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Abstract

Recall that a metric d on a finite set X is called antipodal if there
exists a map σ : X → X: x 7→ x so that d(x, x) = d(x, y) + d(y, x)
holds for all x, y ∈ X. Antipodal metrics canonically arise as met-
rics induced on specific weighted graphs, although their abundance
becomes clearer in light of the fact that any finite metric space can
be isometrically embedded in a more-or-less canonical way into an
antipodal metric space called its full antipodal extension.

In this paper, we examine is some detail antipodal metrics that
are, in addition, totally split decomposable. In particular, we give an
explicit characterization of such metrics, and prove that – somewhat
surprisingly – the full antipodal extension of a proper metric d on a
finite set X is totally split decomposable if and only if either #X = 3
or d is linear.

Keywords: antipodal metric, full antipodal extension, totally split-decompo-
sable metric, consistent metric, split metric, weakly compatible split system,
octahedral split system.
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1 Introduction

Let X be a finite set and recall that a (pseudo)metric d, that is, a symmetric
function

d : X × X → R≥0

that vanishes on the diagonal and satisfies the triangle inequality, is defined
to be antipodal if there exists a map σ : X → X : x 7→ x so that

d(x, x) = d(x, y) + d(y, x)

holds for all x, y ∈ X. Antipodal metrics commonly arise as metrics induced
on the set of vertices of specific weighted graphs, e.g. the 1-skeletons of zo-
notopes (with weights attached to each class of parallel edges and not just
to single edges, cf. [2, 9, 10, 11]). Yet, their abundance becomes obvious in
a much more convincing way from the observation that every finite metric
space can be embedded isometrically in a more or less canonical way into an
antipodal metric space as follows: Given an arbitrary set X, let X∗ denote
the set X × {+1,−1}. Then, given a metric d : X × X → R and a positive
constant C with 2C ≥ d(x, y) + d(y, z) + d(z, x) for all x, y, z ∈ X, the map
d∗

C : X∗ × X∗ → R defined by

d∗
C((x, ε), (y, η)) :=

{
d(x, y) if εη = 1,
C − d(x, y) else,

for all x, y in X and ε, η in {+1,−1}, is easily seen to define an antipodal
metric d∗

C on X∗, while the map X → X∗ : x 7→ (x, +1) defines an isometric
embedding of (X, d) into the antipodal metric space (X∗, d∗

C) (cf. [4] where
this construction is called the full antipodal extension of a metric space).

In this paper, we will see that antipodal metrics that are in addition totally
split decomposable (for a definition of this concept, see below or [1, 4]) have
some very specific combinatorial properties that permit the identification of
the “space” of all isometry classes of proper1 antipodal metrics on a 2t-set
X with the orbit space of the dihedral group Dt on Rt

>0 in case t 6= 3, and
with the orbit space of the symmetric group S4 on the subset of R4

≥0 which
consists of all 4-tuples (x1, x2, x3, x4) ∈ R4

≥0 with xi = 0 for at most one
i ∈ {1, 2, 3, 4} in case t = 3 (where the action of Dt on Rt

>0 and that of S4

1A metric d defined on a set X is said to be a proper metric if d(x, y) 6= 0 holds for all
distinct elements x, y in X .
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on R4
≥0 is, of course, the canonical one). The summary of our results that

we want to present next will require a somewhat involved, yet unfortunately
unavoidable introduction to split-decomposition theory:

We begin by recalling that a split S = {A, B} of X – or, for short, an
X-split – is defined to be a bipartition of X into two (non-empty) sets A, B.
Given a split S and an element x in X, we denote by S(x) the unique subset
in S, A or B, that contains x, and by S(x) := X − S(x) the unique set in S
that does not contain x. The set of all splits of X is denoted by S(X), any
collection S ⊆ S(X) of splits of X is called a split system (for X).

In [6], we studied the exceptional split geometries arising from split sys-
tems that are weakly compatible, yet incompatible. We showed [6, Theorem
3.1] that such split systems must be either strictly circular or octahedral.
These terms are defined as follows: A split system S ⊆ S(X) is called

• incompatible if S1(x)∪S2(x) 6= X holds for all x ∈ X and all S1, S2 ∈ S;

• weakly compatible if there exist no four points x0, x1, x2, x3 in X and
three splits S1, S2, S3 in S with “Si(x0) = Si(xj) ⇐⇒ i = j ” for all
i, j ∈ {1, 2, 3};

• strictly circular if there exists a (labeled) partition Π := {X1, . . . , X2t}
of X into 2t non-empty subsets Xi, 1 ≤ i ≤ 2t, such that S coincides
with the split system SΠ consisting of all splits S = {A, B} with

A := Xi∪̇ . . . ∪̇Xi+t−1

and
B := X − A = Xi+t∪̇Xi+t+1∪̇ . . . ∪̇X2t∪̇X1∪̇ . . . ∪̇Xi−1

for some i with 1 ≤ i ≤ t; and

• octahedral if there exists a (labeled) partition Π = {X1, . . . , X6} of X
into six non-empty subsets X1, . . . , X6 such that S coincides with the
split system ŜΠ consisting of SΠ together with the additional split

{X1∪̇X3∪̇X5, X2∪̇X4∪̇X6}.

