Proper Gromov Transforms of Metrics are Metrics

Andreas Dress*

August 6, 2001

Abstract

In phylogenetic analysis, a standard problem is to approximate a given metric by an additive metric. Here it is shown that, given a metric D defined on some finite set X and a non-expansive map $f: X \rightarrow \mathbb{R}$, the one-parameter family of the Gromov transforms $D^{\Delta, f}$ of D relative to f and Δ that starts with D for large values of Δ and ends with an additive metric for $\Delta=0$ consists exclusively of metrics. It is expected that this result will help to better understand some standard tree reconstruction procedures considered in phylogenetic analyis.

Keywords and Phrases: Metrics, additive metrics, Δ additive metrics, ultra metrics Farris transforms, Gromov transforms, phylogenetic analysis, phylogenetic combinatorics

1 Introduction

Given a finite set X of cardinality $n \geq 2$, a symmetric map

$$
D: X \times X \rightarrow \mathbb{R}:(x, y) \mapsto x y
$$

from $X \times X$ into \mathbb{R}, a map $f: X \rightarrow \mathbb{R}$, and a non-negative real number Δ, the Gromov transform $D^{\Delta, f}$ of D relative to f and Δ has been defined in [2] (see also $[4,1]$) where also the biological motivation for this construction within the context of phylogenetic analysis has been discussed:

First, one considers the Farris transform (cf.[3]) D_{f} of D relative to f defined by

$$
D_{f}: X \times X \rightarrow \mathbb{R}:(x, y) \mapsto x y_{f}:=x y-f(x)-f(y) .
$$

Then, one forms the (unique!) largest symmetric map D^{\prime} from $X \times X$ into \mathbb{R} below D_{f} - also denoted by $\left(D_{f}\right)^{\Delta}$ - that satisfies the inequalities

$$
D^{\prime}(x, z) \leq \max \left(D^{\prime}(x, y), D^{\prime}(y, z)\right)+\Delta
$$

[^0]for all $x, y \in X$. And then one defines $D^{\Delta, f}$ as the Farris transform $D_{g}^{\prime}=$ $\left(\left(D_{f}\right)^{\Delta}\right)_{g}$ of $\left(D_{f}\right)^{\Delta}$ relative to the map $g:=-f$.

It has been observed in [2] that $D^{\Delta, f}$ coincides with the largest (Δ, f) additive map below D in $\mathcal{S}_{2}(X)$, the space of all symmetric maps from $X \times X$ into \mathbb{R}, i.e. it coincides with the (necessarily unique) largest map $D^{\prime \prime}$ in $\mathcal{S}_{2}(X)$ satisfying the inequalities

$$
D^{\prime \prime}(x, y) \leq D(x, y)
$$

and

$$
D^{\prime \prime}(x, y)_{f} \leq \max \left(D^{\prime \prime}(x, z)_{f}, D^{\prime \prime}(y, z)_{f}\right)+\Delta
$$

for all $x, y, z \in X$, and that $D^{f}:=D^{0, f}$ is an additive ${ }^{1}$ metric for every metric $D \in \mathcal{S}_{2}(X)$ and for every f in the tight span

$$
T(D):=\left\{f \in \mathbb{R}^{X}: f(x)=\max (x y-f(y): y \in X) \text { for all } x \in X\right\}
$$

of D. More generally, it was shown there that, given some $D \in \mathcal{S}_{2}(X)$ and some $f \in \mathbb{R}^{X}$, the inequality $D^{\Delta, f}(x, y) \geq 0$ holds for all $\Delta \geq 0$ and all $x, y \in X$ if and only if $D^{f}(x, y) \geq 0$ holds for all $x, y \in X$ if and only if $D^{f}(x, x) \geq 0$ holds for all $x \in X$ if and only if the inequality $f(y) \leq x y+f(x)$ or, equivalently,

$$
|f(y)-f(x)|=\max (f(y)-f(x), f(x)-f(y)) \leq x y
$$

holds for all $x, y \in X$, i.e. if and only if the map

$$
X \times X \rightarrow \mathbb{R}:(x, y) \mapsto|f(x)-f(y)|
$$

is a map below D or, still equivalently, if and only if the map $f: X \rightarrow \mathbb{R}$ is a non-expansive map considered as a map from the metric space (X, D) into \mathbb{R}, endowed with its standard metric.

