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Abstract
J.J. Nieto, A. Torres, and M.M. Vazquez-Trasande recently considered,
for any n € N, the bivariate map

d:0,1]" x [0,1]" > R:

Yy Ipi — ail
2?21 max (|p¢|a |Qi|)

(Wlth d((Pl, ce apn)7 (qla s aqn)) = 0 if (pli s apn) = (q17 .. 7qn) =
(0,...,0)) and showed that this map satisfies the triangle inequality and,
hence, constitutes a metric. Here, we suggest to consider, more generally,
for any space X with a positive measure pu, the bivariate map

(1, ,pn), (@1, amd) 0

Jx lp—dqldp

d:Li(X,pu) x Li(X,pu) > R: (p,q)> S ma.x(|p| |Q|)du

(with d(p,q) := 0 if [, max(|p|,|q])dp = 0) and show that, for maps
p,q € Li(X,w)" = {f € Li(X,pu) | f(z) > 0 for all z € X}, the length of
a geodesic (relative to d) coincides with the sum

I Jx max(p,q)dp +in Jx max(p, q)dp
Jx pdp Jx adp

In particular, a continuous path S : [0,1] = Li(X,u)T : t + S; is a
geodesic in L1 (X, p) relative to this metric if and only if there exists some
to € [0,1] with S;;, = max(p,q), and one has Si(z) < Sy(z), for all
t,t' € [0,t0] with t < ¢ and for all t,#' € [to,1] with ¢t > #', almost all
€ X.

Classification codes according to the 2000 Mathematics Subject Classification
of Mathematical Reviews:
53022, 46B20, 26B15, 51M25,  51F99, 52A40, 54E99, 58E10.

Keywords: —Metric, NTV-metric, Triangle inequality, Geodesics, Ly space, L
geometry, Scale invariance.

*Forschungsschwerpunkt Mathematisierung, Universitat Bielefeld, D-33615 Bielefeld, Ger-
many

TKeldysh Institut of Applied Mathematics of RAS, Miusskaja sq. 4, 125047, Moscow,
Russia



1 Introduction

A well-known question arising in many contexts is how to quantify the (dis)similarity
between any two probability distributions defined on the same set. In [1], J.J. Ni-
eto, A. Torres, and M.M. Vazquez-Trasande suggested to use the number

d(p,q) == Z lpi — %"/Zmax(pi:(h')
=1 i=1

as a dissimilarity defined on the pairs (p, q) of probability distributions

D= (pl,---,pn),q = (QI:---aQn)

defined on the set X := {1,...,n}, and showed that the triangle inequality
holds indeed for this specific dissimilarity that, henceforth, we will denote by
dntv(p; 9)-

They proposed this definition in the context of analysing sequence profiles
of protein- or DNA-sequence families and indicated that they expect it to lead
to biologically more plausible results than using the dissimilarity measure d;
defined by

di(p,q) ==Y Ipi — ail
i=1

(which nobody seems to like) or the similarity measure
n
$2(p,q) = Y _\/Pitli»
i=1

i.e., the cosine of the two vectors (1/p1,...,+/Pn) and (\/q1,---,+/dn) of eu-
clidean length 1 (which appears to be quite popular).

Clearly, the definition of the metric dy7y can be extended, wihout any
additional effort, to work for any two L;-integrable functions p,q defined on
some measurable space X with a positive measure pu: Just put

_ Jx (@) — q(x)|dp
dntv(p,q) == fX max(|p(z)|, |q(z)])dp

in case [, max(|p(z)|, |q(z)|)dp # 0, and dnrv (p, q) := 0 else so that dnrv (p,q) =
0 holds for some L;-integrable functions p, q defined on some X if and only if
they represent the same element in the Banach space L; (X, u) of Li-integrable
functions defined on X = (X, p).

It is easy to see that the method presented in [2] for proving that the triangle
inequality holds in the case studied in [1] (i.e., essentially the case where X
is finite), yields that it also holds in this much more general situation, thus
establishing that the map

dNTV : Ll(XJH) X Ll(X7/'L) - R: (paq) = dNTV(P:Q)




is indeed a well-defined metric on the space L (X, u).

In [2], it was also observed that this metric is far from being “geodesic”,
i.e. that it differs considerably from the metric ng)TV where, for any metric d
defined on a set L, we denote by d(® the map from L x L into RU {+o0} that
is defined as follows:

For any € > 0 and p,q € L, put

N
d®) (p,q) :=inf ( Z d(ﬁ'fl,?“z'))
i=1
where the infimum is taken over all finite sequences (ro,...,rn) of points in

L with 79 := p, ry := ¢, and d(r;_1,7;) < € holds for all 4 = 1,..., N (with
d®)(p, q) := 00, of course, if no such sequence exists), and put

d®(p,q) = sup (d®(p,q)) .

