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Abstract

Given a finite collection £ of lines in the hyperbolic plane H, we
denote by k = k(L) its Karzanov number, i.e. the maximal number
of pairwise intersecting lines in £, and by C(£) and n = n(L) the set
and the number, respectively, of those points at infinity that coincide
with at least one line from £. It is shown that #£ < 2nk — (*7)
always holds and that #£ equals 2nk — (**1) if and only if there is
no collection £’ of lines in H with £ C L', k(L") = k(L) and C(L') =

c(L).

1 Introduction

Given a non-empty finite collection £ of lines in a plane, there are three
ways to measure what might fashionably be called its “complexity”: It can
be measured (a) simply by the cardinality #L£ of £, (b) by the maximal
number k = k(L) of pairwise intersecting lines in £, which might also be
called its Karzanov number (cf.[6]), and (¢) by the number n = n(L) of
those points at infinity that coincide with at least one line in £. Obviously,
in the Euclidean plane, we always have 0 < k = n < #L, and there are

no further restrictions regarding these three numbers. In particular, #L can



be arbitrarily large even if £ = n = 1 holds. In contrast, in the hyperbolic
plane, we always have #L < (g) as well as 0 < 2k < n < 2#L, and it
is well known — and a simple exercise to show — that #£ < 2n — 3 holds
for every hyperbolic line arrangement £ with k(L) = 1. More generally,
it follows from results in [2] that #£ < 2kn — (**}) holds in the extreme
cases k = 1,2,3 and n = 2k + 1,2k + 2,2k + 3,2k + 4 and that, for every
k € {1,...,|n/2]}, there exist line arrangements £ with n(£) = n and
k(L) = k of cardinality exactly 2kn — (**') that are (n, k)-mazimal (that is,
for every larger arrangement L', one has either n(L') > n or k(L) > k i.e.,
one has n(L') + k(L") > n(L) + k(L)).

In [2], it was conjectured (though in a more combinatorial and less geo-

metric language) that every (n, k)-maximal line arrangement must be of this

2k+1

A ) In this paper, we show that this conjecture is, in

cardinality 2kn — (
fact, true. More explicitly, choose an orientation for the hyperbolic plane H,
and consider a subset C of cardinality n > 2k + 1 of the set S of points at in-
finity of H considered as an oriented circle relative to the orientation induced
by that of H. For distinct a,b € S, let ab denote the line whose two points

at infinity are a and b. Let £y = L;(C) denote the arrangement of lines zy

joining all those pairs of distinct points x,y € C for which the intersection



of one of the two connected components of S — {a, b} with C' has cardinality
less than k& (while the other component then necessarily contains at least
n—2—(k—1)=n—k—12> k points from C). Then it is easy to see that
#L = nk, and that k(L) = k both hold. Now select k£ consecutive points
K from C, and add to £ all lines of the form ab, witha € K, b e C — K,
and ab € L. This way, we add exactly n — 2k — 1 new lines for each point

a in K. The resulting arrangement £* = L*(C, K) therefore has cardinality

#L° = H#L,+k(n—2k—1)

— ok <2k+1)_
2

Moreover, £* is clearly (n, k)-maximal, since any line [ not in £y, of the form
bb' with b,b' € C' — K would be clearly contained in a set of (k + 1) pairwise
intersecting lines from £* U {l} (see Figure 1): Just let a1, ay, ... ,a; denote
the k£ consecutive points in K, let b1, bs,...b; denote k consecutive points
from C between b and ¥ in that connected component of S — {b,b'} not
containing K, and consider the lines bb', a1by, asbs, . .. , apbg.

As is easily seen, L£* is just one of the many (n, k)-maximal arrangements
that can be constructed using the methods introduced in [2]. However, as we
realized only recently, it is some sort of a “primordial” (n, k)-maximal line
arrangement. Indeed, we will show here that, given any (n, k)-maximal ar-
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Figure 1: The canonical line arrangement L* in case n =8 and k = 3. The
three thick lines are those contained in L* — L.

rangement of lines £, there exists a sequence of (n, k)-maximal arrangements
E() = E,Ll,. . .,,Cp =L

with L,AL; 1 =2 for 0 <7 < p—1,ie. L;;1 can be obtained from L; by
removing one of the lines of £; and replacing it by another. In particular,

this will imply our main result:

