# A New Scale-invariant Geometry on $L_1$ Spaces

A. Dress\*, T. Lokot\* and L.D. Pustyl'nikov<sup>†</sup>

#### Abstract

J.J. Nieto, A. Torres, and M.M. Vázquez-Trasande recently considered, for any  $n\in\mathbb{N},$  the bivariate map

$$d: [0,1]^n \times [0,1]^n \to \mathbb{R}:$$

$$\left((p_1,\ldots,p_n),(q_1,\ldots,q_{\overrightarrow{n}}) \mid \sum_{i=1}^n |p_i-q_i| \over \sum_{i=1}^n \max\left(|p_i|,|q_i|\right)$$

(with  $d((p_1,\ldots,p_n),(q_1,\ldots,q_n)) := 0$  if  $(p_1,\ldots,p_n) = (q_1,\ldots,q_n) = (0,\ldots,0)$ ) and showed that this map satisfies the triangle inequality and, hence, constitutes a metric. Here, we suggest to consider, more generally, for any space X with a positive measure  $\mu$ , the bivariate map

$$d:L_1(X,\mu) imes L_1(X,\mu)
ightarrow \mathbb{R}:(p,q)
ightarrow rac{\int_X|p-q|d\mu}{\int_X\maxig(|p|,|q|ig)d\mu}$$

(with d(p,q):=0 if  $\int_X \max\big(|p|,|q|\big)d\mu=0$ ) and show that, for maps  $p,q\in L_1(X,\mu)^+:=\{f\in L_1(X,\mu)\,|\,f(x)\geq 0\text{ for all }x\in X\}$ , the length of a geodesic (relative to d) coincides with the sum

$$\ln \frac{\int_X \max(p,q) d\mu}{\int_X p d\mu} + \ln \frac{\int_X \max(p,q) d\mu}{\int_X q d\mu}$$

In particular, a continuous path  $S:[0,1] \to L_1(X,\mu)^+: t \mapsto S_t$  is a geodesic in  $L_1(X,\mu)$  relative to this metric if and only if there exists some  $t_0 \in [0,1]$  with  $S_{t_0} = \max(p,q)$ , and one has  $S_t(x) \leq S_{t'}(x)$ , for all  $t,t' \in [0,t_0]$  with  $t \leq t'$  and for all  $t,t' \in [t_0,1]$  with  $t \geq t'$ , almost all  $x \in X$ .

Classification codes according to the 2000 Mathematics Subject Classification of  $Mathematical\ Reviews$ :

53C22, 46B20, 26B15, 51M25, 51F99, 52A40, 54E99, 58E10.

**Keywords:** –Metric, NTV-metric, Triangle inequality, Geodesics,  $L_1$  space,  $L_1$  geometry, Scale invariance.

 $<sup>^*</sup>$ Forschungsschwerpunkt Mathematisierung, Universität Bielefeld, D-33615 Bielefeld, Germany

 $<sup>^\</sup>dagger K eldysh$  Institut of Applied Mathematics of RAS, Miusskaja sq. 4, 125047, Moscow, Russia

### 1 Introduction

A well-known question arising in many contexts is how to quantify the (dis)similarity between any two probability distributions defined on the same set. In [1], J.J. Nieto, A. Torres, and M.M. Vázquez-Trasande suggested to use the number

$$d(p,q) := \sum_{i=1}^{n} |p_i - q_i| / \sum_{i=1}^{n} \max(p_i, q_i)$$

as a dissimilarity defined on the pairs (p,q) of probability distributions

$$p := (p_1, \ldots, p_n), q := (q_1, \ldots, q_n)$$

defined on the set  $X := \{1, ..., n\}$ , and showed that the triangle inequality holds indeed for this specific dissimilarity that, henceforth, we will denote by  $d_{NTV}(p,q)$ .

They proposed this definition in the context of analysing sequence profiles of protein- or DNA-sequence families and indicated that they expect it to lead to biologically more plausible results than using the dissimilarity measure  $d_1$  defined by

$$d_1(p,q):=\sum_{i=1}^n|p_i-q_i|$$

(which nobody seems to like) or the similarity measure

$$s_2(p,q) := \sum_{i=1}^n \sqrt{p_i q_i},$$

i.e., the cosine of the two vectors  $(\sqrt{p_1}, \ldots, \sqrt{p_n})$  and  $(\sqrt{q_1}, \ldots, \sqrt{q_n})$  of euclidean length 1 (which appears to be quite popular).