4



Curiously, these weakly compatible, yet incompatible split systems are
closely related to antipodal split systems, that is, split systems S ⊆ S(X) for
which there exists a map σ : X → X : x 7→ x so that S(x) 6= S(x) – and,
therefore, S(x) = S(x) – holds for all S ∈ S and all x ∈ X. In Section 2, it
will be observed that

(I) every antipodal split system S ⊆ S(X) is incompatible, and

(II) a weakly compatible split system is antipodal if and only if it is incom-
patible (and, hence, either strictly circular or octahedral).

The study of weakly compatible split systems was motivated in part by
the fact that they arise naturally in the study of finite metric spaces. In
particular, a theory was developed in [1] that allows the analysis of a finite
metric2 d in terms of its associated weighted split systems (S(d), αd) which,
for the convenience of the reader, we briefly review here:

An ordered pair consisting of a split system S ⊆ S(X) together with a
map α : S → R>0 is called a (positively) weighted split system. The weighted
split system (S(d), αd) associated to a metric d is defined as follows: For every
pair A, B of non-empty subsets of X, the isolation index α(A, B) = α(A, B|d)
of A, B relative to d is defined by

α(A, B|d) :=
1

2
min

a,a′∈A b,b′∈B
(max





d(a, b) + d(a′, b′)
d(a, b′) + d(a′, b)
d(a, a′) + d(b, b′)



 − d(a, a′) − d(b, b′)).

The split system S(d) associated to d is defined by

S(d) := {{A, B} ∈ S(X) : α(A, B|d) > 0},

and the value αd(S) of αd on a split S = {A, B} in S(d) is defined by

αd(S) := α(A, B|d).

To analyze the relationship between a metric d and its associated weighted
split system (S(d), αd), recall also the following definitions:

2Originally, most of the results in [1] were established for symmetric non-negative real-
valued functions defined on a finite set.
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• to every split S ∈ S(X), one associates a (pseudo)metric δS – also called
the split metric (or cut metric) associated to S – which is defined by

δS : X × X → {0, 1} : δS(x, y) :=

{
1 if S(x) 6= S(y),
0 else,

• a metric is called a Hamming metric (cf. [12, p.2048]) if it is a positive
linear combination of such split metrics.

Thus, a metric d is a Hamming metric if and only if it is of the form

d = dS,α :=
∑

S∈S

α(S) δS

for some arbitrary weighted split system (S, α). Using this notation, the fol-
lowing facts were established in [1]:

(1) For every given metric d defined on X, the following holds:

(a) The split system S(d) is always weakly compatible.

(b) For α := αd, the inequality

dS(d),α(x, y) ≤ d(x, y)(1)

holds for all x, y ∈ X. More precisely, the split prime residue
d0 := d − dS(d),α of d is always a (pseudo)metric.

(c) The split prime residue d0 of d vanishes or, equivalently, equality
holds in Inequality (1) for all x, y in X if and only if

α({x, y}, {u, v}|d) ≤ α({x, t}, {u, v}|d) + α({x, y}, {u, t}|d)

holds for all x, y, u, v, t in X (or, equivalently, for all x, y, u, v, t in
X with #{x, y, u, v, t} = 5), in which case d is called totally split
decomposable.

(2) Given an arbitrary weighted split system (S, β), one has

(S, β) = (S(d), αd)

for some metric d on X if and only if S is weakly compatible if and
only if one has (S, β) = (S(d), αd) for some totally split-decomposable
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metric d, in which case this totally split-decomposable metric d must
necessarily coincide with dS,β.

3

Thus, totally split-decomposable metrics form a particular class of Ham-
ming metrics — more precisely, they form the class of those Hamming metrics
d that are of the form d = dS, α for some weighted split system (S, α) with
S a weakly compatible split system. Moreover, though such a metric may
have other representations as a positive linear combination of split metrics,
its representation as a positive linear combination of weakly compatible split
metrics (i.e. split metrics whose associated splits form a weakly compatible
split system) is necessarily unique.

Since these facts were discovered, a number of further remarkable fea-
tures regarding metrics, split systems, and the relationship between both
have come to light (cf. [5, 6, 7, 8, 13]). In this note, we augment these
investigations by applying the machinery developed in [1] to the analysis of
antipodal metrics and antipodal split systems.

In particular, we show in Section 2 that

(i) split systems associated to antipodal metrics are themselves always
antipodal and, therefore, they are either strictly circular or octahedral
split systems (Corollary 2),

(ii) conversely, the Hamming metric dS,α associated to an arbitrary weighted
split system (S, α) is antipodal if and only if the underlying split system
S itself is antipodal (Theorem 2) and, hence,

(iii) the Hamming metric dS,α associated to a weakly compatible split sys-
tem (S, α) is antipodal if and only if S is incompatible (Corollary 1).