Theorem 1.1 Any (n, k)-mazimal arrangement L of lines in the hyperbolic

plane H has cardinality

LL = L = ok — (2’““).
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2 Cyclic n-Sets

Let C' denote a cyclic n-set, i.e. a transitive Z-set of cardinality n < oo. For
r € C and k € Z, let (%) denote the image of (k,z) in C with respect to the

structure map

ZxC—=C
— implying that £(0) = x, (z(k1))k2) = gkitk2) apnd C = {2*) | k € Z} holds
for all z € C' and kq, ks € Z — and put

zt =1
and

x =D
so that

zt = Yy < Yy =z
holds for all z,y € C. For a,b € C, put
d™(a,b) := min(k € Ny | ¥ = b)
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and

d™(a,b) := min(k € Ny | al=h =p).
Clearly, we have
d”(a,b) = d*(b,a)
for all a,b € C', and

d*(a,b) +d (a,b) =n
for all distinct a,b € C. Next, given a subset Y of (', the following assertions

are easily seen to be equivalent:
i) #yeY |y ¢Y}i=1,
(i) #yeY |y ¢Y}i=1,
(iii) there exist a,b € C with a # b and

Y =1%(a,b) :={a™® |0 <k < d"(a,b)},

(iv) there exist a,b € C with b # o~ and

Y =1 (b,a) ={0"""|0<k <d (ba)}

Moreover, if this holds, then the elements a and b in C referred to in (iii) are
the unique elements y;, 9o € Y with y; ¢ Y and y5 ¢ Y, respectively, and
they will also be denoted by a(Y") and b(Y).
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Any subset Y of C satisfying the four assertions above will be called
a (cyclic) interval. Note that a subset Y of C is an interval if and only
if its complement C' — Y is an interval, and that a(Y) = b(C — Y)* and

b(Y) = a(C — YY)~ holds in this case.

3 L-pegs

Given a finite arrangement £ of lines in H, we denote by C' = C(L) the set
of points in S, the circle of points at infinity of H, that are incident with at
least one line in £ so that, by definition, n(L£) = #C holds. Moreover, as
explained above, upon choosing one of the two orientations of the hyperbolic
plane as our orientation of reference, we view the set C' as a cyclic n-set with
n := n(L) = #C whose ‘orientation’ we derive from the chosen orientation
of H, i.e. we define a®) for any a € C and k € Nj to be the k-th element
in C' encountered when going around S according to the given orientation,
starting at a (and we define a(~*) for k € Ny accordingly). Given a pair of

distinct points z,y € C, we define

L (z,y) ;== min{i € Ny : 2y € £ or ¢y = 2}



and

+

vt(z,y) = vl (2,y) =y & @)

and, similarly,
L (z,y) :=min{i € N5g : 2y € L or y9 =z}

and

v (2,y) = vg (z,y) =y .

E.g., for L = £* and z and y as in Figure 1, we have £*(z,y) = 2 and
L (z,y) = 1.
We then call a quadruple (z,y,u,v) of points from S an L-peg if the

following statements hold:
(i) z,y,u,v € C =C(L);
(i) 1 =d¥(z,y) < d'(z,u) < d"(z,v);
(iii) zv,yu € L; and
(iv) LT (z,v), L (y,u) > d¥(u,v).

Clearly, if (z,y,u,v) is an L-peg, then (y,z,v,u) is an L-peg relative to the

reverse orientation of H.



As we shall see, L-pegs will be crucial for our treatment of hyperbolic line
arrangements. We begin by presenting two key properties of £-pegs, using
the notation B + a for BU{a} and B — a for B — {a} for any subset B of a

set A and any element a of A.

Lemma 3.1 Suppose that L is a finite arrangement of lines in H, and that

(z,y,u,v) is an L-peg with {zu,yv} N L =0 (see Figure 2). Then we have

k(L) = k(L + zu) = k(L + yv).

In particular, if Ly is a finite arrangement of lines in H and (z,y, u,v) is an

Li-peg with #({zu,yv} N Ly) =1, then k(L1) = k(L1A{zu,yv}) holds.

