
Proper Gromov Transforms of Metrics are Metrics

Andreas Dress∗

August 6, 2001

Abstract

In phylogenetic analysis, a standard problem is to approximate a given

metric by an additive metric. Here it is shown that, given a metric D

defined on some finite set X and a non-expansive map f : X → R, the

one-parameter family of the Gromov transforms D∆,f of D relative to f

and ∆ that starts with D for large values of ∆ and ends with an additive

metric for ∆ = 0 consists exclusively of metrics. It is expected that this

result will help to better understand some standard tree reconstruction

procedures considered in phylogenetic analyis.

Keywords and Phrases: Metrics, additive metrics, ∆ additive metrics,
ultra metrics Farris transforms, Gromov transforms, phylogenetic analysis, phy-
logenetic combinatorics

1 Introduction

Given a finite set X of cardinality n ≥ 2, a symmetric map

D : X × X → R : (x, y) 7→ xy

from X × X into R, a map f : X → R, and a non-negative real number ∆, the
Gromov transform D∆,f of D relative to f and ∆ has been defined in [2] (see
also [4, 1]) where also the biological motivation for this construction within the
context of phylogenetic analysis has been discussed:

First, one considers the Farris transform (cf.[3]) Df of D relative to f defined
by

Df : X × X → R : (x, y) 7→ xyf := xy − f(x) − f(y).

Then, one forms the (unique!) largest symmetric map D′ from X × X into R

below Df — also denoted by (Df )∆ — that satisfies the inequalities

D′(x, z) ≤ max(D′(x, y), D′(y, z)) + ∆
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for all x, y ∈ X . And then one defines D∆,f as the Farris transform D′

g =

((Df )∆)g of (Df )∆ relative to the map g := −f .

It has been observed in [2] that D∆,f coincides with the largest (∆, f) ad-
ditive map below D in S2(X), the space of all symmetric maps from X × X

into R, i.e. it coincides with the (necessarily unique) largest map D′′ in S2(X)
satisfying the inequalities

D′′(x, y) ≤ D(x, y)

and
D′′(x, y)f ≤ max(D′′(x, z)f , D′′(y, z)f ) + ∆

for all x, y, z ∈ X , and that Df := D0,f is an additive1 metric for every metric
D ∈ S2(X) and for every f in the tight span

T (D) := {f ∈ R
X : f(x) = max(xy − f(y) : y ∈ X) for all x ∈ X}

of D. More generally, it was shown there that, given some D ∈ S2(X) and some
f ∈ R

X , the inequality D∆,f (x, y) ≥ 0 holds for all ∆ ≥ 0 and all x, y ∈ X if
and only if Df (x, y) ≥ 0 holds for all x, y ∈ X if and only if Df (x, x) ≥ 0 holds
for all x ∈ X if and only if the inequality f(y) ≤ xy + f(x) or, equivalently,

|f(y) − f(x)| = max(f(y) − f(x), f(x) − f(y)) ≤ xy

holds for all x, y ∈ X , i.e. if and only if the map

X × X → R : (x, y) 7→ |f(x) − f(y)|

is a map below D or, still equivalently, if and only if the map f : X → R is a
non-expansive map considered as a map from the metric space (X, D) into R,
endowed with its standard metric.

Consequently, a Gromov transform D∆,f of a map D in S2(X) relative to
some ∆ ≥ 0 and some map f : X → R will be called a proper Gromov transform
of D if |f(x)−f(y)| ≤ xy holds for all x, y ∈ X . Here, we now want to show that
proper Gromov transforms of metrics always are metrics, too. More precisely,
the following result will be established:

Theorem 1.1 Given a symmetric map D : X × X → R : (x, y) 7→ xy and a
map f : X → R, the map D∆,f is a ∆-additive metric for every ∆ ≥ 0 if and
only if the following two (obviously necessary) conditions are satisfied:

(i) D is a metric and

(ii) |f(y) − f(x)| ≤ xy holds for all x, y ∈ X.