Our main result is established in Section 3. It provides a complete and ab-
solutely explicit description of all totally split-decomposable antipodal met-
rics: For any t ≥ 1, let X (t) denote the set of cardinality 2t consisting of all

3Actually, using the terminology of [1], the metrics d with (S, β) = (S(d), αd) for
some weighted, weakly compatible split system (S, β) are exactly the metrics whose split

decomposable part coincides with dS,β and which, therefore, allow a coherent decomposition

of the form d = d0 +dS,β with d0 their split prime residue as defined above. Consequently,
they are exactly the metrics of the form d = d0 + dS,β where d0 is any split prime metric
defined on X with the property that every map f : X → R with f(x) + f(y) ≥ d0(x, y) +
dS,β(x, y) for all x, y ∈ X is of the form f = f0 + f1 with f0(x) + f0(y) ≥ d0(x, y) and
f1(x) + f1(y) ≥ dS,β(x, y), again for all x, y ∈ X .
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maps x from the set {1, . . . , t} into the set {+1,−1} with x(j) ∈ {x(i), x(k)}
for all i, j, k ∈ {1, . . . , t} with i < j < k. For all constants c1, . . . , ct ≥ 0, let
dc1,... ,ct

denote the metric defined on X (t) by

dc1,... ,ct
(x, y) :=

∑

i∈{1,... ,t}

ci |x(i) − y(i)|

and, for all constants c1, . . . , ct, ct+1 ≥ 0, let d̂c1,... ,ct,ct+1
denote the metric

defined on X (t) by

d̂c1,... ,ct,ct+1
(x, y) := dc1,... ,ct

(x, y) + ct+1 |Π
t
i=1x(i) − Πt

i=1y(i)|,

so one has d̂c1,... ,ct,0 = dc1,... ,ct
for all c1, . . . , ct ≥ 0. Then, the following holds:

Theorem 1 A proper metric d defined on a set X with #X 6= 6 is totally
split decomposable and antipodal if and only if it is isometric to a metric
of the form dc1,... ,ct

for some positive constants c1, . . . , ct in which case the
parameters c1, . . . , ct are determined uniquely by d up to cyclic or anticyclic
reordering.

In contrast, if X has cardinality 6, then d is isometric either to a metric
of the form dc1,c2,c3 for some positive constants c1, c2, c3 or to a metric of

the form d̂c1,c2,c3,c4 for some positive constants c1, c2, c3, c4 — so it is always

isometric to a metric of the form d̂c1,c2,c3,c4 for some non-negative constants
c1, c2, c3, c4, of which at most one may vanish, in which case the parameters
c1, c2, c3, c4 are determined uniquely by d up to (arbitrary) permutation.

Remark 1

(i) The metrics of the form dc1,... ,ct
are easily seen to be graph metrics defined

on the set of vertices of the 1-skeleton of a two-dimensional zonotope with 2t
vertices relative to a weighting of the t pairs of parallel edges by the weights
2c1, . . . , 2ct – the factor 2 taking account of the fact that |x(i)−y(i)| is either
2 or 0 (and not 1 or 0), for all x, y in X (t).

(ii) It can be checked easily that the split system consisting of all splits of the
form {Ai, Bi} with Ai := {x ∈ X (t) : x(i) = +1} and Bi := X(t) −Ai = {x ∈
X(t) : x(i) = −1}, i = 1, . . . , t, and the split {A0, B0} defined by A0 := {x ∈
X(t) : Πt

i=1x(i) = +1} and B0 := X (t) − A0 = {x ∈ X (t) : Πt
i=1x(i) = −1} is

antipodal if and only if t is odd, and that it is weakly compatible if and only
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if t = 3 holds. Thus, such split systems can give rise to antipodal Hamming
metrics for all odd t, but only for t = 3 to antipodal and weakly compatible
split systems.

Combining the above observations with results from [6], a number of
further, rather explicit characterizations of octahedral split systems in terms
of metrics are derived in Section 4, and in Section 5 we consider totally
split-decomposable antipodal Hamming metrics.

Finally, we combine our results in the last section to obtain the following
surprising characterization of linear metric spaces (that is, metric spaces that
are isometric to some subspace of the real line): A metric space (X, d) is linear
if and only if the associated antipodal metric spaces (X∗, d∗

C) are totally split
decomposable for all or, equivalently, for at least one C with

2C ≥ max(d(x, y) + d(u, v), d(x, u) + d(y, v), d(x, v) + d(y, u))+

+ min(d(x, y) + d(u, v), d(x, u) + d(y, v), d(x, v) + d(y, u))

for all x, y, u, v ∈ X.

2 Antipodal Split Systems

We begin this section by proving Assertions (I) and (II) stated in the intro-
duction. Suppose that S ⊆ S(X) is an antipodal split system with respect
to a map σ : X → X: x 7→ x. Then, for any distinct pair of splits S1, S2 in
S, we see that S1(x) ∪ S2(x) 6= X must clearly hold for every x ∈ X, since
x 6∈ S1(x) ∪ S2(x). This proves (I).