Clearly, the definition of the metric  $d_{NTV}$  can be extended, without any additional effort, to work for any two  $L_1$ -integrable functions p,q defined on some measurable space X with a positive measure  $\mu$ : Just put

$$d_{NTV}(p,q) := \frac{\int_X |p(x)-q(x)| d\mu}{\int_X \max(|p(x)|,|q(x)|) d\mu}$$

in case  $\int_X \max(|p(x)|, |q(x)|) d\mu \neq 0$ , and  $d_{NTV}(p,q) := 0$  else so that  $d_{NTV}(p,q) = 0$  holds for some  $L_1$ -integrable functions p,q defined on some X if and only if they represent the same element in the Banach space  $L_1(X,\mu)$  of  $L_1$ -integrable functions defined on  $X = (X,\mu)$ .

It is easy to see that the method presented in [2] for proving that the triangle inequality holds in the case studied in [1] (i.e., essentially the case where X is finite), yields that it also holds in this much more general situation, thus establishing that the map

$$d_{NTV}: L_1(X,\mu) \times L_1(X,\mu) \to \mathbb{R}: (p,q) \mapsto d_{NTV}(p,q)$$

is indeed a well-defined metric on the space  $L_1(X, \mu)$ .

In [2], it was also observed that this metric is far from being "geodesic", i.e. that it differs considerably from the metric  $d_{NTV}^{(0)}$  where, for any metric d defined on a set L, we denote by  $d^{(0)}$  the map from  $L \times L$  into  $\mathbb{R} \cup \{+\infty\}$  that is defined as follows:

For any  $\varepsilon > 0$  and  $p, q \in L$ , put

$$d^{(\varepsilon)}(p,q) := \inf \left( \sum_{i=1}^{N} d(r_{i-1}, r_i) \right)$$

where the infimum is taken over all finite sequences  $(r_0, \ldots, r_N)$  of points in L with  $r_0 := p$ ,  $r_N := q$ , and  $d(r_{i-1}, r_i) < \varepsilon$  holds for all  $i = 1, \ldots, N$  (with  $d^{(\varepsilon)}(p,q) := \infty$ , of course, if no such sequence exists), and put

$$d^{(0)}(p,q) := \sup_{\varepsilon > 0} \left( d^{(\varepsilon)}(p,q) \right) .$$

Note, by the way, that

$$d^{(\varepsilon)}(p,q) \le d^{(\varepsilon')}(p,q)$$

holds for all  $p, q \in L$  and  $\varepsilon, \varepsilon' > 0$  with  $\varepsilon' < \varepsilon$ , implying that  $d^{(0)}(p, q)$  can also be defined as the limit  $\lim_{\varepsilon \to 0} d^{(\varepsilon)}(p, q)$ .

Here, we will compute the  $d_{NTV}^{(0)}$ -distance for any two elements in the convex cone

$$L_1(X,\mu)^+ := \{ p \in L_1(X,\mu) \mid p(x) \ge 0 \text{ for (almost) all } x \in X \}$$

of non-negative elements in  $L_1(X,\mu)$ . More specifically, we will establish:

**Theorem 1** Given any space X with a positive measure  $\mu$  and any two elements  $p, q \in L_1(X, \mu)^+$ , we have <sup>1</sup>

$$d_{NTV}^{(0)}(p,q) = \ln\frac{\int_X \max(p,q) d\mu}{\int_X p \, d\mu} + \ln\frac{\int_X \max(p,q) d\mu}{\int_X q \, d\mu} \;. \label{eq:dNTV}$$

In the next section, we'll introduce some useful definitions and collect some simple relevant facts, in Section 3 we establish Theorem 1, and in the last section, we will discuss the structure of geodesics in  $L_1(X,\mu)^+$  relative to the NTV-metric.

<sup>&</sup>lt;sup>1</sup>Here, given any two non-negative real numbers a and b, we put  $a/b := \infty$  in case a > 0 and b = 0, and a/b := 1 in case a = b = 0.