1A map D in S2(X) is called additive if xy + uv ≤ max(xu + yv, xv + yu) holds for all
x, y, u, v ∈ X or, equivalently, if it is (0, f) additive for every map f of the form f = ha : X →

R : x 7→ xa for some a ∈ R.
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2 Basic Definitions and Results

In view of the fact that D = D∆,f holds for every sufficiently large number ∆,
it is obvious that Condition (i) in Theorem 1.1 must hold if D∆,f is a metric for
all ∆ ≥ 0. Further, Condition (ii) must hold, too, in view of the results from
[2] quoted above.

To establish the converse, we’ll need the following definitions and results:

Definition 2.1 Given a symmetric map D : X×X → R and a map f : X → R,
put

∆f (D) := max{xyf − max(xaf , ayf ) : x, y, a ∈ X}

and

X(x, y) = XD,f (x, y) := {a ∈ X : xyf − max(xaf , ayf ) = ∆f (D)}

The next three results are crucial for the proof of our theorem in the next
section.

Lemma 2.2 If X(x, y) 6= ∅ holds for some x, y ∈ X, we have necessarily

|f(x) − f(y)| ≤ xy − ∆f (D).

Proof: Choose some a ∈ X(x, y) and note that xa − f(a) ≥ −f(x) and ya −
f(a) ≥ −f(y) implies

xy − ∆f (D) = f(x) + f(y) + xyf − ∆f (D) = f(x) + f(y) + max(xaf , yaf ) =

= max(f(y) + xa − f(a), f(x) + ya − f(a))

≥ max(f(y) − f(x), f(x) − f(y)) = |f(x) − f(y)|.

Lemma 2.3 Given some D ∈ S2(X) and some f ∈ R
X with ∆f (D) > 0, there

exists some positive real number ε = ε(D, f) ≤ ∆f (D) and some symmetric map
kf : X × X → N0 such that

D∆,f (x, y) = xy − kf (x, y)(∆f (D) − ∆)

holds for all x, y ∈ X and all ∆ in the interval [∆f (D) − ε, ∆f (D)]. The map
kf satisfies the condition

kf (x, y) ≥ 1 + kf (x, y|a)

with
kf (x, y|a) := min{kf (t, a) : t ∈ {x, y}, xyf = taf + ∆f (D)}

for all a ∈ X(x, y), and it is the smallest such map, i.e. we have

kf (x, y) = max(1 + kf (x, y|a) : a ∈ X(x, y))

in case X(x, y) 6= ∅ and
kf (x, y) = 0
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in case X(x, y) = ∅.
In particular, xy − ∆ < f(x) − f(y) implies kf (x, y) = 0 in view of the

previous lemma,
xyf = yaf + ∆f (D) > xa + ∆f (D)

implies
kf (x, y) ≥ 1 + kf (y, a),

and
xyf = xaf + ∆f (D) = yaf + ∆f (D)

implies
kf (x, y) ≥ 1 + min(kf (x, a), kf (y, a))

Proof: The simple and straight forward proof of this lemma is left to the reader.

Lemma 2.4 Assume we are given some metric D ∈ S2(X), and some f ∈ R
X

with |f(u)−f(v)| ≥ uv for all u, v ∈ X. Assume furthermore that xz = xy +yz

and a ∈ X(x, y) holds for some fixed elements x, y, z, a ∈ X and put ∆ :=
∆f (D). Then, we have either

azf < xaf = xzf − ∆, xyf − ∆ = xaf , and yzf + 2f(y) = 0,(1)

or

xaf < azf = xzf − ∆, xyf − ∆ = ayf , and ay + yz = az,(2)

or

azf = xaf = xzf − ∆, yzf + 2f(y) = 0, xyf − ∆ = xaf = ayf ,(3)

and ay + yz = az.