To see that (II) holds, assume that S is a weakly compatible, yet in-
compatible split system. In [6, Lemma 2.1], we showed that in this case⋂

S∈S S(x) 6= ∅ holds for every x ∈ X. So, we can define the required map

σ : X → X : x 7→ x

by choosing, for every x in X, an arbitrary element x in
⋂

S∈S S(x) as its
σ−image σ(x), in which case S(x) 6= S(x) clearly holds for all S ∈ S and all
x ∈ X. Thus S is antipodal and (II) holds in view of (I).
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Now let (S, α) be an arbitrary weighted split system, and consider the
metric

dS,α :=
∑

S∈S

α(S) δS

defined in the introduction. In case α(S) = 1 for all S ∈ S, we will also write
dS instead of dS,α.

Clearly, we have

dS,α(x, y) =
∑

S(x)6=S(y)

α(S)

for all x, y ∈ X and, hence, we have

dS,α(x, y) + dS,α(y, z) = dS,α(x, z)(2)

for some x, y, z ∈ X if and only if there is no split S in S with S(x) = S(z) 6=
S(y), i.e. if and only if y is contained in

⋂
S(x)=S(z) S(x). Thus, Equation (2)

holds for some fixed x, z ∈ X and all y ∈ X if and only if there is no S ∈ S
with S(x) = S(z), i.e. if and only if

dS,α(x, z) =
∑

S∈S

α(S)

holds.

Clearly, this implies

Theorem 2 A Hamming metric dS,α on a weighted split system (S, α) is
antipodal relative to some map σ : X → X : x 7→ x if and only if

dS,α(x, x) =
∑

S∈S

α(S)

holds for all x ∈ X if and only if S is antipodal with respect to the map σ.

As consequences, we note the following

Corollary 1 Suppose that X is a finite set, and that d is a totally split-
decomposable metric defined on X. Then d is antipodal if and only if the
split system S(d) is antipodal.
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Proof: This follows from Statements (1-a) and (2) in the introduction, to-
gether with Theorem 2.

Corollary 2 If an arbitrary metric d is antipodal, then S(d) is antipodal
and, hence, it is either empty, strictly circular, or octahedral.

Proof: This follows immediately from combining Corollary 1 with (i) the fact
that d0 = d − dS(d),αd

is always a metric (cf. Statement (1-b)) and (ii) the
obvious fact that a sum d = d1 + d2 of two metrics d1 and d2 is antipodal
relative to some map σ : X → X if and only if both, d1 and d2, are antipodal
with respect to that map.

3 Proof of Theorem 1

Suppose that d is antipodal. Then S := S(d) must be either strictly circular
or octahedral, by Corollary 2. Using the notation in the introduction, we
can therefore assume that there exists an integer t and a (labeled) partition
Π := {X1, . . . , X2t} of X into 2t nonempty subsets Xi, 1 ≤ i ≤ 2t such that
S either coincides with the split system SΠ := {Si : 1 ≤ i ≤ t} with

Si := {Xi∪̇ . . . ∪̇Xi+t−1 , Xi+t∪̇Xi+t+1∪̇ . . . ∪̇X2t∪̇X1∪̇ . . . ∪̇Xi−1}

for 1 ≤ i ≤ t, or one has t = 3 and S coincides with the split system

ŜΠ = SΠ ∪ {Ŝ := {X1∪̇X3∪̇X5, X2∪̇X4∪̇X6}}.

Our assumption that d is a proper metric implies immediately that #Xi =
1 must hold for all i = 1, . . . , 2t. Hence, we must have #X = 2t, and we
may label the elements in X as x1, . . . , x2t so that Xi = {xi} holds for all
i = 1 . . . , 2t.

To identify X with X (t), we proceed as follows: For every t ≥ 1, we
associate to each xi ∈ X the map

xi : {1, . . . , t} → {+1,−1} : k 7→ xi(k)

defined, for all k = 1, . . . , t and i = 1, . . . , 2t, by

xi(k) := +1 ⇔ Sk(xi) = Sk(xk) and xi(k) := −1 ⇔ Sk(xi) 6= Sk(xk).

Clearly, the following table results
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1 2 3 . . . k k + 1 . . . t − 2 t − 1 t
x1 + − − . . . − − . . . − − −
x2 + + − . . . − − . . . − −
x3 + + + . . . − − . . . − − −
...

xk + + + . . . + − . . . − − −
...

xt−1 + + + . . . + + . . . + + −
xt + + + . . . + + . . . + + +

xt+1 − + + . . . + + . . . + + +
xt+2 − − + . . . + + . . . + + +

...
xt+k − − − . . . − + . . . + + +

...
x2t−2 − − − . . . − − . . . − + +
x2t−1 − − − . . . − − . . . − − +
x2t − − − . . . − − . . . − − −

where + is standing for +1 and − is standing for −1.
Note that we have δSk

(xi, xj) = 1 for i, j = 1, . . . , 2t and k = 1, . . . , t
if and only if xi(k) 6= xj(k) or – equivalently – |xi(k) − xj(k)| = 2, and we
have δSk

(xi, xj) = |xi(k)−xj(k)| = 0 otherwise. Hence, we have δSk
(xi, xj) =

|xi(k) − xj(k)|/2 for all i, j = 1, . . . , 2t and k = 1, . . . , t.