### 2 Some Basic Facts and Definitions

Given any two real-valued maps  $p, q: X \to \mathbb{R}$ ,

- we'll write  $p \leq q$  if  $p(x) \leq q(x)$  holds for almost all  $x \in X$ ,
- we'll write p < q if  $p \le q$  holds and the set  $\{x \in X : p(x) < q(x)\}$  is not a set of measure 0, i.e., if  $p \le q$ , but not  $q \le p$  holds,
- we define p and q to be comparable if either  $p \leq q$  or  $q \leq p$  holds,
- and we define p and q to be incomparable if they are not comparable.

As all this holds for any two maps  $p, q: X \to \mathbb{R}$  if and only if it holds for any two maps  $p', q': X \to \mathbb{R}$  that differ from p and q, respectively, on a set of measure 0 only, we will use the same terminology also if p and q are just elements in  $L_1(X, \mu)$ .

Further, we put

$$\max(p,q)(x) := \max(p(x), q(x))$$

and

$$\min(p,q)(x) := \min(p(x), q(x)),$$

for any two maps  $p,q:X\to\mathbb{R}$  and all  $x\in X$ . And we define  $\max(p,q)$  (or  $\min(p,q)$ , respectively) for any two elements  $p,q\in L_1(X,\mu)$  to be the (well-defined) element in  $L_1(X,\mu)$  represented by the map  $\max(p',q')$  (or  $\min(p',q')$ ) for any two maps  $p',q':X\to\mathbb{R}$  representing the elements p,q in  $L_1(X,\mu)$ . Note that  $p,q\leq r$  holds for some real-valued maps  $p,q,r:X\to\mathbb{R}$ , or elements of  $L_1(X,\mu)$ , if and only if  $\max(p,q)\leq r$  holds while  $r\leq p,q$  holds for p,q,r as above if and only if  $r\leq \min(p,q)$  holds.

Next, we define the map  $|p|: X \to \mathbb{R}$  for any map  $p: X \to \mathbb{R}$ , or element p of  $L_1(X, \mu)$ , by

$$|p|(x) := |p(x)| \ (x \in X),$$

and we put

$$||p|| := \int_{Y} |p| \ d\mu$$

for any  $p \in L_1(X, \mu)$  so that

$$d_{NTV}(p,q) = \frac{\int_{X} |p(x) - q(x)| d\mu}{\int_{X} \max(|p(x)|, |q(x)|) d\mu} = \frac{||p - q||}{||\max(|p|, |q|)||}$$

holds for all  $p, q \in L_1(X, \mu)$ ,

$$d_{NTV}(p,q) = \frac{||p-q||}{||\max(p,q)||}$$

holds for all  $p, q \in L_1(X, \mu)^+$ , and

$$||p - q|| = ||p|| - ||q||$$

as well as

$$d_{NTV}(p,q) = rac{||q|| - ||p||}{||q||}$$

holds for all  $p, q \in L_1(X, \mu)^+$  with  $p \leq q$ . In turn, this implies that

$$d_{NTV}(p,r) = 1 - \frac{||p||}{||r||} \le 1 - \frac{||p||}{||q||} = d_{NTV}(p,q)$$

as well as

$$d_{NTV}(r,q) = 1 - \frac{||r||}{||q||} \le 1 - \frac{||p||}{||q||} = d_{NTV}(p,q)$$

holds for all  $p, q, r \in L_1(X, \mu)^+$  with  $p \le r \le q$ . Note also that

$$|a-b| = (\max(a,b)-a) + (\max(a,b)-b)$$
  
=  $|\max(a,b)-a)| + |\max(a,b)-b|$ 

holds for all  $a, b \in \mathbb{R}$ . So,

$$||p-q|| = ||\max(p,q) - p|| + ||\max(p,q) - q||$$

and, hence,

(1) 
$$d_{NTV}(p,q) = \frac{||p-q||}{||\max(p,q)||}$$

$$= \frac{||\max(p,q)-p||+||\max(p,q)-q||}{||\max(p,q)||}$$

$$= d_{NTV}(\max(p,q),p)+d_{NTV}(\max(p,q),q)$$

must also hold for any two elements  $p, q \in L_1(X, \mu)^+$ .