Note, by the way, that

d® (p,q) < d®(p,q)

holds for all p,q € L and e, > 0 with ¢ < &, implying that d(© (p,q) can also
be defined as the limit lim._,o d©) (p, q).

Here, we will compute the dgg)TV—dista,nce for any two elements in the convex
cone

Li(X, )t :={p e Li(X,n)|p(z) >0 for (almost) all z € X}
of non-negative elements in L; (X, ). More specifically, we will establish:

Theorem 1 Given any space X with a positive measure 1 and any two elements
p,q € Li(X, w)*, we have!

Jx max(p, q)du tln Jx max(p, q)dp ‘
Jx pdu Jx adp

In the next section, we’ll introduce some useful definitions and collect some
simple relevant facts, in Section 3 we establish Theorem 1, and in the last
section, we will discuss the structure of geodesics in L; (X, u)* relative to the
NTV-metric.

1Here, given any two non-negative real numbers a and b, we put a/b := co in case a > 0
and b=0, and a/b:=1in case a = b= 0.

d%., (p,q) =In




2 Some Basic Facts and Definitions
Given any two real-valued maps p,q: X — R,

o we'll write p < ¢ if p(z) < ¢(x) holds for almost all z € X,

o we'll write p < ¢ if p < ¢ holds and the set {z € X : p(z) < ¢(x)} is not
a set of measure 0, i.e., if p < ¢, but not ¢ < p holds,

e we define p and ¢ to be comparable if either p < q or ¢ < p holds,

e and we define p and ¢ to be incomparable if they are not comparable.

As all this holds for any two maps p,q : X — R if and only if it holds for
any two maps p',¢' : X — R that differ from p and ¢, respectively, on a set
of measure 0 only, we will use the same terminology also if p and ¢ are just
elements in Ly (X, p).

Further, we put

max(p, ¢)(z) := max (p(z),q(z))

and
min(p, ¢)(z) := min (p(z), ¢(z)),

for any two maps p,q : X — R and all z € X. And we define max(p,q) (or
min(p, q), respectively) for any two elements p,q € L;(X, u) to be the (well-
defined) element in L, (X, ) represented by the map max(p’,¢') (or min(p',q"))
for any two maps p’,q¢' : X — R representing the elements p,q in L; (X, u).
Note that p,q < r holds for some real-valued maps p,q,r : X — R, or elements
of L1 (X, ), if and only if max(p,q) < r holds while r < p, ¢ holds for p, ¢,r as
above if and only if r < min(p, ¢) holds.

Next, we define the map |p| : X — R for any map p: X — R, or element p
of L1(X, p), by
lpl(z) := |p(z)| (z € X),

Ioll+= [ 1o du
X

and we put

for any p € L1 (X, ) so that

JxIp@) —q@ldp _ |lp— 4]
sla(@))dp  ||max(|p|, |g))]|

dntv (P, q) = Jx max(|p(z)

holds for all p,q € L1(X, p),

_lp—qll
dntv(p,q) = || max(p, q)||



holds for all p,q € L1(X, u)T, and

[P —qll = [lpll — [l4l]

as well as

qil — 1Ip
P

holds for all p,q € L1(X, )T with p < g. In turn, this implies that

|pl| |[pl|
d =1-—<1-—=(
NTV(p,T) ||r|| < |q|| NTV(p;Q)
as well as
dntv(r,q) = il <1—@=dNTV(p q)
’ lall = Ilall ’

holds for all p,q,r € L1(X,p)T with p <r < q. Note also that

la—b] = (max(a,b)—a)+ (max(a,b) —b)
— | max(a,b) - a)| +| max(a,b) — b

holds for all a,b € R. So,
|lp — ¢l = [|max(p, ¢) — p|| + || max(p, q) — ql|
and, hence,

llp —ql|

(1) dntv(p,q) = Tmax(p, q)||

|| max(p, q) — pl| + [ max(p, ¢) — ql|
|| max(p, g)|

= dnrv(max(p,q),p) + dyrv(max(p, q), q)

must also hold for any two elements p,q € L1 (X, ) 7.

Finally, we define a map

S :la,b] = Li(X,u) : t— Sy

from a real interval [a,b] into L1 (X, p) to be monotonically increasing (or de-
creasing) if S; < Sy (or Sy > Sy, respectively) holds for all ¢,t' € [a,b] with
t <t'. And we define S to be monotone if it is either monotonically increasing
or monotonically decreasing. In the last section, we will establish the following

result:



Theorem 2 Given any space X with a positive measure p and any two elements
p,q € L1(X,u)t, a continuous map

S:[O,l]—)Ll(X,M)itl—)St

with So = p and S1 = q is a geodesic path from p to q in L1 (X, u)* relative to
the NT'V-metric if and only if there exists some to € [0, 1] with Sy, = max(p, q),
S restricted to [0,t9] is monotonically increasing, and S restricted to [to, 1] is
monotonically decreasing.