Consequently, a Gromov transform $D^{\Delta, f}$ of a map D in $\mathcal{S}_{2}(X)$ relative to some $\Delta \geq 0$ and some map $f: X \rightarrow \mathbb{R}$ will be called a proper Gromov transform of D if $|f(x)-f(y)| \leq x y$ holds for all $x, y \in X$. Here, we now want to show that proper Gromov transforms of metrics always are metrics, too. More precisely, the following result will be established:

Theorem 1.1 Given a symmetric map $D: X \times X \rightarrow \mathbb{R}:(x, y) \mapsto x y$ and a map $f: X \rightarrow \mathbb{R}$, the map $D^{\Delta, f}$ is a Δ-additive metric for every $\Delta \geq 0$ if and only if the following two (obviously necessary) conditions are satisfied:
(i) D is a metric and
(ii) $|f(y)-f(x)| \leq x y$ holds for all $x, y \in X$.

[^1]
2 Basic Definitions and Results

In view of the fact that $D=D^{\Delta, f}$ holds for every sufficiently large number Δ, it is obvious that Condition (i) in Theorem 1.1 must hold if $D^{\Delta, f}$ is a metric for all $\Delta \geq 0$. Further, Condition (ii) must hold, too, in view of the results from [2] quoted above.

To establish the converse, we'll need the following definitions and results:
Definition 2.1 Given a symmetric map $D: X \times X \rightarrow \mathbb{R}$ and a map $f: X \rightarrow \mathbb{R}$, put

$$
\Delta_{f}(D):=\max \left\{x y_{f}-\max \left(x a_{f}, a y_{f}\right): x, y, a \in X\right\}
$$

and

$$
X(x, y)=X_{D, f}(x, y):=\left\{a \in X: x y_{f}-\max \left(x a_{f}, a y_{f}\right)=\Delta_{f}(D)\right\}
$$

The next three results are crucial for the proof of our theorem in the next section.

Lemma 2.2 If $X(x, y) \neq \emptyset$ holds for some $x, y \in X$, we have necessarily

$$
|f(x)-f(y)| \leq x y-\Delta_{f}(D)
$$

Proof: Choose some $a \in X(x, y)$ and note that $x a-f(a) \geq-f(x)$ and $y a-$ $f(a) \geq-f(y)$ implies

$$
\begin{gathered}
x y-\Delta_{f}(D)=f(x)+f(y)+x y_{f}-\Delta_{f}(D)=f(x)+f(y)+\max \left(x a_{f}, y a_{f}\right)= \\
=\max (f(y)+x a-f(a), f(x)+y a-f(a)) \\
\geq \max (f(y)-f(x), f(x)-f(y))=|f(x)-f(y)|
\end{gathered}
$$

Lemma 2.3 Given some $D \in \mathcal{S}_{2}(X)$ and some $f \in \mathbb{R}^{X}$ with $\Delta_{f}(D)>0$, there exists some positive real number $\epsilon=\epsilon(D, f) \leq \Delta_{f}(D)$ and some symmetric map $k_{f}: X \times X \rightarrow \mathbb{N}_{0}$ such that

$$
D^{\Delta, f}(x, y)=x y-k_{f}(x, y)\left(\Delta_{f}(D)-\Delta\right)
$$

holds for all $x, y \in X$ and all Δ in the interval $\left[\Delta_{f}(D)-\epsilon, \Delta_{f}(D)\right]$. The map k_{f} satisfies the condition

$$
k_{f}(x, y) \geq 1+k_{f}(x, y \mid a)
$$

with

$$
k_{f}(x, y \mid a):=\min \left\{k_{f}(t, a): t \in\{x, y\}, x y_{f}=t a_{f}+\Delta_{f}(D)\right\}
$$

for all $a \in X(x, y)$, and it is the smallest such map, i.e. we have

$$
k_{f}(x, y)=\max \left(1+k_{f}(x, y \mid a): a \in X(x, y)\right)
$$

in case $X(x, y) \neq \emptyset$ and

$$
k_{f}(x, y)=0
$$

in case $X(x, y)=\emptyset$.
In particular, $x y-\Delta<f(x)-f(y)$ implies $k_{f}(x, y)=0$ in view of the previous lemma,