Finally, we define a map

$$S:[a,b]\to L_1(X,\mu):t\mapsto S_t$$

from a real interval [a,b] into  $L_1(X,\mu)$  to be monotonically increasing (or decreasing) if  $S_t \leq S_{t'}$  (or  $S_t \geq S_{t'}$ , respectively) holds for all  $t,t' \in [a,b]$  with t < t'. And we define S to be monotone if it is either monotonically increasing or monotonically decreasing. In the last section, we will establish the following result:

**Theorem 2** Given any space X with a positive measure  $\mu$  and any two elements  $p, q \in L_1(X, \mu)^+$ , a continuous map

$$S: [0,1] \to L_1(X,\mu): t \mapsto S_t$$

with  $S_0 = p$  and  $S_1 = q$  is a geodesic path from p to q in  $L_1(X, \mu)^+$  relative to the NTV-metric if and only if there exists some  $t_0 \in [0, 1]$  with  $S_{t_0} = \max(p, q)$ , S restricted to  $[0, t_0]$  is monotonically increasing, and S restricted to  $[t_0, 1]$  is monotonically decreasing.

### 3 Proof of Theorem 1

Assume that p and q are two arbitrary elements  $L_1(X,\mu)^+$ , put  $m:=\max(p,q)$ , and choose some positive  $\varepsilon < 1$ . As  $d_{NTV}(0,p)=1$  holds for all non-zero elements  $p \in L_1(X,\mu)$ , we have

$$d_{NTV}^{(\varepsilon)}(0,p) = d_{NTV}^{(0)}(0,p) = \infty$$

for all such p.

So, we may assume from now on that  $p, q \neq 0$  holds. To show that

$$d_{NTV}^{(\varepsilon)}(p,q) \leq \ln \frac{||m||}{||p||} + \ln \frac{||m||}{||q||}$$

holds in this case, consider, for some large integer N, the sequence  $r_0, r_1, \ldots, r_{2N}$  of non-zero elements in  $L_1(X, \mu)^+$  defined by

$$r_i := p + \frac{i}{N}(m-p)$$

and

$$r_{2N-i} := q + \frac{i}{N}(m-q)$$

for i = 0, 1, ..., N. Clearly, we have

$$||r_i|| = ||p|| + \frac{i}{N}||m - p|| = ||p|| + \frac{i}{N}(||m|| - ||p||) \ge ||p||$$

and

$$||r_{2N-i}|| = ||q|| + \frac{i}{N}||m-q|| = ||q|| + \frac{i}{N}(||m|| - ||q||) \ge ||q||$$

for all i = 0, 1, ..., N. Hence, we have

$$d_{NTV}(r_{i-1},r_i) = \frac{||r_i|| - ||r_{i-1}||}{||r_i||} = \frac{||m-p||}{N\,||r_i||} \leq \frac{||m||}{N\,||p||} \leq \varepsilon$$

and

$$d_{NTV}(r_{2N-i}, r_{2N-i+1}) = \frac{||r_{2N-i}|| - ||r_{2N-i+1}||}{||r_{2N-i}||} = \frac{||m-q||}{N \, ||r_{2N-i}||} \leq \frac{||m||}{N \, ||q||} \leq \varepsilon$$

for all  $i=0,1,\ldots,N$  provided  $N\geq \frac{||m||}{\varepsilon||p||}$  and  $N\geq \frac{||m||}{\varepsilon||q||}$  holds. Moreover, the well-known fact that

 $\frac{a-b}{a} \le \ln \frac{a}{b}$ 

holds for any two positive numbers a, b with  $a \geq b$ , implies

$$\begin{split} \sum_{i=1}^{2N} d_{NTV}(r_{i-1}, r_i) &= \sum_{i=1}^{N} \frac{||r_i|| - ||r_{i-1}||}{||r_i||} + \sum_{i=1}^{N} \frac{||r_{2N-i}|| - ||r_{2N-i+1}||}{||r_{2N-i}||} \\ &\leq \sum_{i=1}^{N} \ln \frac{||r_i||}{||r_{i-1}||} + \sum_{i=1}^{N} \ln \frac{||r_{2N-i}||}{||r_{2N-i+1}||} \\ &= \ln \frac{||m||}{||p||} + \ln \frac{||m||}{||q||} \end{split}$$

and, therefore, also

$$d_{NTV}^{(\varepsilon')}(p,q) \le \ln \frac{||m||}{||p||} + \ln \frac{||m||}{||q||}$$

for all  $\varepsilon' \in [0, 1)$ , as claimed.