Figure 2: The L1-peg in Lemma 3.1.
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Proof: We prove that k(L) = k(L + zu) holds; the lemma then follows by
symmetry upon reversing the orientation. Put & := k(£), and suppose that
k(L + zu) = k+ 1 holds. Then there must exist £ pairwise intersecting lines
l1,...,l; in £ all of which intersect xu. Clearly, every one of these lines must
either intersect uy, too, or it must be of the form yz for some z € It (u™*,z7).
Consequently, exactly all but one of these lines must intersect yu, and pre-
cisely one must be of the form yz as just described. However, since (z, y, u, v)
is an L-peg and we are assuming yv ¢ L, we see that z must, in fact, be
contained in I (v",z7). But this would imply that the k lines I,... [

must all intersect the line zv, in contradiction to k(L) = k. 1

The second property of £L-pegs concerns their behavior in (n, k)-maximal
arrangements of lines. Clearly, if £; is an (n, k)-maximal arrangement of
lines in H and (z,y,u,v) is an Li-peg, then L£; contains, by the previous

lemma, at least one of either xu or yv. More precisely, we have

Lemma 3.2 If £, is an (n, k)-mazimal arrangement of lines in H, (x,y, u, v)

is an Lq-peg, and {zu,yv} € Lq, then

Lo = LiA{zu, yv}

11



is an (n, k)-mazimal arrangement, and (x,y,u,v) is an Lo-peg, too.

Proof: Put L := L, — {zu,yv} and assume, without loss of generality (see
above), that zu € £; and, hence, £; = £ + zu and Lo = £ + yv holds. It
is straight forward to see that k(Ly) = k(L1) = k and C(Ly) = C(Ly) = C
holds, too, and that (z,y, u,v) is also an Ly-peg. So, it only remains to show
that Lo is (n, k)-maximal.

To this end, consider first an element w € C' — z with zw ¢ L£;. Then,

since £, is (n, k)-maximal and zw and zu do not intersect, we have

k(Lo + zw) > k(L + 2w) = k(L1 + zw) = k(L) + 1.

So, if there were a line ab with a,b € C not contained in £, and k(Ly+ab) =
k(Ly), then we would necessarily have ab ¢ L, i.e ab # zu, in view of
Lo+ zu =Ly +yvand k(L; +yv) =k + 1, as well as x # a,b. In addition,

if (x,y,u,v) would be an (L5 + ab)-peg, then

L1+ ab=(Ly + ab)A{zu,yv}

would imply

k(L + ab) = k((Ly + ab)A{zu,yv}) = k(Lo + ab) = k(Ls) = k(Ly),

contradicting the maximality of £;. So, we must have {a,b} = {y, w} with
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0 < dt(u,w) < d*(u,v). However, (x,y,w,v) would then be an (Ls + ab)-
peg, implying
k(Lo) = k(Lo +ab) = k(L + yw)
= k(L +yv+yw)A{zw,yv})
= k(L4 yw+ zw)
> k(L + zw)
= k(Ls) + 1,

the final contradiction. 1

We now define two (n, k)-maximal arrangements £; and Ly to be peg
neighbors if they are related to each other the way described in the last

lemma.

4 The Main Result

Given a line arrangement £ in H and some fixed point a € C = C(L), let
r(a) = rc(a) denote the number of lines in £ that coincide with a, and define,

with n = #C, the sequence

r(L,a) := (r(a), r(a(l)),r(a@)), . r(a(”_l))).
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Let A(C) = Ai(C) be the set of line arrangements £ with C(£') C C and
k(L") < k. We define a linear order > = >, on A(C) by putting Lo >, L4
for £1,Ly € A(C) if r(Ls, a) is lexicographically larger than r(Lq, a).
Consider a set K of k consecutive points in C'. By definition of the
arrangement £* = L£*(C, K) given in the introduction, we see that if we fix
a to be the first element of the set K with respect the given orientation on
C, then L* is clearly the maximal element of A(C) with respect to >, since
re«(x) = n — 1 holds for all z € K and since £, must be contained in any
(n, k)-maximal arrangement; so any £ C A(C) with £ > £* must contain,
and, hence, coincide with £*. Consequently, the main result of this paper,

Theorem 1.1, follows from the following more explicit result:

Theorem 4.1 Suppose that K is a set of k consecutive points in a subset C
of S of cardinality n > 2k, that L* = L*(C, K) is the arrangement defined
in the introduction, and that a is the first element of the set K with respect
to a fized orientation of H. If £1 € A(C) is an (n, k)-mazimal arrangement
that is distinct from L*, then L, is the peg-neighbor of an (n, k)-mazimal

arrangement Ly € A(C) with Ly >, L;.