Moreover, we have either S = {S1, S2, S3} or S = {S1, S2, S3, Ŝ}. In case
t = 3 and, in the second case, we have δŜ(xi, xj) = 1 for i, j = 1, . . . , 6 if and
only if Π3

k=1xi(k) 6= Π3
k=1xj(k) or – equivalently – |Π3

k=1xi(k)−Π3
k=1xj(k)| =

2, and we have δŜ(xi, xj) = |Π3
k=1xi(k) − Π3

k=1xj(k)| = 0 otherwise. Hence,
we have δ

Ŝ
(xi, xj) = |Π3

k=1xi(k) − Π3
k=1xj(k)|/2 for all i, j = 1, . . . , 6.

In other words, putting xi[Sk] := xi(k) for i = 1, . . . , 2t and k = 1, . . . , t

in any case and, in case t = 3, also xi[Ŝ] := Π3
k=1xi(k) for i = 1, . . . , 6, we see

that δS(xi, xj) = |xi[S]− xj[S]|/2 holds for all S ∈ S and all i, j = 1, . . . , 2t.

Now, put cS := αd(S)/2 for all S in S and put ci := cSi
for i = 1, . . . , t

in any case and, in case t = 3, put cŜ := αd(Ŝ)/2 and c4 := cŜ in case Ŝ ∈ S
and c

Ŝ
= c4 := 0 otherwise.
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In view of our assumption that d is totally split decomposable, we then
have

d(x, y) =
∑

S∈S

αd(S) δS(x, y)

for all x, y ∈ X. Consequently, we have

d(xi, xj) =
∑

S∈S

αd(S) δS(xi, xj) =
∑

S∈S

cS |xi[S] − xj[S]|.

This shows that the map X → X (t) : xi 7→ xi(·) induces indeed the
required isometry between d and dc1,... ,ct

in case t 6= 3 while, in case t = 3, it

induces the required isometry between d and d̂c1,c2,c3,c4.

The remaining assertions regarding the uniqueness of the parameters
c1, . . . , ct or c1, c2, c3, c4 now follow easily. If t 6= 3 holds, then the circu-
lar sequence S1, . . . , St of the splits in S(d) is easily seen to be uniquely
determined – up to cyclic or anticyclic reordering – by S(d) and thus also
by d. Therefore, the parameters c1 = αd(S1)/2, . . . , ct = αd(St)/2 are also
uniquely determined. If t = 3 holds, the combinatorial symmetry group of
the octahedral split system ŜΠ is the full symmetric group on ŜΠ. Thus, the
parameters c1, c2, c3, c4 are also determined uniquely up to arbitrary permu-
tation if t = 3 holds. This is the case regardless whether S(d) is strictly

circular or octahedral because every proper subset of ŜΠ is strictly circular
and ŜΠ is the only octahedral extension of every proper subset of ŜΠ of car-
dinality 3 – so, they are uniquely determined by the isolation indices of the
splits in the unique octahedral split system containing S(d).

The converse, i.e. the assertion that the metrics dc1,... ,ct
and d̂c1,... ,c4 de-

scribed in Theorem 1 are antipodal and totally split decomposable, now fol-
lows also easily from the above definitions and identifications, and the facts
collected in Section 2.

4 Octahedral Split Systems Revisited

Theorem 1 has an interesting consequence for totally split-decomposable met-
rics that are in addition consistent, that is, totally split-decomposable metrics
d for which the associated split system S(d) does not contain an octahedral
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subsystem 4. Namely, a proper consistent totally split-decomposable metric
d is antipodal if and only if it is isometric to a metric of the form dc1,... ,ct

for
some t ≥ 1 and some positive constants c1, . . . , ct.

In view of this fact, it is of some interest to understand and characterize
octahedral split systems in terms of metrics. In [6, Theorem 4.1] we char-
acterized octahedral split systems in various ways using properties of splits,
and we now extend these results, deriving several additional characteriza-
tions that refer to the split metrics associated to a split system (assertions
(vii) to (ix′′) below).