To show that also

$$d_{NTV}^{(0)}(p,q) \ge \ln \frac{||m||}{||p||} + \ln \frac{||m||}{||q||}$$

holds, it will suffice to show that

$$d_{NTV}(R) \ge \ln \frac{||m||}{||p||} + \ln \frac{||m||}{||q||} - \varepsilon (\frac{1}{||p||} + \frac{1}{||q||})$$

holds for the distance sum

$$d_{NTV}(R) := \sum_{i=1}^{N} d_{NTV}(r_{i-1}, r_i)$$

of any  $\varepsilon$ -sequence R for p and q, i.e. any finite sequence  $R=(r_0,r_1,\ldots,r_N)$  of elements in  $L_1(X,\mu)$  with  $r_0=p,\ r_N=q$  and  $d_{NTV}(r_{i-1},r_i)\leq \varepsilon$  for all  $i=1,\ldots,N$ .

So, assume that we are given an  $\varepsilon$ -sequence  $R=(r_0,r_1,\ldots,r_N)$  for p and q. We will construct further  $\varepsilon$ -sequences  $R',R'',\ldots$  for p and q from R with  $d_{NTV}(R)\geq d_{NTV}(R')\geq d_{NTV}(R'')\geq \ldots$  such that the distance sum of (at least) the last of these  $\varepsilon$ -sequences is larger than  $\ln \frac{||m||}{||p||} + \ln \frac{||m||}{||q||} - \varepsilon(\frac{1}{||p||} + \frac{1}{||q||})$ .

To this end, note first that — in view of the fact that  $||a| - |b|| \le |a - b|$  holds for all  $a, b \in \mathbb{R}$  — we have  $|||r| - |s||| \le ||r - s||$  and, hence, also

$$d_{NTV}(r,s) = \frac{||r-s||}{||\max(|r|,|s|)||} \ge \frac{||\,|r|-|s|\,||}{||\max(|r|,|s|)||} = d_{NTV}(|r|,|s|)$$

for all  $r, s \in L_1(X, \mu)$ . So, replacing each  $r_i$  in the above sequence by  $r'_i := |r_i|$  yields a new  $\varepsilon$ -sequence  $r'_0, r'_1, \ldots, r'_N$  for p and q whose members are now contained in  $L_1(X, \mu)^+$ , and for which  $d_{NTV}(r'_{i-1}, r'_i) \le d_{NTV}(r_{i-1}, r_i)$  holds for all  $i = 1, \ldots, N$ . So, we may assume from now on that  $r_i \in L_1(X, \mu)^+$  holds for all  $i = 0, \ldots, N$ .

Next, we note that, given any  $\varepsilon$ -sequence  $r_0, r_1, \ldots, r_N$  for p and q with  $r_0, r_1, \ldots, r_N \in L_1(X, \mu)^+$ , we can find another such sequence  $r'_0, r'_1, \ldots, r'_{2N}$  by inserting into the given sequence  $r_0, r_1, \ldots, r_N$  the map  $\max(r_{i-1}, r_i)$  between  $r_{i-1}$  and  $r_i$  for all  $i = 1, \ldots, N$ , i.e., by putting  $r'_{2i} := r_i$  for each  $i = 0, \ldots, N$  and  $r'_{2i-1} := \max(r_{i-1}, r_i)$  for each  $i = 1, \ldots, N$ . Clearly, any two consecutive elements in the new sequence are comparable while (1) implies that

$$\sum_{i=1,\dots,2N} d_{NTV}(r'_{i-1},r'_i) = \sum_{i=1,\dots,N} d_{NTV}(r_{i-1},r_i)$$

holds. Consequently, we can restrict our attention to  $\varepsilon$ -sequences for which the maps  $r_{i-1}$  and  $r_i$  are comparable for all  $i = 1, \ldots, N$ .

