h > 0, h+ a > 0
}

= M ⊔Ka,

with a finite set Ka for each a ∈ A. Then, taking F in place of F0, we obtain,
for a ∈ A,

(5.9a) F (−m; L, a, z) =
∑

β∈B

β(a)Hβ(z) with

(5.9b) Hβ(z) =
∑

h∈Ka

fβ(h)e
(

tr(hz)
)

+
∑

h∈M

fβ(h)e
(

tr(hz)
)

.

Documenta Mathematica 15 (2010) 489–506



504 Goro Shimura

Thus the statement about F (−m; L, a, z) in (iv) must be understood in the
sense of (5.9a, b). It is a polynomial in a whose coefficients Hβ(z) is the sum
of a “principal part” that is independent of a and a finite sum depending on
a.

As for the value of Φ, from (5.7) we see that Φ is an entire functions of s.
Also Γn(s)−1 is nonzero for (n − 1)/2 < s ∈ R. Thus Φ(κ + m; L′, a, z) is
a nonzero constant times F (−m; L, a, z), and so is a polynomial in a in the
sense explained above.

5.4. Let us add some remarks. Clearly F0 of (5.5) is a natural generalization
of (0.1), but we introduced F and Φ as in (5.4) and (5.3), as we think they
are natural objects of study closely related to (5.5). It must be remembered,
however, that (5.5) includes (0.1) as a special case only if |γ| < 1. To define
something like (5.5) that includes (0.1) with |γ| = 1 is one of the open problems
in this area.

Next, there are four classical types of domains of positivity associated with
tube domains discussed in [S82]. Our V, P, and H in this section belong to the
easiest type. We can in fact define the analogues of (5.3), (5.4), and (5.5) for
all three other types of domains, and prove the results similar to Theorem 5.3
in those cases.

As to the nature of the polynomials in the variable a obtained in Theorem
5.3(iv), we do not have their description as explicit as what we know about
Ec,m(t). Still, we can show that they are of a rather special kind. For that
purpose we need a matrix of differential operators ∂a = (∂ij)

n
i,j=1 on V as

folows. Taking a variable symmetric matrix a = (aij) on V, we put ∂ii = ∂/∂aii

and ∂ij = 2−1∂/∂aij for i 6= j. Then for every ϕ ∈ Sd we can define a diffrential
operator ϕ(∂a). In particular, taking ϕ(a) = det(a), we put

(5.10) ∆a = det(∂a) =
∑

σ

sgn(σ)∂1σ(1) · · · ∂nσ(n),

where σ runs over all permutations of {1, . . . , n}. It is well known that

(5.11) ∆a

(

det(a)s
)

=
n−1
∏

k=0

(s+ k/2) · det(a)s−1.

This is a special case of a general formula on ϕ(∂a) det(z)s for ϕ ∈ Sd given
in [S84].

Fixing L and z, for 0 ≤ m ∈ Z put

(5.12) Em(a) = F0(−m; L, a, z).

We have shown that Em is a polynomial of degree ≤ mn. Notice that E0(a) =
∑

0≤h∈L e
(

tr(hz)
)

. From (5.8) and (5.11) we obtain

(5.13) ∆aEm(a) =

n−1
∏

k=0

(m+ k/2) · Em−1(a).

This is a generalization of the formula (d/dt)Ec,m(t) = mEc,m−1(t), noted in
[S07, (4.3c)].
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