$$
x y_{f}=y a_{f}+\Delta_{f}(D)>x a+\Delta_{f}(D)
$$

implies

$$
k_{f}(x, y) \geq 1+k_{f}(y, a)
$$

and

$$
x y_{f}=x a_{f}+\Delta_{f}(D)=y a_{f}+\Delta_{f}(D)
$$

implies

$$
k_{f}(x, y) \geq 1+\min \left(k_{f}(x, a), k_{f}(y, a)\right)
$$

Proof: The simple and straight forward proof of this lemma is left to the reader.
Lemma 2.4 Assume we are given some metric $D \in \mathcal{S}_{2}(X)$, and some $f \in \mathbb{R}^{X}$ with $|f(u)-f(v)| \geq u v$ for all $u, v \in X$. Assume furthermore that $x z=x y+y z$ and $a \in X(x, y)$ holds for some fixed elements $x, y, z, a \in X$ and put $\Delta:=$ $\Delta_{f}(D)$. Then, we have either

$$
\begin{equation*}
a z_{f}<x a_{f}=x z_{f}-\Delta, x y_{f}-\Delta=x a_{f}, \text { and } y z_{f}+2 f(y)=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
x a_{f}<a z_{f}=x z_{f}-\Delta, x y_{f}-\Delta=a y_{f}, \text { and } a y+y z=a z \tag{2}
\end{equation*}
$$

or

$$
\begin{gather*}
a z_{f}=x a_{f}=x z_{f}-\Delta, y z_{f}+2 f(y)=0, x y_{f}-\Delta=x a_{f}=a y_{f} \tag{3}\\
\text { and } a y+y z=a z
\end{gather*}
$$

Proof: Clearly, our assumptions $\Delta=\Delta_{f}(D), x y_{f}-\Delta=\max \left(x a_{f}, a y_{f}\right), y z \geq$ $f(z)-f(y)$, and $a y+y z \geq a z$ imply

$$
\max \left(x a_{f}, a z_{f}\right) \geq x z_{f}-\Delta, \quad x y_{f}-\Delta \geq x a_{f}, a y_{f}, \quad y z_{f}+2 f(y) \geq 0
$$

and

$$
a y_{f}+y z_{f}+2 f(y) \geq a z_{f}
$$

respectively. Thus, we have
$\max \left(x a_{f}, a z_{f}\right) \geq x z_{f}-\Delta=x y_{f}+y z_{f}+2 f(y)-\Delta \geq x a_{f}+y z_{f}+2 f(y) \geq x a_{f}$
as well as
$\max \left(x a_{f}, a z_{f}\right) \geq x z_{f}-\Delta=x y_{f}+y z_{f}+2 f(y)-\Delta \geq a y_{f}+y z_{f}+2 f(y) \geq a z_{f}$.
However, we have either $\max \left(x a_{f}, a z_{f}\right)=x a_{f}$ or $\max \left(x a_{f}, a z_{f}\right)=a z_{f}$, and the former implies

$$
x a_{f}=x z_{f}-\Delta, x y_{f}-\Delta=x a_{f}, \text { and } y z_{f}+2 f(y)=0
$$

while $\max \left(x a_{f}, a z_{f}\right)=a z_{f}$ implies

$$
a z_{f}=x z_{f}-\Delta, x y_{f}-\Delta=a y_{f}, \text { and } a y_{f}+y z_{f}+2 f(y)=a z_{f}
$$

or, equivalently,

$$
a z_{f}=x z_{f}-\Delta, x y_{f}-\Delta=a y_{f}, \text { and } a y+y z=a z
$$

So, we have either

$$
a z_{f}<x a_{f}=x z_{f}-\Delta, x y_{f}-\Delta=x a_{f}, \text { and } y z_{f}+2 f(y)=0
$$

or

$$
x a_{f}<a z_{f}=x z_{f}-\Delta, x y_{f}-\Delta=a y_{f}, \text { and } a y+y z=a z
$$

or

$$
\begin{gathered}
a z_{f}=x a_{f}=x z_{f}-\Delta, y z_{f}+2 f(y)=0, x y_{f}-\Delta=x a_{f}=a y_{f}, \text { and } \\
a y+y z=a z
\end{gathered}
$$

as claimed.

3 Proof of theTheorem

We can now return to the proof of Theorem 1.1: It is easy to see that all we need to show is that the assumptions (i), (ii), and $\Delta:=\Delta_{f}>0$ imply that $k_{f}(x, z) \geq k_{f}(x, y)+k_{f}(y, z)$ holds for all $x, y, z \in X$ with $x z=x y+y z$. We will do this by "induction" relative to $x z_{f}$, i.e. we assmue that our claim holds for all $x^{\prime}, y^{\prime}, z^{\prime} \in X$ with $x^{\prime} z^{\prime}=x^{\prime} y^{\prime}+y^{\prime} z^{\prime}$ and $x^{\prime} z_{f}^{\prime}<x z_{f}$.