Next, note that  $\max(p,q) + \min(p,q) = p + q$  and, hence,

$$||\max(p,q)|| + ||\min(p,q)|| = ||p|| + ||q||$$

holds for all  $p, q \in L_1(X, \mu)^+$  which in turn implies that also

$$\begin{split} d_{NTV}\big(p, \max(p, q)\big) &= \frac{||\max(p, q)|| - ||p||}{||\max(p, q)||} = \frac{||q|| - ||\min(p, q)||}{||\max(p, q)||} \\ &\leq \frac{||q|| - ||\min(p, q)||}{||q||} = d_{NTV}(\min(p, q), q) \end{split}$$

as well as

$$d_{NTV}(\max(p,q),q) \le d_{NTV}(p,\min(p,q))$$

holds for all non-zero elements  $p, q \in L_1(X, \mu)^+$ .

Thus, replacing any  $r_i$   $(i=1,\ldots,N-1)$  in such an  $\varepsilon$ -sequence for which  $r_i \leq r_{i-1}$  and  $r_i \leq r_{i+1}$  holds, first by  $\min(r_{i-1},r_{i+1})$  and then by  $\max(r_{i-1},r_{i+1})$ , one sees that we can also restrict our attention to  $\varepsilon$ -sequences  $r_0,r_1,\ldots,r_N$  for p and q for which some  $k \in \{0,1,\ldots,N\}$  with

$$r_0 \le r_1 \le \dots \le r_k \ge r_{k+1} \ge \dots \ge r_N$$

exists which implies in particular that  $m \leq r_k$  must hold.

Moreover, using now the also very well-known fact that

$$\frac{a-b}{a} = \frac{a-b}{b} - \frac{(a-b)^2}{ab}$$

$$\geq \ln \frac{a}{b} - \frac{(a-b)^2}{ab}$$

$$= \ln \frac{a}{b} - (a-b)(\frac{1}{b} - \frac{1}{a})$$

holds for any two positive numbers a, b with  $a \geq b$ , we see that

$$\begin{split} d_{NTV}(R) &= \sum_{i=1}^{N} d_{NTV}(r_{i-1}, r_{i}) = \sum_{i=1}^{k} \frac{||r_{i}|| - ||r_{i-1}||}{||r_{i}||} + \sum_{i=k+1}^{N} \frac{||r_{i-1}|| - ||r_{i}||}{||r_{i-1}||} \\ &\geq \sum_{i=1}^{k} \ln \frac{||r_{i}||}{||r_{i-1}||} - \varepsilon \sum_{i=1}^{k} (\frac{1}{||r_{i-1}||} - \frac{1}{||r_{i}||}) \\ &+ \sum_{i=k+1}^{N} \ln \frac{||r_{i-1}||}{||r_{i}||} - \varepsilon \sum_{i=k+1}^{N} (\frac{1}{||r_{i}||} - \frac{1}{||r_{i-1}||}) \\ &= \ln \frac{||r_{k}||}{||p||} - \varepsilon (\frac{1}{||p||} - \frac{1}{||r_{k}||}) + \ln \frac{||r_{k}||}{||q||} - \varepsilon (\frac{1}{||q||} - \frac{1}{||r_{k}||}) \\ &> \ln \frac{||m||}{||p||} + \ln \frac{||m||}{||q||} - \varepsilon (\frac{1}{||p||} + \frac{1}{||q||}) \end{split}$$

holds as claimed.

#### 4 Proof of Theorem 2

To establish Theorem 2, note first that Theorem 1 implies that

$$d_{NTV}^{(0)}(p,q) = d_{NTV}^{(0)}(p,r) + d_{NTV}^{(0)}(r,q) \label{eq:dNTV}$$

holds for any three elements  $p,q,r \in L_1(X,\mu)^+$  with  $p \leq r \leq q$ . Further, assuming that p,q,r are three non-zero elements in  $L_1(X,\mu)^+$  with  $r \leq p,q$  and putting  $m := \max(p,q)$ , we have  $m+r = \max(p+r,q+r) \leq p+q$  and, therefore, also  $||m|| + ||r|| \leq ||p|| + ||q||$  as well as

$$||p||\,||q||-||m||\,||r||=(||p||-||r||)\,(||q||-||r||)+(||p||+||q||-||m||-||r||)||r||\geq 0$$

which implies that

$$d_{NTV}^{(0)}(p,m) = \ln \frac{||m||}{||n||} \le \ln \frac{||q||}{||r||} = d_{NTV}^{(0)}(q,r)$$

and

$$d_{NTV}^{(0)}(q,m) = \ln \frac{||m||}{||q||} \leq \ln \frac{||p||}{||r||} = d_{NTV}^{(0)}(p,r)$$

must hold, and that equality holds for at least one of these two inequalities if and only if equality holds for both if and only if ||p|| + ||q|| - ||m|| - ||r|| = 0 and ||p|| = ||r|| or ||q|| = ||r|| and, therefore, if and only if  $p = r \le q$  or  $q = r \le p$  holds.