Proof: Since L, is distinct from L£*, we can choose some x € C' — K with
rz ¢ Ly for some z € K = {a,a™, ..., a*"D}. Choose that element z among
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all such elements from C' — K for which d*(a, z) maximal. Put y := 2" and
note that yz then is necessarily in £; and that d*(z,z) > k must hold (see

Figure 3).

Figure 3: Finding an L1-peg.

Now, put v := v*(z,2) and u := v~ (y,v). Clearly, we have d* (v, z) > k,

d-(v,u) <d (v,2), zv € L, yu € L, and

L (z,v) >d"(z,v) > d"(u,v)
— in particular zu ¢ £ and

L¥(y,u) > L7 (y,v) = d" (u,v).

Consequently, (x,y,u,v) is an Li-peg for which then yv € £; must necessar-
ily hold, and £y := L1A{zu, yv} is a peg-neighbour of £; with Ly >, L1, as
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claimed. 1

Remark: For future reference, note that the argument above actually yields

the following.

Lemma 4.2 As above, let L be a finite collection of lines in the (oriented)
hyperbolic plane H and let C = C(L) denote the associated cyclic set of points
at infinity. Furthermore, assume that a,z,y € C(L) are three distinct points
with y =z, ya,xzx~ € L, and za ¢ L. Then the four points (x,y,u,v) with

v:=v}(z,a) and u:=v;(y,v) always form an L-peg (see Figure 4).

U:UL

Figure 4: Forming L-pegs.

More generally, if we have aa™ € L for all a € C and if ab € L holds for
some a,b € C, then the four points (z,y,u,v) withy := v} (a,b),z :=y ,v =
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v} (7, a) and u := v, (y,v) always form an L-peg, also denoted by p/. (a,b) (see

Figure 5). In particular, if £ is an (n, k)-mazimal line arrangement, then
ab € L always implies that the line yv = vk (a,b)vt (vt (a,b)~,a) belongs to

L.

u=vg(y,v)

v=v}(z,q)

Figure 5: The L-peg pf(a,b) in case x #b and u # a,a™.

In the same vein, we can define p}(b,a) as well as, using the reverse ori-
entation, p; (a,b) and p; (b, a), thus producing four L-pegs (not necessarily all
distinct) from every line missing in L which, as above, implies that the three
lines vt (b, a)vt (v)(b,a)™,b), vz (a,b)vz (vz(a,b)t,a) and vy (b, a)vz (vz (b,a)t,b)
together with the line v} (a,b)vt (vt (a,b)™,a) mentioned above all must be
contained in L whenever whenever L is an (n, k)-mazimal line arrangment,

for any n and k with 2k < n.
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5 Concluding Remarks

Finite line arrangements L as considered above are easily seen to correspond
to cyclic split systems S = S(L) defined on the (obviously also cyclic) set X =
X (L) of those open intervals in S that are connected components of S—C(L),
by associating — to each line [ = ab in £ — the split (or bipartition) {A, B} :=
S(l) = Sg(l) of X whose two parts A, B consist of the two complementary
sets of intervals in X consisting of all connected components of S — C(L)
contained in either one of the two connected components of S — {a, b}. Using
this simple observation, results on hyperbolic line arrangements can thus be
rephrased easily in a purely combinatorial language, viz. as results regarding
cyclic split systems (such as those discussed in [2, 3]), and vice versa.

Our present work arose as part of a continued study of k-compatible split
systems, a study which was originally motivated by the fact that, due to
early results by P.Buneman [1], 1-compatible split systems correspond to
phylogenetic trees (see Figure 6) and that — correspondingly — more compli-
cated split systems arising in the analysis of phylogenetic data due simply to
noise that often blurs the true phylogenetic signal (or even to hybridization
and horizontal gene transfer) might be classified according to the maximal

number k of pairwise incompatible splits in the given system. This number
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had been studied by A.Karzanov in [6] who conjectured that the size of k-
compatible split systems on an n-set can’t be too large; see [2] — [7] for more
details. In particular, in case the split systems in question are in addition
cyclic, they are — as we have indicated above — intimately related to hyper-
bolic line arrangements and — translated into the language of split systems —
Theorem 1.1 implies that Conjecture 1 in [2] is true, thus corroborating also

the original expectations of A.Karzanov.

Figure 6: A 1-compatible line arrangement and its associated “phylogenetic

tree”.
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