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Abstract

In phylogenetic analysis, a standard problem is to approximate a given
metric by an additive metric. Here it is shown that, given a metric D
defined on some finite set X and a non-expansive map f : X — R, the
one-parameter family of the Gromov transforms D*¥ of D relative to f
and A that starts with D for large values of A and ends with an additive
metric for A = 0 consists exclusively of metrics. It is expected that this
result will help to better understand some standard tree reconstruction
procedures considered in phylogenetic analyis.
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1 Introduction
Given a finite set X of cardinality n > 2, a symmetric map
D: XxX—>R:(z,y)— ay

from X x X into R, a map f: X — R, and a non-negative real number A, the
Gromov transform D™/ of D relative to f and A has been defined in [2] (see
also [4, 1]) where also the biological motivation for this construction within the
context of phylogenetic analysis has been discussed:

First, one considers the Farris transform (cf.[3]) Dy of D relative to f defined
by

Dy: X x X =R (2,y) — ays =2y — f(z) — £(y).
Then, one forms the (unique!) largest symmetric map D’ from X x X into R
below Dy — also denoted by (Df)® — that satisfies the inequalities

D'(z,z) < max(D'(x,y), D' (y,2)) + A
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for all 2,y € X. And then one defines D*/ as the Farris transform D; =
((Df)?), of (Dy)? relative to the map g :== —f.

It has been observed in [2] that D7 coincides with the largest (A, f) ad-
ditive map below D in S»(X), the space of all symmetric maps from X x X
into R, i.e. it coincides with the (necessarily unique) largest map D" in Sy(X)
satisfying the inequalities

D"(z,y) < D(z,y)

and
D”(Qj, y)f < max(D”(x, Z)fa D//(y7 Z)f) +A

for all z,y, 2 € X, and that Df := D%/ is an additive! metric for every metric
D € 8(X) and for every f in the tight span

T(D):={f € R* : f(x) = max(zy — f(y):y € X) forall z € X}

of D. More generally, it was shown there that, given some D € Sz(X) and some
f € RX, the inequality D®/(z,y) > 0 holds for all A > 0 and all z,y € X if
and only if Df(z,y) > 0 holds for all z,y € X if and only if Df(x,2) > 0 holds
for all z € X if and only if the inequality f(y) < zy + f(x) or, equivalently,

[f(y) = f(@)] = max(f(y) — f(2), f(2) = f(y)) < 2y

holds for all z,y € X, i.e. if and only if the map

XxX—=R:(z,y)—|f(z) = fy)

is a map below D or, still equivalently, if and only if the map f: X — Ris a
non-expansive map considered as a map from the metric space (X, D) into R,
endowed with its standard metric.

Consequently, a Gromov transform D/ of a map D in Sy(X) relative to
some A > 0 and some map f : X — R will be called a proper Gromov transform
of Dif |f(z)— f(y)| < zy holds for all z,y € X. Here, we now want to show that
proper Gromov transforms of metrics always are metrics, too. More precisely,
the following result will be established:

Theorem 1.1 Given a symmetric map D : X x X — R : (z,y) — zy and a
map f: X — R, the map D™7 is a A-additive metric for every A > 0 if and
only if the following two (obviously necessary) conditions are satisfied:

(i) D is a metric and
(i) |f(y) — f(x)] < zy holds for all z,y € X.
1A map D in S2(X) is called additive if zy + uwv < max(zu + yv, zv + yu) holds for all

z,y,u,v € X or, equivalently, if it is (0, f) additive for every map f of the form f =hq : X —
R: z +— za for some a € R.




2 Basic Definitions and Results

In view of the fact that D = D*7 holds for every sufficiently large number A,
it is obvious that Condition (i) in Theorem 1.1 must hold if D/ is a metric for
all A > 0. Further, Condition (%) must hold, too, in view of the results from
[2] quoted above.

To establish the converse, we’ll need the following definitions and results:

Definition 2.1 Given a symmetric map D : X XX — R and amap f: X — R,
put
A¢(D) := max{zys — max(zays,ayys) : ©,y,a € X}

and
X(z,y) = Xp,f(x,y) == {a € X : xzyy —max(zay,ays) = Af(D)}

The next three results are crucial for the proof of our theorem in the next
section.

Lemma 2.2 If X (z,y) # 0 holds for some x,y € X, we have necessarily
[f(x) = fy)] < xy — Af(D).

Proof: Choose some a € X (z,y) and note that za — f(a) > —f(z) and ya —
f(a) > —f(y) implies

vy — Ap(D) = f(x) + f(y) + wys — Ap(D) = f(2) + f(y) + max(zas,yay) =
= max(f(y) +za = f(a), f(2) +ya - f(a))
> max(f(y) — f(x), f(x) = f(y)) = [f (=) = f(y)]- '

Lemma 2.3 Given some D € S2(X) and some f € RX with A¢(D) > 0, there
exists some positive real number e = e(D, f) < A¢(D) and some symmetric map
kf: X x X — Ny such that