Thus, the identity  $d_{NTV}^{(0)}(p,q) = d_{NTV}^{(0)}(p,m) + d_{NTV}^{(0)}(q,m)$  implies that one has  $d_{NTV}^{(0)}(p,q) = d_{NTV}^{(0)}(p,r) + d_{NTV}^{(0)}(r,q)$  if and only if  $d_{NTV}^{(0)}(p,r)$  coincides with  $d_{NTV}^{(0)}(q,m)$  and  $d_{NTV}^{(0)}(q,r)$  coincides with  $d_{NTV}^{(0)}(p,m)$  if and only if  $p = r \le q$  or  $q = r \le p$  holds.

Consequently, putting  $m_p:=\max(p,r),\,m_q:=\max(q,r),$  and  $\overline{m}=\max(m_p,m_q)$  for some arbitrary elements  $p,q,r\in L_1(X,\mu)^+$ , we have

$$d_{NTV}^{(0)}(p,q) = d_{NTV}^{(0)}(p,r) + d_{NTV}^{(0)}(r,q)$$

for these three elements  $p, q, r \in L_1(X, \mu)^+$  if and only if

$$\begin{split} d_{NTV}^{(0)}(p,q) &= d_{NTV}^{(0)}(p,m) + d_{NTV}^{(0)}(m,q) \\ &= d_{NTV}^{(0)}(p,m_p) + d_{NTV}^{(0)}(m_p,r) + d_{NTV}^{(0)}(r,m_q) + d_{NTV}^{(0)}(m_q,q) \\ &\geq d_{NTV}^{(0)}(p,m_p) + d_{NTV}^{(0)}(m_p,m_q) + d_{NTV}^{(0)}(m_q,q) \\ &= d_{NTV}^{(0)}(p,m_p) + d_{NTV}^{(0)}(m_p,\overline{m}) + d_{NTV}^{(0)}(\overline{m},m_q) + d_{NTV}^{(0)}(m_q,q) \\ &= d_{NTV}^{(0)}(p,\overline{m}) + d_{NTV}^{(0)}(\overline{m},q) \\ &= d_{NTV}^{(0)}(p,m) + 2d_{NTV}^{(0)}(m,\overline{m}) + d_{NTV}^{(0)}(m,q) \end{split}$$

or, equivalently, if and only if

$$d_{NTV}^{(0)}(m,\overline{m}) = 0 \text{ and } d_{NTV}^{(0)}(m_p,r) + d_{NTV}^{(0)}(r,m_q) = d_{NTV}^{(0)}(m_p,m_q)$$

holds. However, we have  $d_{NTV}^{(0)}(m,\overline{m})=0$  if and only if  $r\leq m$  holds. And we have just seen that  $d_{NTV}^{(0)}(m_p,r)+d_{NTV}^{(0)}(r,m_q)=d_{NTV}^{(0)}(m_p,m_q)$  holds if and only if  $m_p=r\leq m_q$  or  $m_q=r\leq m_p$  holds. Thus, we have  $d_{NTV}^{(0)}(p,q)=d_{NTV}^{(0)}(p,r)+d_{NTV}^{(0)}(r,q)$  for some non-zero elements p,q,r in  $L_1(X,\mu)^+$  if and only  $p\leq r\leq m$  or  $q\leq r\leq m$  holds.

It is easy to see that Theorem 2 is directly equivalent to this assertion.

## References

- [1] J.J. Nieto, A. Torres and M.M. Vázquez-Trasande, A metric space to study differences between polynucleotides, *Applied Mathematical Letters* (to appear).
- [2] A. Dress, T. Lokot, A Simple Proof of the Triangle Inequality for the NTV Metric, *Applied Mathematical Letters* (to appear).