Theorem 3 Let S ⊆ S(X) be a weakly compatible, yet incompatible split
system of cardinality at least 2. Then the following statements are equivalent:

(i) S is an octahedral split system;

(ii) S contains an octahedral split system;

(iii) for every x ∈ X, there exist S1, S2, S3, S4 ∈ S such that S1(x)∩S2(x) =
S3(x) ∩ S4(x) and {S1, S2} ∩ {S3, S4} = ∅;

(iii ′) for every x ∈ X, there exist S1, S2, S3, S4 ∈ S such that S1(x)∩S2(x) =
S3(x) ∩ S4(x) and {S1, S2} ∩ {S3, S4} = ∅;

(iv) there exists some x ∈ X and S1, S2, S3, S4 ∈ S with S1(x) ∩ S2(x) =
S3(x) ∩ S4(x) and {S1, S2} 6= {S3, S4};

(iv ′) there exists some x ∈ X and S1, S2, S3, S4 ∈ S with S1(x) ∩ S2(x) =
S3(x) ∩ S4(x) and {S1, S2} 6= {S3, S4};

(v) #{
⋂

S∈S S(x) : x ∈ X} 6= #
⋃

S where
⋃
S := {A ⊆ X : A ∈

S for some S ∈ S} = {S(x) : S ∈ S, x ∈ X};

(vi) there exists a subset Y ⊆ X with #Y = 6 so that the induced split
system

S|Y := {T ∈ S(Y ) : there exists some S = {A, B} ∈ S with

T = S|Y := {A ∩ Y, B ∩ Y }}

is octahedral;

4In [5], we give a six-point condition that characterizes consistent totally split-decompo-
sable metrics and in [7, 8], more can be found regarding these metrics and their tight span.
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(vi ′) there exists a subset Y ⊆ X with #Y = 6 and a subset S ′ ⊆ S so that
the induced split system S ′|Y is octahedral;

(vii) one has dS(x, y) 6= 1 for all x, y ∈ X;

(vii ′) there exists a subset S ′ ⊆ S of cardinality at least 2 with dS′(x, y) 6= 1
for all x, y ∈ X;

(vii ′′) there exists a subset S ′ ⊆ S of cardinality 4 with dS′(x, y) 6= 1 for all
x, y ∈ X;

(viii) one has dS(x, y) ∈ {0, 2, 4} for all x, y ∈ X;

(viii ′) there exists a subset S ′ ⊆ S of cardinality at least 2 with dS′(x, y) ∈
{0, 2, 4} for all x, y ∈ X;

(viii ′′) there exists a subset S ′ ⊆ S of cardinality 4 with dS′(x, y) ∈ {0, 2, 4}
for all x, y ∈ X;

(ix) there exists a subset Y ⊆ X with #Y = 6 and dS(x, y) ∈ {2, 4} for all
x, y ∈ Y with x 6= y;

(ix ′) there exists a subset Y ⊆ X with #Y = 6 and a subset S ′ ⊆ S of
cardinality at least 2 with dS′(x, y) ∈ {2, 4} for all x, y ∈ Y with x 6= y;

(ix ′′) there exists a subset Y ⊆ X with #Y = 6 and a subset S ′ ⊆ S of
cardinality 4 with dS′(x, y) ∈ {2, 4} for all x, y ∈ Y with x 6= y.

Proof: The equivalence of the assertions (i) to (vi′) has been established in
[6]. The implications (i) ⇒ (viii) ⇒ (viii′) ⇒ (vii′), (viii) ⇒ (vii) ⇒ (vii′),
(i) ⇒ (viii′′) ⇒ (vii′′), (i) ⇒ (ix) ⇒ (ix′), and (i) ⇒ (ix′′) are obvious.

The implications (vii′) ⇒ (ii) and (vii′′) ⇒ (ii) follow from the fact that
one has 1 ∈ {dS′′(x, y) : x, y ∈ X} for every strictly circular split system
S ′′ ⊆ S(X).

And the remaining implications (ix′) ⇒ (ii) and (ix′′) ⇒ (ii) follow from
the following observations:

• Given a strictly circular split system S ′′ of cardinality t defined on a
finite set X and suppose that there exists a subset Y ⊆ X with #Y = 6
and dS′′(x, y) 6= 0, 1 for all x, y ∈ Y with x 6= y. Then t > 5 must hold,
and one must have 6 ∈ {dS′′(x, y) : x, y ∈ Y } in case t = 6.
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• Given a strictly circular split system S ′′ of cardinality t > 5 defined on
a finite set X and suppose that dS′′(x, y), dS′′(y, z), dS′′(z, x) ∈ {2, 4}
holds for some x, y, z ∈ X. Then either t = 6 and dS′′(x, y) =
dS′′(y, z) = dS′′(z, x) = 4 holds, or exactly two of the three values
dS′′(x, y), dS′′(y, z), dS′′(z, x) are equal to 2.

• Given a strictly circular split system S ′′ of cardinality t > 5 defined
on a finite set X and suppose that dS′′(x, y) = dS′′(y, z) = 2 and
dS′′(x, z) = 4. Then dS′′(y, u) = 2 for some u in X implies dS′′(x, u) = 0
or dS′′(z, u) = 0 while dS′′(y, u) = 4 for some u in X implies dS′′(x, u) =
6 or dS′′(z, u) = 6.

• Consequently, if S ′′ is a strictly circular split system of cardinality t
defined on a finite set X and if dS′(x, y) is an even positive number
for all elements x, y with x 6= y in a 6-subset Y ⊆ X, then t > 5 and
max(dS′′(x, y) : x, y ∈ Y ) > 4 must hold.