D (2,y) = ay — ky(z,y)(As (D) — A)

holds for all z,y € X and all A in the interval [Af(D) —e€,A¢(D)]. The map
ks satisfies the condition

ki(z,y) > 1+ ks(2,yla)

with
k¢(z,yla) == min{ks(t,a) : t € {z,y},xys = tay + Ap(D)}

for all a € X(z,y), and it is the smallest such map, i.e. we have
kf(z,y) = max(1 + kf(2,yla) : a € X(2,y))

in case X(x,y) # 0 and
ky(z,y) =0



in case X(x,y) = 0.
In particular, vy — A < f(x) — f(y) implies k¢(x,y) = 0 in view of the
previous lemma,
xys =yay + Af(D) > za+ Ay(D)

implies
ki(z,y) > 1+ ky(y, a),
and
vy = zay + Af(D) = yay + As(D)
implies

kp(w,y) > 1+ min(ky (2, a), ks (y, a))

Proof: The simple and straight forward proof of this lemma is left to the reader.

Lemma 2.4 Assume we are given some metric D € Sa(X), and some f € R
with | f(u) — f(v)] > wv for all u,v € X. Assume furthermore that xz = xy +yz
and a € X(x,y) holds for some fized elements x,y,z,a € X and put A =
A¢(D). Then, we have either

(1) azy <wxay =xz5 — A, vyr — A =zay, and yzy +2f(y) =0,

or

(2) ray < azy =xzp — A, vy — A =ayy, and ay +yz = az,

or

(3) azg =xay = xz5 — A, yzy +2f(y) =0, vy — A = zay = ayy,
and ay + yz = az.

Proof: Clearly, our assumptions A = A¢(D), zyy — A = max(zay, ayys), yz >
f(2) = f(y), and ay + yz > az imply

max(zay,azy) > xzp — A, wyy — A= wzap,ayy, yzp+2f(y) =0,

and
ayy +yzp +2f(y) > azy,

respectively. Thus, we have

max(zay,azp) > wzp — A =wyp +yzp +2f(y) = A = way +yzp +2f(y) > way
as well as

max(zay,azp) > vzp — A =wyp +yzp +2f(y) — A > ayy +yzs +2f(y) > azy.

However, we have either max(zas,azy) = xay or max(zay,azy) = azy, and the
former implies

zay =xzp — A, zyr — A =zay, and yzy +2f(y) =0,



while max(zayf, azs) = azy implies
azg =xzp — A, zyr — A =ayy, and ays +yzy + 2f(y) = azy,
or, equivalently,
azy =xzp — A, xyr — A =ayy, and ay +yz = az.
So, we have either

azg < zay =z — A, vy — A =zay, and yzy +2f(y) =0,

" rar < azf =xzf — A, vy — A =ayy, and ay+ yz = az,
or
azg =zay =xz5 — A, yzr+2f(y) =0, zys — A = zay = ayy, and
ay +Yyz = az,
as claimed. 1

3 Proof of theTheorem

We can now return to the proof of Theorem 1.1: It is easy to see that all we
need to show is that the assumptions (i), (ii), and A := Ay > 0 imply that
ke(x,2) > ke(z,y) + kf(y, z) holds for all x,y,z € X with vz = zy + yz. We
will do this by “induction” relative to xz¢, i.e. we assmue that our claim holds
for all ', y', 2" € X with 2’2" = 2'y' +y'2" and 2'2} < xzy.

If kf(x,y) + +kf(y, z) = 0 holds, there is nothing to prove. Otherwise, we
may assume that, say, k¢(x,y) is positive. Thus, we can choose some a € X (z,y)
with

ki(z,y) =14 kyp(zy, yla).

Clearly, the four elements z,y, z, a satisfy the assumptions in Lemma 2.4 im-
plying that either one of the three cases considered there must hold.
In case (1), we get

kf(ﬂ?,z) >1 +I€f($,0;), kf(xvy) <1 +kf($,&)

(in view of z € {t € {z,y} : tay = zyy — A}), and ky(y, z) = 0 which together
implies our claim

kp(a,z) 2 1+ kp(x,a) > kp(z,y) = kp(2,y) + ks (y, 2)-
In case (2), we get

kf(x,Z) > 1+ kf(Z,Cl), kf(ﬂ?,y) < 1+ kf(y,&)



(in view of y € {t € {z,y} : tay = xys — A}), and kf(z,a) > k¢(z,y) + k¢(y,a)
(in view of zay < zzy — A < wzy and our induction hypothesis). Together, this
implies also our claim

ki(x,2) > 1+ kp(z,0) > 1+ kp(z,9) + kp(y, a) = ki (2, y) + ke (2,9).
In case (3) finally, we get
k¢(y,z) =0 and ay + yz = az,
as before as well as
k¢(z,z) > 1+ min(ks(x,a), kf(a,2)) and kf(z,y) = 1 + min(ks(z, a), kr(a, y)).
Thus, our induction hypothesis implies
ki(z,a) = kf(2,9) + kp(y,a) = ky(y, a)
which implies in turn that
k¢(z,z) > 14+ min(ks(z,a), kf(a,z)) >

I+ min(kf(xﬂ a), kf(avy)) = kf(xﬂ y) = kf(xﬂ y)+ kf(za Y)

must hold in this case, too. Together, this establishes our theorem. ]
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