If $k_{f}(x, y)++k_{f}(y, z)=0$ holds, there is nothing to prove. Otherwise, we may assume that, say, $k_{f}(x, y)$ is positive. Thus, we can choose some $a \in X(x, y)$ with

$$
k_{f}(x, y)=1+k_{f}(x y, y \mid a)
$$

Clearly, the four elements x, y, z, a satisfy the assumptions in Lemma $2.4 \mathrm{im}-$ plying that either one of the three cases considered there must hold.

In case (1), we get

$$
k_{f}(x, z) \geq 1+k_{f}(x, a), \quad k_{f}(x, y) \leq 1+k_{f}(x, a)
$$

(in view of $x \in\left\{t \in\{x, y\}: t a_{f}=x y_{f}-\Delta\right\}$), and $k_{f}(y, z)=0$ which together implies our claim

$$
k_{f}(x, z) \geq 1+k_{f}(x, a) \geq k_{f}(x, y)=k_{f}(x, y)+k_{f}(y, z)
$$

In case (2), we get

$$
k_{f}(x, z) \geq 1+k_{f}(z, a), \quad k_{f}(x, y) \leq 1+k_{f}(y, a)
$$

(in view of $y \in\left\{t \in\{x, y\}: t a_{f}=x y_{f}-\Delta\right\}$), and $k_{f}(z, a) \geq k_{f}(z, y)+k_{f}(y, a)$ (in view of $z a_{f} \leq x z_{f}-\Delta<x z_{f}$ and our induction hypothesis). Together, this implies also our claim

$$
k_{f}(x, z) \geq 1+k_{f}(z, a) \geq 1+k_{f}(z, y)+k_{f}(y, a) \geq k_{f}(x, y)+k_{f}(z, y)
$$

In case (3) finally, we get

$$
k_{f}(y, z)=0 \text { and } a y+y z=a z
$$

as before as well as
$k_{f}(x, z) \geq 1+\min \left(k_{f}(x, a), k_{f}(a, z)\right)$ and $k_{f}(x, y)=1+\min \left(k_{f}(x, a), k_{f}(a, y)\right)$.
Thus, our induction hypothesis implies

$$
k_{f}(z, a) \geq k_{f}(z, y)+k_{f}(y, a)=k_{f}(y, a)
$$

which implies in turn that

$$
\begin{gathered}
k_{f}(x, z) \geq 1+\min \left(k_{f}(x, a), k_{f}(a, z)\right) \geq \\
1+\min \left(k_{f}(x, a), k_{f}(a, y)\right)=k_{f}(x, y)=k_{f}(x, y)+k_{f}(z, y)
\end{gathered}
$$

must hold in this case, too. Together, this establishes our theorem.

References

[1] B. Bowditch, Notes on Gromov's hyperbolicity criterion for path metric spaces, in:E. Ghys et al. Group theory from a geometric viewpoint, (World Scientific, 1991) 64-167.
[2] A. Dress, K.T. Huber, J.H. Koolen, V. Moulton, and J. Weyer-Menkhoff, Δ additive and Δ ultra-additive maps, Gromov's trees, and the Farris transform, submitted
[3] J.S. Farris, On the phenetic approach to vertebrate classification, in Major patterns in vertebrate evolution, (Plenum, New York, 1977) 823-950.
[4] M. Gromov, Hyperbolic Groups, in:Essays in Group Theory, MSRI series vol. 8, (Springer-Verlag, 1988).

[^0]: *GK Strukturbildungsprozesse, FSP Mathematisierung, Universität Bielefeld, D-33501 Bielefeld, Germany, email: dress@mathematik.uni-bielefeld.de. This work was supported by the Graduiertenkolleg Strukturbildungsprozesse.

[^1]: ${ }^{1}$ A map D in $\mathcal{S}_{2}(X)$ is called additive if $x y+u v \leq \max (x u+y v, x v+y u)$ holds for all $x, y, u, v \in X$ or, equivalently, if it is $(0, f)$ additive for every map f of the form $f=h_{a}: X \rightarrow$ $\mathbb{R}: x \mapsto x a$ for some $a \in \mathbb{R}$.