5 Antipodal Hamming Metrics

In this section, we shall see that an antipodal Hamming metric d can have
more than one representation as a (positively weighted) sum of split metrics,
but that in case d is also totally split decomposable any such representation
is necessarily unique.

It is a straight-forward matter to see why antipodal Hamming metrics
might not necessarily have unique representations as (positively weighted)
sums of split metrics. Indeed, given a set X of cardinality 2n with a fixed-
point free involution σ : X → X : x 7→ x, the split system

Sσ := {{A, B} ∈ S(X) : #(A ∩ {x, x}) = 1 for all x ∈ X}

of cardinality 2n−1 is obviously the unique largest antipodal split system
S ⊆ S(X) with S(x) 6= S(x) for all S ∈ S and all x ∈ X. Consequently, the
split metrics derived from this split system must be linearly dependent for all
n with 2n−1 >

(
2n

2

)
, that is, for n > 7. Moreover, there must be positive as

well as negative coefficients in any linear relation between linearly dependent
split metrics. Thus, there must exist disjoint weighted split systems (S, α)
and (T , β) with S, T ⊆ Sσ such that the associated antipodal Hamming
metrics dS,α and dT ,β coincide, provided n > 7 holds.
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More explicitly, such disjoint weighted split systems (S, α) and (T , β)
with dS,α = dT ,β exist already for n = 4: The sum of the four split metrics
associated with the four splits of the form {A,−A := {−a : a ∈ A}} of
the set X := {1, 2, 3, 4} ∪ −{1, 2, 3, 4} for which A contains an even number
of positive elements coincides necessarily with the sum of the split metrics
associated with the four remaining splits of that form, i. e. those for which A
contains an odd number of positive elements.

Note also that an arbitrary totally split-decomposable metric may have
representations as a weighted sum of split metrics that differ from its “canoni-
cal” representation in terms of its associated weakly compatible split system –
for instance, it is well known and easy to see that, for every set X of cardinal-
ity 4, the sum of all split metrics of the form δ{A,B} with 1 ∈ {#A, #B} coin-
cides with the sum of all split metrics of the form δ{A,B} with #A = #B = 2.
However, in contrast to this, we have the following:

Theorem 4 Every totally split-decomposable antipodal metric can be uniquely
represented as a positively weighted sum of split metrics.

Proof: Without loss of generality, we may assume that d is proper. In case
#X ≤ 6, the split metrics associated to an antipodal split system of the
form Sσ for some fixed-point free involution σ of X are always linearly in-
dependent. So, we may assume #X > 6, we may choose a strictly circu-
lar split system S representing d, and we may label the elements in X as
x1, x2, . . . , xn, xn+1, . . . , x2n so that d(xk, xk+i) + d(xk+i, xk+j) = d(xk, xk+j)
holds for every integer k and all i, j with 0 ≤ i ≤ j ≤ n+1 (with labels com-
puted modulo 2n). All we need to observe now is that a split S involved in
some representation of d as a weighted sum of split metrics and separating,
say, x1 from x2n is necessarily the split {{x1, x2, . . . , xn}, {xn+1, . . . , x2n}}.
However, this follows from the fact that S(x1) = S(x2n) = S(xn) and S(xi)
must coincide for all i with 1 ≤ i ≤ n which in turn follows from apply-
ing our observation above regarding the case #X ≤ 6 to the 6-point subset
{x1, xi, xn, xn+1, xn+i, x2n} and the metric induced on this set.
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6 A Surprising Characterization of Linear

Metric Spaces

In this section, we shall address the very simple, yet surprising observation
that, using the full antipodal extensions (X∗, d∗

C) of a metric space (X, d) de-
scribed in the introduction, the results established above allow us to conclude
that – assuming that d is a proper metric – the associated antipodal metric
spaces (X∗, d∗

C) are totally split decomposable for one or, equivalently, for all
sufficiently large constants C if and only if either #X ≤ 3 holds or (X, d)
is a linear metric space i.e. (X, d) is isometrically embeddable into the real
line. To us, this simple observation was actually quite a surprise because,
when beginning our work on antipodal and totally split-decomposable metric
spaces, we did not expect them to be that closely related to linear metric
spaces.

Continuing with the notation introduced above, define

A+ := {(a, +1) : a ∈ A} and A− := {(a,−1) : a ∈ A}

for every subset A of X. Furthermore, let S∗ denote the X∗-split

S∗ := {A+ ∪ B−, A− ∪ B+}

for every X-split S = {A, B}, and let S∗
0 denote the split {X+, X−} of X∗

(associated to the degenerate split S0 := {X, ∅} of X).

Next, given any symmetric map d from X×X into the reals, let d∗ denote
the map from X∗ ×X∗ into the reals defined by d∗((x, ε), (y, η)) := εηd(x, y)
for all x, y in X and all ε, η in {+1,−1}.