3 Proof of Theorem 1

Asssume that p and ¢ are two arbitrary elements Lq (X, ) , put m := max(p, q),
and choose some positive e < 1. As dyrv(0,p) = holds for all non-zero
elements p € Ly (X, u), we have

Ay (0,p) = 0y (0,p) = o0

for all such p.

So, we may assume from now on that p,q # 0 holds. To show that

i ImIL o ]

d(s)
1] llqll

NTV (p,q) <

holds in this case, consider, for some large integer N, the sequence rg,71,...,T2n
of non-zero elements in L; (X, u)* defined by
i
ri=p+ N(m -p)
and

i.(m—q)

ToN—i =g+ N

fori =0,1,...,N. Clearly, we have

llrall = [lpll + —IIm pll = [lpll + + (Ilmll = llpll) = [lpll

and
[[ron— z||—||Q||+_||m—(I||_||‘I||+ (||m||—||‘J||)>||Q||
forall i =0,1,..., N. Hence, we have
[rall = llri—all _ [lm —pll _ llm]]
dnry (rica,r) = = < <e
R [|7i]| N ||ri]| Nllpll
and
[Iran—ill = llran—itall _ llm—gll _ llmill _
dNTV ToN—i,ToN—
(ran—is ran—i41) = [[ran—l| ~ Nlran—il| = NHQII



for all 4 =0,1,...,N provided N > Il and N > Ll holds. Moreover, the

elloll elall
well-known fact that
a—>b

a
holds for any two positive numbers a,b with a > b, implies

<In

o> e

S Il = lrimall = [rav—ill = [Ir2n—isal]
d Tio1,Ti — i i—1 2N—i|| — 2N —i+1
; NTV( i—1 Z) Z |7'z|| Z |7'2N—i||
< 21 +21 A
- |7'z 1|| |7“2N il
ol el
el ™ lall
and, therefore, also
de) (p,q) SlnMHnu
NrviP [l2l| [lall
for all ' € [0,1), as claimed.
To show that also
d(O) ( q) || ||+1 ||m||
NTviP el [lall
holds, it will suffice to show that
[lm|| [lm|| 1 1
dNTV(R) >In-— +In— — (—+—)
Izl llal| oIl lgll
holds for the distance sum
dntv(R) := ZdNTV (ric1,73)
of any e-sequence R for p and ¢, i.e. any finite sequence R = (rg,71,---,7N)

of elements in Ly (X,u) with r9 = p, ry = ¢ and dyrv(ri_1,7;) < € for all
i=1,...,N.

So, assume that we are given an e-sequence R = (r9,r1,...,7n) for p and
g- We will construct further e-sequences R',R",... for p and ¢ from R with
dntv(R) > dntyv(R') > dynry (R") > ... such that the distance sum of (at

[m|] Uml| _

least) the last of these e-sequences is larger than In T Hin (ﬁ + ﬁ)

To this end, note first that — in view of the fact that | |a| — |b]| < |a — b|
holds for all a,b € R — we have || |r| — |s||| < || » — s|| and, hence, also

lr=sll o lllrl=1slll

|l max(|rl, [s)I| ~ || max(|r, |s])]]

dNTV(T S) =dNTV(|T|7|s|)



for all r,s € Li(X, p). So, replacing each r; in the above sequence by r} := |r]
yields a new e-sequence r{,r1,. .., for p and ¢ whose members are now con-
tained in Lq (X, p)t, and for which dy7v () ,r}) < dnrv(ri—1,7;) holds for
alli=1,...,N. So, we may assume from now on that r; € L; (X, ) holds for
alli=0,...,N.

Next, we note that, given any e-sequence rg,71,...,rny for p and ¢ with
T0,T1,---,7N € L1(X, u)*, we can find another such sequence r{,r},...,r5y by
inserting into the given sequence rg,71,...,rN the map max(r;_i,r;) between
ri—1 and r; for all 4 = 1,..., N, i.e., by putting ry; :=r; foreach i =0,...,N
and rh;_; = max(r;_1,7;) for each ¢ = 1,...,N. Clearly, any two consecutive
elements in the new sequence are comparable while (1) implies that

Z dNTV(T;'—hT;'): Z dnrv(rica, i)
i=1,....2N i

i=1,...,N

holds. Consequently, we can restrict our attention to e-sequences for which the
maps r;_1 and r; are comparable for all i =1,... N.