Proof: Clearly, our assumptions ∆ = ∆f (D), xyf − ∆ = max(xaf , ayf ), yz ≥
f(z) − f(y), and ay + yz ≥ az imply

max(xaf , azf ) ≥ xzf − ∆, xyf − ∆ ≥ xaf , ayf , yzf + 2f(y) ≥ 0,

and
ayf + yzf + 2f(y) ≥ azf ,

respectively. Thus, we have

max(xaf , azf ) ≥ xzf −∆ = xyf + yzf + 2f(y)−∆ ≥ xaf + yzf + 2f(y) ≥ xaf

as well as

max(xaf , azf ) ≥ xzf −∆ = xyf + yzf + 2f(y)−∆ ≥ ayf + yzf + 2f(y) ≥ azf .

However, we have either max(xaf , azf ) = xaf or max(xaf , azf ) = azf , and the
former implies

xaf = xzf − ∆, xyf − ∆ = xaf , and yzf + 2f(y) = 0,
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while max(xaf , azf ) = azf implies

azf = xzf − ∆, xyf − ∆ = ayf , and ayf + yzf + 2f(y) = azf ,

or, equivalently,

azf = xzf − ∆, xyf − ∆ = ayf , and ay + yz = az.

So, we have either

azf < xaf = xzf − ∆, xyf − ∆ = xaf , and yzf + 2f(y) = 0,

or
xaf < azf = xzf − ∆, xyf − ∆ = ayf , and ay + yz = az,

or

azf = xaf = xzf − ∆, yzf + 2f(y) = 0, xyf − ∆ = xaf = ayf , and

ay + yz = az,

as claimed.

3 Proof of theTheorem

We can now return to the proof of Theorem 1.1: It is easy to see that all we
need to show is that the assumptions (i), (ii), and ∆ := ∆f > 0 imply that
kf (x, z) ≥ kf (x, y) + kf (y, z) holds for all x, y, z ∈ X with xz = xy + yz. We
will do this by “induction” relative to xzf , i.e. we assmue that our claim holds
for all x′, y′, z′ ∈ X with x′z′ = x′y′ + y′z′ and x′z′

f < xzf .
If kf (x, y) + +kf (y, z) = 0 holds, there is nothing to prove. Otherwise, we

may assume that, say, kf (x, y) is positive. Thus, we can choose some a ∈ X(x, y)
with

kf (x, y) = 1 + kf (xy, y|a).

Clearly, the four elements x, y, z, a satisfy the assumptions in Lemma 2.4 im-
plying that either one of the three cases considered there must hold.

In case (1), we get

kf (x, z) ≥ 1 + kf (x, a), kf (x, y) ≤ 1 + kf (x, a)

(in view of x ∈ {t ∈ {x, y} : taf = xyf − ∆}), and kf (y, z) = 0 which together
implies our claim

kf (x, z) ≥ 1 + kf (x, a) ≥ kf (x, y) = kf (x, y) + kf (y, z).

In case (2), we get

kf (x, z) ≥ 1 + kf (z, a), kf (x, y) ≤ 1 + kf (y, a)
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(in view of y ∈ {t ∈ {x, y} : taf = xyf − ∆}), and kf (z, a) ≥ kf (z, y) + kf (y, a)
(in view of zaf ≤ xzf −∆ < xzf and our induction hypothesis). Together, this
implies also our claim

kf (x, z) ≥ 1 + kf (z, a) ≥ 1 + kf (z, y) + kf (y, a) ≥ kf (x, y) + kf (z, y).

In case (3) finally, we get

kf (y, z) = 0 and ay + yz = az,

as before as well as

kf (x, z) ≥ 1 + min(kf (x, a), kf (a, z)) and kf (x, y) = 1 + min(kf (x, a), kf (a, y)).

Thus, our induction hypothesis implies

kf (z, a) ≥ kf (z, y) + kf (y, a) = kf (y, a)

which implies in turn that

kf (x, z) ≥ 1 + min(kf (x, a), kf (a, z)) ≥

1 + min(kf (x, a), kf (a, y)) = kf (x, y) = kf (x, y) + kf (z, y)

must hold in this case, too. Together, this establishes our theorem.
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