It is obvious that

• the transformation d 7→ d∗ is linear,

and it is very easy to see that, given a positive constant C,

• the map d∗
C := d∗ + CδS∗

0
is a metric whenever

(i) d is a metric

and one has
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(ii) d(x, y) + d(y, z) + d(z, x) ≤ 2C for all x, y, z in X,

• d∗
C is an antipodal metric in this case, and

• δ∗S = δS∗ − δS∗

0
holds for every split S of X.

Consequently, if (S, α) is an arbitrary weighted split system and if we put
d := dS,α, we have

d∗
C :=

∑

S∈S

α(S) δS∗ + αδS∗

0

with α := C −
∑

S∈S α(S) (see [4, p. 95]).

So, the antipodal metric d∗
C is a Hamming metric whenever d is a Ham-

ming metric and the constant C is at least as large as the sum of the coeffi-
cients occurring in some representation of d as a sum of split metrics (note
that this sum may depend on the representation under consideration).

However, this metric will almost never be totally split decomposable even
if d is, because – even for a weakly compatible split system S – we cannot
expect the (obviously antipodal and, hence, incompatible) split system

S∗ := {S∗ : S ∈ S}

to be weakly compatible, too (and explicit counterexamples are easily con-
structed).

Actually, we can combine the above analysis and the facts established
before to derive the following remarkable fact:

Theorem 5 Given a finite set X with a proper metric

d : X × X → R : (x, y) 7→ xy := d(x, y),

a metric of type d∗
C defined on X∗ is totally split decomposable for some

constant C with

2C ≥ max(xy + uv, xu + yv, xv + yu) + min(xy + uv, xu + yv, xv + yu)

for all x, y, u, v in X if and only if it is totally split decomposable for all such
C if and only if one has #X = 3 or (X, d) is linear (i.e. isometric to a
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subspace of the real line) in which case the maximum C0 of all expressions of
the form

1/2(max(xy + uv, xu + yv, xv + yu) + min(xy + uv, xu + yv, xv + yu))

(x, y, u, v ∈ X) clearly coincides with

max(xy : x, y ∈ X) = 1/2 max(xy + yz + zx : x, y, z ∈ X) =
∑

S∈S(d)

αd(S).

Proof: It is easily seen by direct inspection that every antipodal metric de-
fined on a set of cardinality at most 6 is necessarily totally split decomposable.
Thus, we may assume without loss of generality that #X > 3 holds. It is
easily also seen that d∗

C is a metric for which S∗
0 is a split in S(d∗

C) if and
only if C > C0 holds.

Thus, if d∗
C is totally split decomposable and C > C0 holds, the split sys-

tem S(d∗
C) must be a strictly circular split system that contains S∗

0 . Conse-
quently, it must be possible to label the elements in X as x1, . . . , xn (n = #X)
so that the splits in S(d∗

C) are exactly the splits of the form {A, B}∗ with
A = {x1, . . . , xj} for some j with 1 ≤ j ≤ n. Thus, the metric d on X must
be totally split decomposable and

S(d) = {{{x1, . . . , xj}, {xj+1, . . . , xn}} : 1 ≤ j < n}

must hold. Clearly, this implies that xixk = xixj + xjxk must hold for all
integers i, j, k with 1 ≤ i ≤ j ≤ k ≤ n and, thus, it implies the linearity of
(X, d) as claimed.

In addition, the same is easily seen to hold in case C = C0 (rather than
C > C0) in view of the fact that S(d′) ∪ {S ′} = S(d′ + εδS′) holds for every
ε > 0, every metric d′ defined on a set X ′, and every split S ′ = {A′, B′} of
X ′ satisfying the inequality

d′(a′, a′′) + d′(b′, b′′) ≤ max(d′(a′, b′) + d′(a′′, b′′), d′(a′, b′′) + d′(a′′, b′))

for all a′, a′′ in A′ and b′, b′′ in B′. This fact has been established in [1,
Theorem 4], and it should be applied to d′ := d∗

C0
and S ′ := S∗

0 , using the
fact that d∗

C0+ε coincides with d∗
C0

+ εδS∗

0
and the facts established just above

in case C := C0 + ε > C0.
The converse is obvious.
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Remark 2

In a similar vein, one can see that, given a split system S ⊆ S(X), the
corresponding split system {S∗

0} ∪ S∗ is weakly compatible if and only if
the split system S is nested , i.e. one can label the splits in S as S1 =
{A1, B1}, S2 = {A2, B2}, . . . , Sk = {Ak, Bk} so that A1 ( A2 ( · · · ( Ak

holds (see [4] for more on nested split systems).

In relation to this it was noted in [4, Theorem 11.2.21] that a finite space
(X, d) is linear if and only if d is totally split decomposable and the split
system S(d) is nested. Consequently, using the notations and definitions
introduced in the previous theorem, a metric of type d∗

C defined on X∗ is
totally split decomposable if and only if (X, d) is totally split decomposable
and the split system S(d) is nested.
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