Next, note that max(p, q) + min(p, ¢) = p + ¢ and, hence,

|| max(p, q)|| + || min(p, ¢)|| = ||p|| + |lql|

holds for all p,q € L1 (X, u)* which in turn implies that also

Imax(z, )l — lIpll _ llall - || min(p, )l
d p,max(p,q)) = =
wrv (pmax(p @) = T Tmax(p,q)]

< llgll = [[min(p, g)||
llall

= dntv(min(p,q),q)

as well as
dNTV (max(p, q); q) S dNTV (pa min(pa q))
holds for all non-zero elements p,q € Ly (X, u)*.
Thus, replacing any r; (¢ = 1,..., N—1) in such an e-sequence for which r; <
r;—1 and r; < ripq1 holds, first by min(r;_;,r;y1) and then by max(r;_1,7i41),

one sees that we can also restrict our attention to e-sequences rg,71,...,7N for
p and ¢ for which some k € {0,1,..., N} with

ro<r1 < <Trp>2Tpyp1 > 2 TN

exists which implies in particular that m < r; must hold.



Moreover, using now the also very well-known fact that

a=b _ a-b (a-b)?
a N b ab
a (a-0b)?
> 2
= -
a 1 1
= Iny—(a=-b)(;--)

holds for any two positive numbers a, b with a > b, we see that

N
r r ri—1|| = ||rs
dero (B — de - Z“ L =llrimall g lrisall =l

Tl T2 Tl
k k
Il 1
> In —€ —
> X T S T e
=1 =1
N N
s ] 1
+ 5 In P L
2 T e 2 Tl
1 1 1 1
— ln”Tk”— (— — )-l-ln“rk”—a(—— )
ST Tl T Tl el Tl
1 1
R 3 R S
el e el T

holds as claimed.

4 Proof of Theorem 2

To establish Theorem 2, note first that Theorem 1 implies that

0 0
dyry (p,q) = Ay (p,7) + dry (r,0)
holds for any three elements p,q,r € Li(X,u)" with p < r < q. Further,
assuming that p,q,r are three non-zero elements in L; (X, )t with r < p,q
and putting m := max(p,q), we have m +r = max(p + r,¢ + r) < p + ¢ and,
therefore, also ||m|| + ||r|| < ||p|| + ||g|| as well as

[p[l gl = [l [l = (el =) (gl = {I=[1)+ Ulpll + gl = lml| = lIrIDIl]] = 0
which implies that

40 pom) = 1™ < el _ o)
NTV(p ) ||p|| ||’I‘| NTV( )

and

Ary(a.m) =t o <o P — a0



must hold, and that equality holds for at least one of these two inequalities if
and only if equality holds for both if and only if ||p|| +||g|| — ||m|| = ||7|| = 0 and

llpll = lIr|| or ||lg|| = ||r|| and, therefore, if and only if p=r < gorg=r <p
holds.
Thus, the identity dg\%v(p, q) = ng)TV(p, m) + ng)TV(q, m) implies that

one has dgs)TV(p, q) = dgg)TV(p, r) + ng)TV(r, q) if and only if dsg)TV(p, r) Co-

incides with ng)TV (g,m) and ds\(;)TV (¢,7) coincides with dSS)TV (p,m) if and only
ifp=r <qor ¢g=r <pholds.

Consequently, putting m,, := max(p,r), mq := max(g,r), and ™ = max(my, mg)
for some arbitrary elements p,q,r € L1(X, u)T, we have

A 0,9) = A 0,7) + Ay (1, )

for these three elements p,q,7 € L1 (X, u)™" if and only if

dg\?zfv (p,q) dg\?z.rv (p,m) + dg\(;z.rv (m, q)

ANy (9, mp) + gy (M, 1) + ANy (r,mg) + iy (Mg, @)
Ay (1) + dipy (M, mg) + AWy (g, @)

dg\?)TV (p,my) + dg\(;)TV (myp, m) + ng)TV (m,my) + dSS)TV (myg,q)
d\py (p,) + diyy (7, 9)

ANy (P, m) + 24Ny (1, T) + Ay (M, q)

v I

or, equivalently, if and only if

dg\(;)TV (m,m) = 0 and dePTV (mp,r) + ng)TV(r, mg) = d§3’TV (mp, myg)

holds. However, we have d'vy, (m,m) = 0 if and only if r < m holds. And we
have just seen that dﬁS’TV (myp,r) + dﬁS?N (rymg) = d§3)TV (myp, mq) holds if and
only if m, = r < mg or my = r < my holds. Thus, we have dg\(;)TV(p, q) =
dg?,)TV (p,r) + ng)TV(r, q) for some non-zero elements p, q,r in Li(X, )T if and

only p<r <morqg<r <m holds.
It is easy to see that Theorem 2 is directly equivalent to this assertion.
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